dmaengine: edma: Implement device_synchronize callback
[deliverable/linux.git] / drivers / dma / edma.c
1 /*
2 * TI EDMA DMA engine driver
3 *
4 * Copyright 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
33
34 #include <linux/platform_data/edma.h>
35
36 #include "dmaengine.h"
37 #include "virt-dma.h"
38
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT 0x00
41 #define PARM_SRC 0x04
42 #define PARM_A_B_CNT 0x08
43 #define PARM_DST 0x0c
44 #define PARM_SRC_DST_BIDX 0x10
45 #define PARM_LINK_BCNTRLD 0x14
46 #define PARM_SRC_DST_CIDX 0x18
47 #define PARM_CCNT 0x1c
48
49 #define PARM_SIZE 0x20
50
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER 0x00 /* 64 bits */
53 #define SH_ECR 0x08 /* 64 bits */
54 #define SH_ESR 0x10 /* 64 bits */
55 #define SH_CER 0x18 /* 64 bits */
56 #define SH_EER 0x20 /* 64 bits */
57 #define SH_EECR 0x28 /* 64 bits */
58 #define SH_EESR 0x30 /* 64 bits */
59 #define SH_SER 0x38 /* 64 bits */
60 #define SH_SECR 0x40 /* 64 bits */
61 #define SH_IER 0x50 /* 64 bits */
62 #define SH_IECR 0x58 /* 64 bits */
63 #define SH_IESR 0x60 /* 64 bits */
64 #define SH_IPR 0x68 /* 64 bits */
65 #define SH_ICR 0x70 /* 64 bits */
66 #define SH_IEVAL 0x78
67 #define SH_QER 0x80
68 #define SH_QEER 0x84
69 #define SH_QEECR 0x88
70 #define SH_QEESR 0x8c
71 #define SH_QSER 0x90
72 #define SH_QSECR 0x94
73 #define SH_SIZE 0x200
74
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV 0x0000
77 #define EDMA_CCCFG 0x0004
78 #define EDMA_QCHMAP 0x0200 /* 8 registers */
79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM 0x0260
81 #define EDMA_QUETCMAP 0x0280
82 #define EDMA_QUEPRI 0x0284
83 #define EDMA_EMR 0x0300 /* 64 bits */
84 #define EDMA_EMCR 0x0308 /* 64 bits */
85 #define EDMA_QEMR 0x0310
86 #define EDMA_QEMCR 0x0314
87 #define EDMA_CCERR 0x0318
88 #define EDMA_CCERRCLR 0x031c
89 #define EDMA_EEVAL 0x0320
90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
91 #define EDMA_QRAE 0x0380 /* 4 registers */
92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
93 #define EDMA_QSTAT 0x0600 /* 2 registers */
94 #define EDMA_QWMTHRA 0x0620
95 #define EDMA_QWMTHRB 0x0624
96 #define EDMA_CCSTAT 0x0640
97
98 #define EDMA_M 0x1000 /* global channel registers */
99 #define EDMA_ECR 0x1008
100 #define EDMA_ECRH 0x100C
101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
102 #define EDMA_PARM 0x4000 /* PaRAM entries */
103
104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
105
106 #define EDMA_DCHMAP 0x0100 /* 64 registers */
107
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST BIT(24)
115
116 /*
117 * Max of 20 segments per channel to conserve PaRAM slots
118 * Also note that MAX_NR_SG should be atleast the no.of periods
119 * that are required for ASoC, otherwise DMA prep calls will
120 * fail. Today davinci-pcm is the only user of this driver and
121 * requires atleast 17 slots, so we setup the default to 20.
122 */
123 #define MAX_NR_SG 20
124 #define EDMA_MAX_SLOTS MAX_NR_SG
125 #define EDMA_DESCRIPTORS 16
126
127 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
128 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
129 #define EDMA_CONT_PARAMS_ANY 1001
130 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
131 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
132
133 /* PaRAM slots are laid out like this */
134 struct edmacc_param {
135 u32 opt;
136 u32 src;
137 u32 a_b_cnt;
138 u32 dst;
139 u32 src_dst_bidx;
140 u32 link_bcntrld;
141 u32 src_dst_cidx;
142 u32 ccnt;
143 } __packed;
144
145 /* fields in edmacc_param.opt */
146 #define SAM BIT(0)
147 #define DAM BIT(1)
148 #define SYNCDIM BIT(2)
149 #define STATIC BIT(3)
150 #define EDMA_FWID (0x07 << 8)
151 #define TCCMODE BIT(11)
152 #define EDMA_TCC(t) ((t) << 12)
153 #define TCINTEN BIT(20)
154 #define ITCINTEN BIT(21)
155 #define TCCHEN BIT(22)
156 #define ITCCHEN BIT(23)
157
158 struct edma_pset {
159 u32 len;
160 dma_addr_t addr;
161 struct edmacc_param param;
162 };
163
164 struct edma_desc {
165 struct virt_dma_desc vdesc;
166 struct list_head node;
167 enum dma_transfer_direction direction;
168 int cyclic;
169 int absync;
170 int pset_nr;
171 struct edma_chan *echan;
172 int processed;
173
174 /*
175 * The following 4 elements are used for residue accounting.
176 *
177 * - processed_stat: the number of SG elements we have traversed
178 * so far to cover accounting. This is updated directly to processed
179 * during edma_callback and is always <= processed, because processed
180 * refers to the number of pending transfer (programmed to EDMA
181 * controller), where as processed_stat tracks number of transfers
182 * accounted for so far.
183 *
184 * - residue: The amount of bytes we have left to transfer for this desc
185 *
186 * - residue_stat: The residue in bytes of data we have covered
187 * so far for accounting. This is updated directly to residue
188 * during callbacks to keep it current.
189 *
190 * - sg_len: Tracks the length of the current intermediate transfer,
191 * this is required to update the residue during intermediate transfer
192 * completion callback.
193 */
194 int processed_stat;
195 u32 sg_len;
196 u32 residue;
197 u32 residue_stat;
198
199 struct edma_pset pset[0];
200 };
201
202 struct edma_cc;
203
204 struct edma_tc {
205 struct device_node *node;
206 u16 id;
207 };
208
209 struct edma_chan {
210 struct virt_dma_chan vchan;
211 struct list_head node;
212 struct edma_desc *edesc;
213 struct edma_cc *ecc;
214 struct edma_tc *tc;
215 int ch_num;
216 bool alloced;
217 bool hw_triggered;
218 int slot[EDMA_MAX_SLOTS];
219 int missed;
220 struct dma_slave_config cfg;
221 };
222
223 struct edma_cc {
224 struct device *dev;
225 struct edma_soc_info *info;
226 void __iomem *base;
227 int id;
228 bool legacy_mode;
229
230 /* eDMA3 resource information */
231 unsigned num_channels;
232 unsigned num_qchannels;
233 unsigned num_region;
234 unsigned num_slots;
235 unsigned num_tc;
236 bool chmap_exist;
237 enum dma_event_q default_queue;
238
239 /*
240 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
241 * in use by Linux or if it is allocated to be used by DSP.
242 */
243 unsigned long *slot_inuse;
244
245 struct dma_device dma_slave;
246 struct dma_device *dma_memcpy;
247 struct edma_chan *slave_chans;
248 struct edma_tc *tc_list;
249 int dummy_slot;
250 };
251
252 /* dummy param set used to (re)initialize parameter RAM slots */
253 static const struct edmacc_param dummy_paramset = {
254 .link_bcntrld = 0xffff,
255 .ccnt = 1,
256 };
257
258 #define EDMA_BINDING_LEGACY 0
259 #define EDMA_BINDING_TPCC 1
260 static const struct of_device_id edma_of_ids[] = {
261 {
262 .compatible = "ti,edma3",
263 .data = (void *)EDMA_BINDING_LEGACY,
264 },
265 {
266 .compatible = "ti,edma3-tpcc",
267 .data = (void *)EDMA_BINDING_TPCC,
268 },
269 {}
270 };
271
272 static const struct of_device_id edma_tptc_of_ids[] = {
273 { .compatible = "ti,edma3-tptc", },
274 {}
275 };
276
277 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
278 {
279 return (unsigned int)__raw_readl(ecc->base + offset);
280 }
281
282 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
283 {
284 __raw_writel(val, ecc->base + offset);
285 }
286
287 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
288 unsigned or)
289 {
290 unsigned val = edma_read(ecc, offset);
291
292 val &= and;
293 val |= or;
294 edma_write(ecc, offset, val);
295 }
296
297 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
298 {
299 unsigned val = edma_read(ecc, offset);
300
301 val &= and;
302 edma_write(ecc, offset, val);
303 }
304
305 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
306 {
307 unsigned val = edma_read(ecc, offset);
308
309 val |= or;
310 edma_write(ecc, offset, val);
311 }
312
313 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
314 int i)
315 {
316 return edma_read(ecc, offset + (i << 2));
317 }
318
319 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
320 unsigned val)
321 {
322 edma_write(ecc, offset + (i << 2), val);
323 }
324
325 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
326 unsigned and, unsigned or)
327 {
328 edma_modify(ecc, offset + (i << 2), and, or);
329 }
330
331 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
332 unsigned or)
333 {
334 edma_or(ecc, offset + (i << 2), or);
335 }
336
337 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
338 unsigned or)
339 {
340 edma_or(ecc, offset + ((i * 2 + j) << 2), or);
341 }
342
343 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
344 int j, unsigned val)
345 {
346 edma_write(ecc, offset + ((i * 2 + j) << 2), val);
347 }
348
349 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
350 {
351 return edma_read(ecc, EDMA_SHADOW0 + offset);
352 }
353
354 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
355 int offset, int i)
356 {
357 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
358 }
359
360 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
361 unsigned val)
362 {
363 edma_write(ecc, EDMA_SHADOW0 + offset, val);
364 }
365
366 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
367 int i, unsigned val)
368 {
369 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
370 }
371
372 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
373 int param_no)
374 {
375 return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
376 }
377
378 static inline void edma_param_write(struct edma_cc *ecc, int offset,
379 int param_no, unsigned val)
380 {
381 edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
382 }
383
384 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
385 int param_no, unsigned and, unsigned or)
386 {
387 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
388 }
389
390 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
391 unsigned and)
392 {
393 edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
394 }
395
396 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
397 unsigned or)
398 {
399 edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
400 }
401
402 static inline void set_bits(int offset, int len, unsigned long *p)
403 {
404 for (; len > 0; len--)
405 set_bit(offset + (len - 1), p);
406 }
407
408 static inline void clear_bits(int offset, int len, unsigned long *p)
409 {
410 for (; len > 0; len--)
411 clear_bit(offset + (len - 1), p);
412 }
413
414 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
415 int priority)
416 {
417 int bit = queue_no * 4;
418
419 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
420 }
421
422 static void edma_set_chmap(struct edma_chan *echan, int slot)
423 {
424 struct edma_cc *ecc = echan->ecc;
425 int channel = EDMA_CHAN_SLOT(echan->ch_num);
426
427 if (ecc->chmap_exist) {
428 slot = EDMA_CHAN_SLOT(slot);
429 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
430 }
431 }
432
433 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
434 {
435 struct edma_cc *ecc = echan->ecc;
436 int channel = EDMA_CHAN_SLOT(echan->ch_num);
437
438 if (enable) {
439 edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
440 BIT(channel & 0x1f));
441 edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
442 BIT(channel & 0x1f));
443 } else {
444 edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
445 BIT(channel & 0x1f));
446 }
447 }
448
449 /*
450 * paRAM slot management functions
451 */
452 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
453 const struct edmacc_param *param)
454 {
455 slot = EDMA_CHAN_SLOT(slot);
456 if (slot >= ecc->num_slots)
457 return;
458 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
459 }
460
461 static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
462 struct edmacc_param *param)
463 {
464 slot = EDMA_CHAN_SLOT(slot);
465 if (slot >= ecc->num_slots)
466 return;
467 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
468 }
469
470 /**
471 * edma_alloc_slot - allocate DMA parameter RAM
472 * @ecc: pointer to edma_cc struct
473 * @slot: specific slot to allocate; negative for "any unused slot"
474 *
475 * This allocates a parameter RAM slot, initializing it to hold a
476 * dummy transfer. Slots allocated using this routine have not been
477 * mapped to a hardware DMA channel, and will normally be used by
478 * linking to them from a slot associated with a DMA channel.
479 *
480 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
481 * slots may be allocated on behalf of DSP firmware.
482 *
483 * Returns the number of the slot, else negative errno.
484 */
485 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
486 {
487 if (slot >= 0) {
488 slot = EDMA_CHAN_SLOT(slot);
489 /* Requesting entry paRAM slot for a HW triggered channel. */
490 if (ecc->chmap_exist && slot < ecc->num_channels)
491 slot = EDMA_SLOT_ANY;
492 }
493
494 if (slot < 0) {
495 if (ecc->chmap_exist)
496 slot = 0;
497 else
498 slot = ecc->num_channels;
499 for (;;) {
500 slot = find_next_zero_bit(ecc->slot_inuse,
501 ecc->num_slots,
502 slot);
503 if (slot == ecc->num_slots)
504 return -ENOMEM;
505 if (!test_and_set_bit(slot, ecc->slot_inuse))
506 break;
507 }
508 } else if (slot >= ecc->num_slots) {
509 return -EINVAL;
510 } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
511 return -EBUSY;
512 }
513
514 edma_write_slot(ecc, slot, &dummy_paramset);
515
516 return EDMA_CTLR_CHAN(ecc->id, slot);
517 }
518
519 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
520 {
521 slot = EDMA_CHAN_SLOT(slot);
522 if (slot >= ecc->num_slots)
523 return;
524
525 edma_write_slot(ecc, slot, &dummy_paramset);
526 clear_bit(slot, ecc->slot_inuse);
527 }
528
529 /**
530 * edma_link - link one parameter RAM slot to another
531 * @ecc: pointer to edma_cc struct
532 * @from: parameter RAM slot originating the link
533 * @to: parameter RAM slot which is the link target
534 *
535 * The originating slot should not be part of any active DMA transfer.
536 */
537 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
538 {
539 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
540 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
541
542 from = EDMA_CHAN_SLOT(from);
543 to = EDMA_CHAN_SLOT(to);
544 if (from >= ecc->num_slots || to >= ecc->num_slots)
545 return;
546
547 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
548 PARM_OFFSET(to));
549 }
550
551 /**
552 * edma_get_position - returns the current transfer point
553 * @ecc: pointer to edma_cc struct
554 * @slot: parameter RAM slot being examined
555 * @dst: true selects the dest position, false the source
556 *
557 * Returns the position of the current active slot
558 */
559 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
560 bool dst)
561 {
562 u32 offs;
563
564 slot = EDMA_CHAN_SLOT(slot);
565 offs = PARM_OFFSET(slot);
566 offs += dst ? PARM_DST : PARM_SRC;
567
568 return edma_read(ecc, offs);
569 }
570
571 /*
572 * Channels with event associations will be triggered by their hardware
573 * events, and channels without such associations will be triggered by
574 * software. (At this writing there is no interface for using software
575 * triggers except with channels that don't support hardware triggers.)
576 */
577 static void edma_start(struct edma_chan *echan)
578 {
579 struct edma_cc *ecc = echan->ecc;
580 int channel = EDMA_CHAN_SLOT(echan->ch_num);
581 int j = (channel >> 5);
582 unsigned int mask = BIT(channel & 0x1f);
583
584 if (!echan->hw_triggered) {
585 /* EDMA channels without event association */
586 dev_dbg(ecc->dev, "ESR%d %08x\n", j,
587 edma_shadow0_read_array(ecc, SH_ESR, j));
588 edma_shadow0_write_array(ecc, SH_ESR, j, mask);
589 } else {
590 /* EDMA channel with event association */
591 dev_dbg(ecc->dev, "ER%d %08x\n", j,
592 edma_shadow0_read_array(ecc, SH_ER, j));
593 /* Clear any pending event or error */
594 edma_write_array(ecc, EDMA_ECR, j, mask);
595 edma_write_array(ecc, EDMA_EMCR, j, mask);
596 /* Clear any SER */
597 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
598 edma_shadow0_write_array(ecc, SH_EESR, j, mask);
599 dev_dbg(ecc->dev, "EER%d %08x\n", j,
600 edma_shadow0_read_array(ecc, SH_EER, j));
601 }
602 }
603
604 static void edma_stop(struct edma_chan *echan)
605 {
606 struct edma_cc *ecc = echan->ecc;
607 int channel = EDMA_CHAN_SLOT(echan->ch_num);
608 int j = (channel >> 5);
609 unsigned int mask = BIT(channel & 0x1f);
610
611 edma_shadow0_write_array(ecc, SH_EECR, j, mask);
612 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
613 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
614 edma_write_array(ecc, EDMA_EMCR, j, mask);
615
616 /* clear possibly pending completion interrupt */
617 edma_shadow0_write_array(ecc, SH_ICR, j, mask);
618
619 dev_dbg(ecc->dev, "EER%d %08x\n", j,
620 edma_shadow0_read_array(ecc, SH_EER, j));
621
622 /* REVISIT: consider guarding against inappropriate event
623 * chaining by overwriting with dummy_paramset.
624 */
625 }
626
627 /*
628 * Temporarily disable EDMA hardware events on the specified channel,
629 * preventing them from triggering new transfers
630 */
631 static void edma_pause(struct edma_chan *echan)
632 {
633 int channel = EDMA_CHAN_SLOT(echan->ch_num);
634 unsigned int mask = BIT(channel & 0x1f);
635
636 edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
637 }
638
639 /* Re-enable EDMA hardware events on the specified channel. */
640 static void edma_resume(struct edma_chan *echan)
641 {
642 int channel = EDMA_CHAN_SLOT(echan->ch_num);
643 unsigned int mask = BIT(channel & 0x1f);
644
645 edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
646 }
647
648 static void edma_trigger_channel(struct edma_chan *echan)
649 {
650 struct edma_cc *ecc = echan->ecc;
651 int channel = EDMA_CHAN_SLOT(echan->ch_num);
652 unsigned int mask = BIT(channel & 0x1f);
653
654 edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
655
656 dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
657 edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
658 }
659
660 static void edma_clean_channel(struct edma_chan *echan)
661 {
662 struct edma_cc *ecc = echan->ecc;
663 int channel = EDMA_CHAN_SLOT(echan->ch_num);
664 int j = (channel >> 5);
665 unsigned int mask = BIT(channel & 0x1f);
666
667 dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
668 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
669 /* Clear the corresponding EMR bits */
670 edma_write_array(ecc, EDMA_EMCR, j, mask);
671 /* Clear any SER */
672 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
673 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
674 }
675
676 /* Move channel to a specific event queue */
677 static void edma_assign_channel_eventq(struct edma_chan *echan,
678 enum dma_event_q eventq_no)
679 {
680 struct edma_cc *ecc = echan->ecc;
681 int channel = EDMA_CHAN_SLOT(echan->ch_num);
682 int bit = (channel & 0x7) * 4;
683
684 /* default to low priority queue */
685 if (eventq_no == EVENTQ_DEFAULT)
686 eventq_no = ecc->default_queue;
687 if (eventq_no >= ecc->num_tc)
688 return;
689
690 eventq_no &= 7;
691 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
692 eventq_no << bit);
693 }
694
695 static int edma_alloc_channel(struct edma_chan *echan,
696 enum dma_event_q eventq_no)
697 {
698 struct edma_cc *ecc = echan->ecc;
699 int channel = EDMA_CHAN_SLOT(echan->ch_num);
700
701 /* ensure access through shadow region 0 */
702 edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
703
704 /* ensure no events are pending */
705 edma_stop(echan);
706
707 edma_setup_interrupt(echan, true);
708
709 edma_assign_channel_eventq(echan, eventq_no);
710
711 return 0;
712 }
713
714 static void edma_free_channel(struct edma_chan *echan)
715 {
716 /* ensure no events are pending */
717 edma_stop(echan);
718 /* REVISIT should probably take out of shadow region 0 */
719 edma_setup_interrupt(echan, false);
720 }
721
722 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
723 {
724 return container_of(d, struct edma_cc, dma_slave);
725 }
726
727 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
728 {
729 return container_of(c, struct edma_chan, vchan.chan);
730 }
731
732 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
733 {
734 return container_of(tx, struct edma_desc, vdesc.tx);
735 }
736
737 static void edma_desc_free(struct virt_dma_desc *vdesc)
738 {
739 kfree(container_of(vdesc, struct edma_desc, vdesc));
740 }
741
742 /* Dispatch a queued descriptor to the controller (caller holds lock) */
743 static void edma_execute(struct edma_chan *echan)
744 {
745 struct edma_cc *ecc = echan->ecc;
746 struct virt_dma_desc *vdesc;
747 struct edma_desc *edesc;
748 struct device *dev = echan->vchan.chan.device->dev;
749 int i, j, left, nslots;
750
751 if (!echan->edesc) {
752 /* Setup is needed for the first transfer */
753 vdesc = vchan_next_desc(&echan->vchan);
754 if (!vdesc)
755 return;
756 list_del(&vdesc->node);
757 echan->edesc = to_edma_desc(&vdesc->tx);
758 }
759
760 edesc = echan->edesc;
761
762 /* Find out how many left */
763 left = edesc->pset_nr - edesc->processed;
764 nslots = min(MAX_NR_SG, left);
765 edesc->sg_len = 0;
766
767 /* Write descriptor PaRAM set(s) */
768 for (i = 0; i < nslots; i++) {
769 j = i + edesc->processed;
770 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
771 edesc->sg_len += edesc->pset[j].len;
772 dev_vdbg(dev,
773 "\n pset[%d]:\n"
774 " chnum\t%d\n"
775 " slot\t%d\n"
776 " opt\t%08x\n"
777 " src\t%08x\n"
778 " dst\t%08x\n"
779 " abcnt\t%08x\n"
780 " ccnt\t%08x\n"
781 " bidx\t%08x\n"
782 " cidx\t%08x\n"
783 " lkrld\t%08x\n",
784 j, echan->ch_num, echan->slot[i],
785 edesc->pset[j].param.opt,
786 edesc->pset[j].param.src,
787 edesc->pset[j].param.dst,
788 edesc->pset[j].param.a_b_cnt,
789 edesc->pset[j].param.ccnt,
790 edesc->pset[j].param.src_dst_bidx,
791 edesc->pset[j].param.src_dst_cidx,
792 edesc->pset[j].param.link_bcntrld);
793 /* Link to the previous slot if not the last set */
794 if (i != (nslots - 1))
795 edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
796 }
797
798 edesc->processed += nslots;
799
800 /*
801 * If this is either the last set in a set of SG-list transactions
802 * then setup a link to the dummy slot, this results in all future
803 * events being absorbed and that's OK because we're done
804 */
805 if (edesc->processed == edesc->pset_nr) {
806 if (edesc->cyclic)
807 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
808 else
809 edma_link(ecc, echan->slot[nslots - 1],
810 echan->ecc->dummy_slot);
811 }
812
813 if (echan->missed) {
814 /*
815 * This happens due to setup times between intermediate
816 * transfers in long SG lists which have to be broken up into
817 * transfers of MAX_NR_SG
818 */
819 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
820 edma_clean_channel(echan);
821 edma_stop(echan);
822 edma_start(echan);
823 edma_trigger_channel(echan);
824 echan->missed = 0;
825 } else if (edesc->processed <= MAX_NR_SG) {
826 dev_dbg(dev, "first transfer starting on channel %d\n",
827 echan->ch_num);
828 edma_start(echan);
829 } else {
830 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
831 echan->ch_num, edesc->processed);
832 edma_resume(echan);
833 }
834 }
835
836 static int edma_terminate_all(struct dma_chan *chan)
837 {
838 struct edma_chan *echan = to_edma_chan(chan);
839 unsigned long flags;
840 LIST_HEAD(head);
841
842 spin_lock_irqsave(&echan->vchan.lock, flags);
843
844 /*
845 * Stop DMA activity: we assume the callback will not be called
846 * after edma_dma() returns (even if it does, it will see
847 * echan->edesc is NULL and exit.)
848 */
849 if (echan->edesc) {
850 edma_stop(echan);
851 /* Move the cyclic channel back to default queue */
852 if (!echan->tc && echan->edesc->cyclic)
853 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
854 /*
855 * free the running request descriptor
856 * since it is not in any of the vdesc lists
857 */
858 edma_desc_free(&echan->edesc->vdesc);
859 echan->edesc = NULL;
860 }
861
862 vchan_get_all_descriptors(&echan->vchan, &head);
863 spin_unlock_irqrestore(&echan->vchan.lock, flags);
864 vchan_dma_desc_free_list(&echan->vchan, &head);
865
866 return 0;
867 }
868
869 static void edma_synchronize(struct dma_chan *chan)
870 {
871 struct edma_chan *echan = to_edma_chan(chan);
872
873 vchan_synchronize(&echan->vchan);
874 }
875
876 static int edma_slave_config(struct dma_chan *chan,
877 struct dma_slave_config *cfg)
878 {
879 struct edma_chan *echan = to_edma_chan(chan);
880
881 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
882 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
883 return -EINVAL;
884
885 memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
886
887 return 0;
888 }
889
890 static int edma_dma_pause(struct dma_chan *chan)
891 {
892 struct edma_chan *echan = to_edma_chan(chan);
893
894 if (!echan->edesc)
895 return -EINVAL;
896
897 edma_pause(echan);
898 return 0;
899 }
900
901 static int edma_dma_resume(struct dma_chan *chan)
902 {
903 struct edma_chan *echan = to_edma_chan(chan);
904
905 edma_resume(echan);
906 return 0;
907 }
908
909 /*
910 * A PaRAM set configuration abstraction used by other modes
911 * @chan: Channel who's PaRAM set we're configuring
912 * @pset: PaRAM set to initialize and setup.
913 * @src_addr: Source address of the DMA
914 * @dst_addr: Destination address of the DMA
915 * @burst: In units of dev_width, how much to send
916 * @dev_width: How much is the dev_width
917 * @dma_length: Total length of the DMA transfer
918 * @direction: Direction of the transfer
919 */
920 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
921 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
922 unsigned int acnt, unsigned int dma_length,
923 enum dma_transfer_direction direction)
924 {
925 struct edma_chan *echan = to_edma_chan(chan);
926 struct device *dev = chan->device->dev;
927 struct edmacc_param *param = &epset->param;
928 int bcnt, ccnt, cidx;
929 int src_bidx, dst_bidx, src_cidx, dst_cidx;
930 int absync;
931
932 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
933 if (!burst)
934 burst = 1;
935 /*
936 * If the maxburst is equal to the fifo width, use
937 * A-synced transfers. This allows for large contiguous
938 * buffer transfers using only one PaRAM set.
939 */
940 if (burst == 1) {
941 /*
942 * For the A-sync case, bcnt and ccnt are the remainder
943 * and quotient respectively of the division of:
944 * (dma_length / acnt) by (SZ_64K -1). This is so
945 * that in case bcnt over flows, we have ccnt to use.
946 * Note: In A-sync tranfer only, bcntrld is used, but it
947 * only applies for sg_dma_len(sg) >= SZ_64K.
948 * In this case, the best way adopted is- bccnt for the
949 * first frame will be the remainder below. Then for
950 * every successive frame, bcnt will be SZ_64K-1. This
951 * is assured as bcntrld = 0xffff in end of function.
952 */
953 absync = false;
954 ccnt = dma_length / acnt / (SZ_64K - 1);
955 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
956 /*
957 * If bcnt is non-zero, we have a remainder and hence an
958 * extra frame to transfer, so increment ccnt.
959 */
960 if (bcnt)
961 ccnt++;
962 else
963 bcnt = SZ_64K - 1;
964 cidx = acnt;
965 } else {
966 /*
967 * If maxburst is greater than the fifo address_width,
968 * use AB-synced transfers where A count is the fifo
969 * address_width and B count is the maxburst. In this
970 * case, we are limited to transfers of C count frames
971 * of (address_width * maxburst) where C count is limited
972 * to SZ_64K-1. This places an upper bound on the length
973 * of an SG segment that can be handled.
974 */
975 absync = true;
976 bcnt = burst;
977 ccnt = dma_length / (acnt * bcnt);
978 if (ccnt > (SZ_64K - 1)) {
979 dev_err(dev, "Exceeded max SG segment size\n");
980 return -EINVAL;
981 }
982 cidx = acnt * bcnt;
983 }
984
985 epset->len = dma_length;
986
987 if (direction == DMA_MEM_TO_DEV) {
988 src_bidx = acnt;
989 src_cidx = cidx;
990 dst_bidx = 0;
991 dst_cidx = 0;
992 epset->addr = src_addr;
993 } else if (direction == DMA_DEV_TO_MEM) {
994 src_bidx = 0;
995 src_cidx = 0;
996 dst_bidx = acnt;
997 dst_cidx = cidx;
998 epset->addr = dst_addr;
999 } else if (direction == DMA_MEM_TO_MEM) {
1000 src_bidx = acnt;
1001 src_cidx = cidx;
1002 dst_bidx = acnt;
1003 dst_cidx = cidx;
1004 } else {
1005 dev_err(dev, "%s: direction not implemented yet\n", __func__);
1006 return -EINVAL;
1007 }
1008
1009 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1010 /* Configure A or AB synchronized transfers */
1011 if (absync)
1012 param->opt |= SYNCDIM;
1013
1014 param->src = src_addr;
1015 param->dst = dst_addr;
1016
1017 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1018 param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1019
1020 param->a_b_cnt = bcnt << 16 | acnt;
1021 param->ccnt = ccnt;
1022 /*
1023 * Only time when (bcntrld) auto reload is required is for
1024 * A-sync case, and in this case, a requirement of reload value
1025 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1026 * and then later will be populated by edma_execute.
1027 */
1028 param->link_bcntrld = 0xffffffff;
1029 return absync;
1030 }
1031
1032 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1033 struct dma_chan *chan, struct scatterlist *sgl,
1034 unsigned int sg_len, enum dma_transfer_direction direction,
1035 unsigned long tx_flags, void *context)
1036 {
1037 struct edma_chan *echan = to_edma_chan(chan);
1038 struct device *dev = chan->device->dev;
1039 struct edma_desc *edesc;
1040 dma_addr_t src_addr = 0, dst_addr = 0;
1041 enum dma_slave_buswidth dev_width;
1042 u32 burst;
1043 struct scatterlist *sg;
1044 int i, nslots, ret;
1045
1046 if (unlikely(!echan || !sgl || !sg_len))
1047 return NULL;
1048
1049 if (direction == DMA_DEV_TO_MEM) {
1050 src_addr = echan->cfg.src_addr;
1051 dev_width = echan->cfg.src_addr_width;
1052 burst = echan->cfg.src_maxburst;
1053 } else if (direction == DMA_MEM_TO_DEV) {
1054 dst_addr = echan->cfg.dst_addr;
1055 dev_width = echan->cfg.dst_addr_width;
1056 burst = echan->cfg.dst_maxburst;
1057 } else {
1058 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1059 return NULL;
1060 }
1061
1062 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1063 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1064 return NULL;
1065 }
1066
1067 edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
1068 GFP_ATOMIC);
1069 if (!edesc) {
1070 dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1071 return NULL;
1072 }
1073
1074 edesc->pset_nr = sg_len;
1075 edesc->residue = 0;
1076 edesc->direction = direction;
1077 edesc->echan = echan;
1078
1079 /* Allocate a PaRAM slot, if needed */
1080 nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1081
1082 for (i = 0; i < nslots; i++) {
1083 if (echan->slot[i] < 0) {
1084 echan->slot[i] =
1085 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1086 if (echan->slot[i] < 0) {
1087 kfree(edesc);
1088 dev_err(dev, "%s: Failed to allocate slot\n",
1089 __func__);
1090 return NULL;
1091 }
1092 }
1093 }
1094
1095 /* Configure PaRAM sets for each SG */
1096 for_each_sg(sgl, sg, sg_len, i) {
1097 /* Get address for each SG */
1098 if (direction == DMA_DEV_TO_MEM)
1099 dst_addr = sg_dma_address(sg);
1100 else
1101 src_addr = sg_dma_address(sg);
1102
1103 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1104 dst_addr, burst, dev_width,
1105 sg_dma_len(sg), direction);
1106 if (ret < 0) {
1107 kfree(edesc);
1108 return NULL;
1109 }
1110
1111 edesc->absync = ret;
1112 edesc->residue += sg_dma_len(sg);
1113
1114 /* If this is the last in a current SG set of transactions,
1115 enable interrupts so that next set is processed */
1116 if (!((i+1) % MAX_NR_SG))
1117 edesc->pset[i].param.opt |= TCINTEN;
1118
1119 /* If this is the last set, enable completion interrupt flag */
1120 if (i == sg_len - 1)
1121 edesc->pset[i].param.opt |= TCINTEN;
1122 }
1123 edesc->residue_stat = edesc->residue;
1124
1125 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1126 }
1127
1128 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1129 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1130 size_t len, unsigned long tx_flags)
1131 {
1132 int ret, nslots;
1133 struct edma_desc *edesc;
1134 struct device *dev = chan->device->dev;
1135 struct edma_chan *echan = to_edma_chan(chan);
1136 unsigned int width, pset_len;
1137
1138 if (unlikely(!echan || !len))
1139 return NULL;
1140
1141 if (len < SZ_64K) {
1142 /*
1143 * Transfer size less than 64K can be handled with one paRAM
1144 * slot and with one burst.
1145 * ACNT = length
1146 */
1147 width = len;
1148 pset_len = len;
1149 nslots = 1;
1150 } else {
1151 /*
1152 * Transfer size bigger than 64K will be handled with maximum of
1153 * two paRAM slots.
1154 * slot1: (full_length / 32767) times 32767 bytes bursts.
1155 * ACNT = 32767, length1: (full_length / 32767) * 32767
1156 * slot2: the remaining amount of data after slot1.
1157 * ACNT = full_length - length1, length2 = ACNT
1158 *
1159 * When the full_length is multibple of 32767 one slot can be
1160 * used to complete the transfer.
1161 */
1162 width = SZ_32K - 1;
1163 pset_len = rounddown(len, width);
1164 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1165 if (unlikely(pset_len == len))
1166 nslots = 1;
1167 else
1168 nslots = 2;
1169 }
1170
1171 edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1172 GFP_ATOMIC);
1173 if (!edesc) {
1174 dev_dbg(dev, "Failed to allocate a descriptor\n");
1175 return NULL;
1176 }
1177
1178 edesc->pset_nr = nslots;
1179 edesc->residue = edesc->residue_stat = len;
1180 edesc->direction = DMA_MEM_TO_MEM;
1181 edesc->echan = echan;
1182
1183 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1184 width, pset_len, DMA_MEM_TO_MEM);
1185 if (ret < 0) {
1186 kfree(edesc);
1187 return NULL;
1188 }
1189
1190 edesc->absync = ret;
1191
1192 edesc->pset[0].param.opt |= ITCCHEN;
1193 if (nslots == 1) {
1194 /* Enable transfer complete interrupt */
1195 edesc->pset[0].param.opt |= TCINTEN;
1196 } else {
1197 /* Enable transfer complete chaining for the first slot */
1198 edesc->pset[0].param.opt |= TCCHEN;
1199
1200 if (echan->slot[1] < 0) {
1201 echan->slot[1] = edma_alloc_slot(echan->ecc,
1202 EDMA_SLOT_ANY);
1203 if (echan->slot[1] < 0) {
1204 kfree(edesc);
1205 dev_err(dev, "%s: Failed to allocate slot\n",
1206 __func__);
1207 return NULL;
1208 }
1209 }
1210 dest += pset_len;
1211 src += pset_len;
1212 pset_len = width = len % (SZ_32K - 1);
1213
1214 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1215 width, pset_len, DMA_MEM_TO_MEM);
1216 if (ret < 0) {
1217 kfree(edesc);
1218 return NULL;
1219 }
1220
1221 edesc->pset[1].param.opt |= ITCCHEN;
1222 edesc->pset[1].param.opt |= TCINTEN;
1223 }
1224
1225 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1226 }
1227
1228 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1229 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1230 size_t period_len, enum dma_transfer_direction direction,
1231 unsigned long tx_flags)
1232 {
1233 struct edma_chan *echan = to_edma_chan(chan);
1234 struct device *dev = chan->device->dev;
1235 struct edma_desc *edesc;
1236 dma_addr_t src_addr, dst_addr;
1237 enum dma_slave_buswidth dev_width;
1238 u32 burst;
1239 int i, ret, nslots;
1240
1241 if (unlikely(!echan || !buf_len || !period_len))
1242 return NULL;
1243
1244 if (direction == DMA_DEV_TO_MEM) {
1245 src_addr = echan->cfg.src_addr;
1246 dst_addr = buf_addr;
1247 dev_width = echan->cfg.src_addr_width;
1248 burst = echan->cfg.src_maxburst;
1249 } else if (direction == DMA_MEM_TO_DEV) {
1250 src_addr = buf_addr;
1251 dst_addr = echan->cfg.dst_addr;
1252 dev_width = echan->cfg.dst_addr_width;
1253 burst = echan->cfg.dst_maxburst;
1254 } else {
1255 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1256 return NULL;
1257 }
1258
1259 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1260 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1261 return NULL;
1262 }
1263
1264 if (unlikely(buf_len % period_len)) {
1265 dev_err(dev, "Period should be multiple of Buffer length\n");
1266 return NULL;
1267 }
1268
1269 nslots = (buf_len / period_len) + 1;
1270
1271 /*
1272 * Cyclic DMA users such as audio cannot tolerate delays introduced
1273 * by cases where the number of periods is more than the maximum
1274 * number of SGs the EDMA driver can handle at a time. For DMA types
1275 * such as Slave SGs, such delays are tolerable and synchronized,
1276 * but the synchronization is difficult to achieve with Cyclic and
1277 * cannot be guaranteed, so we error out early.
1278 */
1279 if (nslots > MAX_NR_SG)
1280 return NULL;
1281
1282 edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1283 GFP_ATOMIC);
1284 if (!edesc) {
1285 dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1286 return NULL;
1287 }
1288
1289 edesc->cyclic = 1;
1290 edesc->pset_nr = nslots;
1291 edesc->residue = edesc->residue_stat = buf_len;
1292 edesc->direction = direction;
1293 edesc->echan = echan;
1294
1295 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1296 __func__, echan->ch_num, nslots, period_len, buf_len);
1297
1298 for (i = 0; i < nslots; i++) {
1299 /* Allocate a PaRAM slot, if needed */
1300 if (echan->slot[i] < 0) {
1301 echan->slot[i] =
1302 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1303 if (echan->slot[i] < 0) {
1304 kfree(edesc);
1305 dev_err(dev, "%s: Failed to allocate slot\n",
1306 __func__);
1307 return NULL;
1308 }
1309 }
1310
1311 if (i == nslots - 1) {
1312 memcpy(&edesc->pset[i], &edesc->pset[0],
1313 sizeof(edesc->pset[0]));
1314 break;
1315 }
1316
1317 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1318 dst_addr, burst, dev_width, period_len,
1319 direction);
1320 if (ret < 0) {
1321 kfree(edesc);
1322 return NULL;
1323 }
1324
1325 if (direction == DMA_DEV_TO_MEM)
1326 dst_addr += period_len;
1327 else
1328 src_addr += period_len;
1329
1330 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1331 dev_vdbg(dev,
1332 "\n pset[%d]:\n"
1333 " chnum\t%d\n"
1334 " slot\t%d\n"
1335 " opt\t%08x\n"
1336 " src\t%08x\n"
1337 " dst\t%08x\n"
1338 " abcnt\t%08x\n"
1339 " ccnt\t%08x\n"
1340 " bidx\t%08x\n"
1341 " cidx\t%08x\n"
1342 " lkrld\t%08x\n",
1343 i, echan->ch_num, echan->slot[i],
1344 edesc->pset[i].param.opt,
1345 edesc->pset[i].param.src,
1346 edesc->pset[i].param.dst,
1347 edesc->pset[i].param.a_b_cnt,
1348 edesc->pset[i].param.ccnt,
1349 edesc->pset[i].param.src_dst_bidx,
1350 edesc->pset[i].param.src_dst_cidx,
1351 edesc->pset[i].param.link_bcntrld);
1352
1353 edesc->absync = ret;
1354
1355 /*
1356 * Enable period interrupt only if it is requested
1357 */
1358 if (tx_flags & DMA_PREP_INTERRUPT)
1359 edesc->pset[i].param.opt |= TCINTEN;
1360 }
1361
1362 /* Place the cyclic channel to highest priority queue */
1363 if (!echan->tc)
1364 edma_assign_channel_eventq(echan, EVENTQ_0);
1365
1366 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1367 }
1368
1369 static void edma_completion_handler(struct edma_chan *echan)
1370 {
1371 struct device *dev = echan->vchan.chan.device->dev;
1372 struct edma_desc *edesc = echan->edesc;
1373
1374 if (!edesc)
1375 return;
1376
1377 spin_lock(&echan->vchan.lock);
1378 if (edesc->cyclic) {
1379 vchan_cyclic_callback(&edesc->vdesc);
1380 spin_unlock(&echan->vchan.lock);
1381 return;
1382 } else if (edesc->processed == edesc->pset_nr) {
1383 edesc->residue = 0;
1384 edma_stop(echan);
1385 vchan_cookie_complete(&edesc->vdesc);
1386 echan->edesc = NULL;
1387
1388 dev_dbg(dev, "Transfer completed on channel %d\n",
1389 echan->ch_num);
1390 } else {
1391 dev_dbg(dev, "Sub transfer completed on channel %d\n",
1392 echan->ch_num);
1393
1394 edma_pause(echan);
1395
1396 /* Update statistics for tx_status */
1397 edesc->residue -= edesc->sg_len;
1398 edesc->residue_stat = edesc->residue;
1399 edesc->processed_stat = edesc->processed;
1400 }
1401 edma_execute(echan);
1402
1403 spin_unlock(&echan->vchan.lock);
1404 }
1405
1406 /* eDMA interrupt handler */
1407 static irqreturn_t dma_irq_handler(int irq, void *data)
1408 {
1409 struct edma_cc *ecc = data;
1410 int ctlr;
1411 u32 sh_ier;
1412 u32 sh_ipr;
1413 u32 bank;
1414
1415 ctlr = ecc->id;
1416 if (ctlr < 0)
1417 return IRQ_NONE;
1418
1419 dev_vdbg(ecc->dev, "dma_irq_handler\n");
1420
1421 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1422 if (!sh_ipr) {
1423 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1424 if (!sh_ipr)
1425 return IRQ_NONE;
1426 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1427 bank = 1;
1428 } else {
1429 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1430 bank = 0;
1431 }
1432
1433 do {
1434 u32 slot;
1435 u32 channel;
1436
1437 slot = __ffs(sh_ipr);
1438 sh_ipr &= ~(BIT(slot));
1439
1440 if (sh_ier & BIT(slot)) {
1441 channel = (bank << 5) | slot;
1442 /* Clear the corresponding IPR bits */
1443 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1444 edma_completion_handler(&ecc->slave_chans[channel]);
1445 }
1446 } while (sh_ipr);
1447
1448 edma_shadow0_write(ecc, SH_IEVAL, 1);
1449 return IRQ_HANDLED;
1450 }
1451
1452 static void edma_error_handler(struct edma_chan *echan)
1453 {
1454 struct edma_cc *ecc = echan->ecc;
1455 struct device *dev = echan->vchan.chan.device->dev;
1456 struct edmacc_param p;
1457
1458 if (!echan->edesc)
1459 return;
1460
1461 spin_lock(&echan->vchan.lock);
1462
1463 edma_read_slot(ecc, echan->slot[0], &p);
1464 /*
1465 * Issue later based on missed flag which will be sure
1466 * to happen as:
1467 * (1) we finished transmitting an intermediate slot and
1468 * edma_execute is coming up.
1469 * (2) or we finished current transfer and issue will
1470 * call edma_execute.
1471 *
1472 * Important note: issuing can be dangerous here and
1473 * lead to some nasty recursion when we are in a NULL
1474 * slot. So we avoid doing so and set the missed flag.
1475 */
1476 if (p.a_b_cnt == 0 && p.ccnt == 0) {
1477 dev_dbg(dev, "Error on null slot, setting miss\n");
1478 echan->missed = 1;
1479 } else {
1480 /*
1481 * The slot is already programmed but the event got
1482 * missed, so its safe to issue it here.
1483 */
1484 dev_dbg(dev, "Missed event, TRIGGERING\n");
1485 edma_clean_channel(echan);
1486 edma_stop(echan);
1487 edma_start(echan);
1488 edma_trigger_channel(echan);
1489 }
1490 spin_unlock(&echan->vchan.lock);
1491 }
1492
1493 static inline bool edma_error_pending(struct edma_cc *ecc)
1494 {
1495 if (edma_read_array(ecc, EDMA_EMR, 0) ||
1496 edma_read_array(ecc, EDMA_EMR, 1) ||
1497 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1498 return true;
1499
1500 return false;
1501 }
1502
1503 /* eDMA error interrupt handler */
1504 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1505 {
1506 struct edma_cc *ecc = data;
1507 int i, j;
1508 int ctlr;
1509 unsigned int cnt = 0;
1510 unsigned int val;
1511
1512 ctlr = ecc->id;
1513 if (ctlr < 0)
1514 return IRQ_NONE;
1515
1516 dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1517
1518 if (!edma_error_pending(ecc))
1519 return IRQ_NONE;
1520
1521 while (1) {
1522 /* Event missed register(s) */
1523 for (j = 0; j < 2; j++) {
1524 unsigned long emr;
1525
1526 val = edma_read_array(ecc, EDMA_EMR, j);
1527 if (!val)
1528 continue;
1529
1530 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1531 emr = val;
1532 for (i = find_next_bit(&emr, 32, 0); i < 32;
1533 i = find_next_bit(&emr, 32, i + 1)) {
1534 int k = (j << 5) + i;
1535
1536 /* Clear the corresponding EMR bits */
1537 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1538 /* Clear any SER */
1539 edma_shadow0_write_array(ecc, SH_SECR, j,
1540 BIT(i));
1541 edma_error_handler(&ecc->slave_chans[k]);
1542 }
1543 }
1544
1545 val = edma_read(ecc, EDMA_QEMR);
1546 if (val) {
1547 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1548 /* Not reported, just clear the interrupt reason. */
1549 edma_write(ecc, EDMA_QEMCR, val);
1550 edma_shadow0_write(ecc, SH_QSECR, val);
1551 }
1552
1553 val = edma_read(ecc, EDMA_CCERR);
1554 if (val) {
1555 dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1556 /* Not reported, just clear the interrupt reason. */
1557 edma_write(ecc, EDMA_CCERRCLR, val);
1558 }
1559
1560 if (!edma_error_pending(ecc))
1561 break;
1562 cnt++;
1563 if (cnt > 10)
1564 break;
1565 }
1566 edma_write(ecc, EDMA_EEVAL, 1);
1567 return IRQ_HANDLED;
1568 }
1569
1570 static void edma_tc_set_pm_state(struct edma_tc *tc, bool enable)
1571 {
1572 struct platform_device *tc_pdev;
1573 int ret;
1574
1575 if (!IS_ENABLED(CONFIG_OF) || !tc)
1576 return;
1577
1578 tc_pdev = of_find_device_by_node(tc->node);
1579 if (!tc_pdev) {
1580 pr_err("%s: TPTC device is not found\n", __func__);
1581 return;
1582 }
1583 if (!pm_runtime_enabled(&tc_pdev->dev))
1584 pm_runtime_enable(&tc_pdev->dev);
1585
1586 if (enable)
1587 ret = pm_runtime_get_sync(&tc_pdev->dev);
1588 else
1589 ret = pm_runtime_put_sync(&tc_pdev->dev);
1590
1591 if (ret < 0)
1592 pr_err("%s: pm_runtime_%s_sync() failed for %s\n", __func__,
1593 enable ? "get" : "put", dev_name(&tc_pdev->dev));
1594 }
1595
1596 /* Alloc channel resources */
1597 static int edma_alloc_chan_resources(struct dma_chan *chan)
1598 {
1599 struct edma_chan *echan = to_edma_chan(chan);
1600 struct edma_cc *ecc = echan->ecc;
1601 struct device *dev = ecc->dev;
1602 enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1603 int ret;
1604
1605 if (echan->tc) {
1606 eventq_no = echan->tc->id;
1607 } else if (ecc->tc_list) {
1608 /* memcpy channel */
1609 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1610 eventq_no = echan->tc->id;
1611 }
1612
1613 ret = edma_alloc_channel(echan, eventq_no);
1614 if (ret)
1615 return ret;
1616
1617 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1618 if (echan->slot[0] < 0) {
1619 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1620 EDMA_CHAN_SLOT(echan->ch_num));
1621 goto err_slot;
1622 }
1623
1624 /* Set up channel -> slot mapping for the entry slot */
1625 edma_set_chmap(echan, echan->slot[0]);
1626 echan->alloced = true;
1627
1628 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1629 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1630 echan->hw_triggered ? "HW" : "SW");
1631
1632 edma_tc_set_pm_state(echan->tc, true);
1633
1634 return 0;
1635
1636 err_slot:
1637 edma_free_channel(echan);
1638 return ret;
1639 }
1640
1641 /* Free channel resources */
1642 static void edma_free_chan_resources(struct dma_chan *chan)
1643 {
1644 struct edma_chan *echan = to_edma_chan(chan);
1645 struct device *dev = echan->ecc->dev;
1646 int i;
1647
1648 /* Terminate transfers */
1649 edma_stop(echan);
1650
1651 vchan_free_chan_resources(&echan->vchan);
1652
1653 /* Free EDMA PaRAM slots */
1654 for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1655 if (echan->slot[i] >= 0) {
1656 edma_free_slot(echan->ecc, echan->slot[i]);
1657 echan->slot[i] = -1;
1658 }
1659 }
1660
1661 /* Set entry slot to the dummy slot */
1662 edma_set_chmap(echan, echan->ecc->dummy_slot);
1663
1664 /* Free EDMA channel */
1665 if (echan->alloced) {
1666 edma_free_channel(echan);
1667 echan->alloced = false;
1668 }
1669
1670 edma_tc_set_pm_state(echan->tc, false);
1671 echan->tc = NULL;
1672 echan->hw_triggered = false;
1673
1674 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1675 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1676 }
1677
1678 /* Send pending descriptor to hardware */
1679 static void edma_issue_pending(struct dma_chan *chan)
1680 {
1681 struct edma_chan *echan = to_edma_chan(chan);
1682 unsigned long flags;
1683
1684 spin_lock_irqsave(&echan->vchan.lock, flags);
1685 if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1686 edma_execute(echan);
1687 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1688 }
1689
1690 static u32 edma_residue(struct edma_desc *edesc)
1691 {
1692 bool dst = edesc->direction == DMA_DEV_TO_MEM;
1693 struct edma_pset *pset = edesc->pset;
1694 dma_addr_t done, pos;
1695 int i;
1696
1697 /*
1698 * We always read the dst/src position from the first RamPar
1699 * pset. That's the one which is active now.
1700 */
1701 pos = edma_get_position(edesc->echan->ecc, edesc->echan->slot[0], dst);
1702
1703 /*
1704 * Cyclic is simple. Just subtract pset[0].addr from pos.
1705 *
1706 * We never update edesc->residue in the cyclic case, so we
1707 * can tell the remaining room to the end of the circular
1708 * buffer.
1709 */
1710 if (edesc->cyclic) {
1711 done = pos - pset->addr;
1712 edesc->residue_stat = edesc->residue - done;
1713 return edesc->residue_stat;
1714 }
1715
1716 /*
1717 * For SG operation we catch up with the last processed
1718 * status.
1719 */
1720 pset += edesc->processed_stat;
1721
1722 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1723 /*
1724 * If we are inside this pset address range, we know
1725 * this is the active one. Get the current delta and
1726 * stop walking the psets.
1727 */
1728 if (pos >= pset->addr && pos < pset->addr + pset->len)
1729 return edesc->residue_stat - (pos - pset->addr);
1730
1731 /* Otherwise mark it done and update residue_stat. */
1732 edesc->processed_stat++;
1733 edesc->residue_stat -= pset->len;
1734 }
1735 return edesc->residue_stat;
1736 }
1737
1738 /* Check request completion status */
1739 static enum dma_status edma_tx_status(struct dma_chan *chan,
1740 dma_cookie_t cookie,
1741 struct dma_tx_state *txstate)
1742 {
1743 struct edma_chan *echan = to_edma_chan(chan);
1744 struct virt_dma_desc *vdesc;
1745 enum dma_status ret;
1746 unsigned long flags;
1747
1748 ret = dma_cookie_status(chan, cookie, txstate);
1749 if (ret == DMA_COMPLETE || !txstate)
1750 return ret;
1751
1752 spin_lock_irqsave(&echan->vchan.lock, flags);
1753 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1754 txstate->residue = edma_residue(echan->edesc);
1755 else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1756 txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1757 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1758
1759 return ret;
1760 }
1761
1762 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1763 {
1764 if (!memcpy_channels)
1765 return false;
1766 while (*memcpy_channels != -1) {
1767 if (*memcpy_channels == ch_num)
1768 return true;
1769 memcpy_channels++;
1770 }
1771 return false;
1772 }
1773
1774 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1775 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1776 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1777 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1778
1779 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1780 {
1781 struct dma_device *s_ddev = &ecc->dma_slave;
1782 struct dma_device *m_ddev = NULL;
1783 s32 *memcpy_channels = ecc->info->memcpy_channels;
1784 int i, j;
1785
1786 dma_cap_zero(s_ddev->cap_mask);
1787 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1788 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1789 if (ecc->legacy_mode && !memcpy_channels) {
1790 dev_warn(ecc->dev,
1791 "Legacy memcpy is enabled, things might not work\n");
1792
1793 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1794 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1795 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1796 }
1797
1798 s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1799 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1800 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1801 s_ddev->device_free_chan_resources = edma_free_chan_resources;
1802 s_ddev->device_issue_pending = edma_issue_pending;
1803 s_ddev->device_tx_status = edma_tx_status;
1804 s_ddev->device_config = edma_slave_config;
1805 s_ddev->device_pause = edma_dma_pause;
1806 s_ddev->device_resume = edma_dma_resume;
1807 s_ddev->device_terminate_all = edma_terminate_all;
1808 s_ddev->device_synchronize = edma_synchronize;
1809
1810 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1811 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1812 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1813 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1814
1815 s_ddev->dev = ecc->dev;
1816 INIT_LIST_HEAD(&s_ddev->channels);
1817
1818 if (memcpy_channels) {
1819 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1820 ecc->dma_memcpy = m_ddev;
1821
1822 dma_cap_zero(m_ddev->cap_mask);
1823 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1824
1825 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1826 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1827 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1828 m_ddev->device_issue_pending = edma_issue_pending;
1829 m_ddev->device_tx_status = edma_tx_status;
1830 m_ddev->device_config = edma_slave_config;
1831 m_ddev->device_pause = edma_dma_pause;
1832 m_ddev->device_resume = edma_dma_resume;
1833 m_ddev->device_terminate_all = edma_terminate_all;
1834 m_ddev->device_synchronize = edma_synchronize;
1835
1836 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1837 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1838 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1839 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1840
1841 m_ddev->dev = ecc->dev;
1842 INIT_LIST_HEAD(&m_ddev->channels);
1843 } else if (!ecc->legacy_mode) {
1844 dev_info(ecc->dev, "memcpy is disabled\n");
1845 }
1846
1847 for (i = 0; i < ecc->num_channels; i++) {
1848 struct edma_chan *echan = &ecc->slave_chans[i];
1849 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1850 echan->ecc = ecc;
1851 echan->vchan.desc_free = edma_desc_free;
1852
1853 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1854 vchan_init(&echan->vchan, m_ddev);
1855 else
1856 vchan_init(&echan->vchan, s_ddev);
1857
1858 INIT_LIST_HEAD(&echan->node);
1859 for (j = 0; j < EDMA_MAX_SLOTS; j++)
1860 echan->slot[j] = -1;
1861 }
1862 }
1863
1864 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1865 struct edma_cc *ecc)
1866 {
1867 int i;
1868 u32 value, cccfg;
1869 s8 (*queue_priority_map)[2];
1870
1871 /* Decode the eDMA3 configuration from CCCFG register */
1872 cccfg = edma_read(ecc, EDMA_CCCFG);
1873
1874 value = GET_NUM_REGN(cccfg);
1875 ecc->num_region = BIT(value);
1876
1877 value = GET_NUM_DMACH(cccfg);
1878 ecc->num_channels = BIT(value + 1);
1879
1880 value = GET_NUM_QDMACH(cccfg);
1881 ecc->num_qchannels = value * 2;
1882
1883 value = GET_NUM_PAENTRY(cccfg);
1884 ecc->num_slots = BIT(value + 4);
1885
1886 value = GET_NUM_EVQUE(cccfg);
1887 ecc->num_tc = value + 1;
1888
1889 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
1890
1891 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1892 dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1893 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1894 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1895 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1896 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1897 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1898
1899 /* Nothing need to be done if queue priority is provided */
1900 if (pdata->queue_priority_mapping)
1901 return 0;
1902
1903 /*
1904 * Configure TC/queue priority as follows:
1905 * Q0 - priority 0
1906 * Q1 - priority 1
1907 * Q2 - priority 2
1908 * ...
1909 * The meaning of priority numbers: 0 highest priority, 7 lowest
1910 * priority. So Q0 is the highest priority queue and the last queue has
1911 * the lowest priority.
1912 */
1913 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1914 GFP_KERNEL);
1915 if (!queue_priority_map)
1916 return -ENOMEM;
1917
1918 for (i = 0; i < ecc->num_tc; i++) {
1919 queue_priority_map[i][0] = i;
1920 queue_priority_map[i][1] = i;
1921 }
1922 queue_priority_map[i][0] = -1;
1923 queue_priority_map[i][1] = -1;
1924
1925 pdata->queue_priority_mapping = queue_priority_map;
1926 /* Default queue has the lowest priority */
1927 pdata->default_queue = i - 1;
1928
1929 return 0;
1930 }
1931
1932 #if IS_ENABLED(CONFIG_OF)
1933 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1934 size_t sz)
1935 {
1936 const char pname[] = "ti,edma-xbar-event-map";
1937 struct resource res;
1938 void __iomem *xbar;
1939 s16 (*xbar_chans)[2];
1940 size_t nelm = sz / sizeof(s16);
1941 u32 shift, offset, mux;
1942 int ret, i;
1943
1944 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1945 if (!xbar_chans)
1946 return -ENOMEM;
1947
1948 ret = of_address_to_resource(dev->of_node, 1, &res);
1949 if (ret)
1950 return -ENOMEM;
1951
1952 xbar = devm_ioremap(dev, res.start, resource_size(&res));
1953 if (!xbar)
1954 return -ENOMEM;
1955
1956 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
1957 nelm);
1958 if (ret)
1959 return -EIO;
1960
1961 /* Invalidate last entry for the other user of this mess */
1962 nelm >>= 1;
1963 xbar_chans[nelm][0] = -1;
1964 xbar_chans[nelm][1] = -1;
1965
1966 for (i = 0; i < nelm; i++) {
1967 shift = (xbar_chans[i][1] & 0x03) << 3;
1968 offset = xbar_chans[i][1] & 0xfffffffc;
1969 mux = readl(xbar + offset);
1970 mux &= ~(0xff << shift);
1971 mux |= xbar_chans[i][0] << shift;
1972 writel(mux, (xbar + offset));
1973 }
1974
1975 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
1976 return 0;
1977 }
1978
1979 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1980 bool legacy_mode)
1981 {
1982 struct edma_soc_info *info;
1983 struct property *prop;
1984 size_t sz;
1985 int ret;
1986
1987 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
1988 if (!info)
1989 return ERR_PTR(-ENOMEM);
1990
1991 if (legacy_mode) {
1992 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
1993 &sz);
1994 if (prop) {
1995 ret = edma_xbar_event_map(dev, info, sz);
1996 if (ret)
1997 return ERR_PTR(ret);
1998 }
1999 return info;
2000 }
2001
2002 /* Get the list of channels allocated to be used for memcpy */
2003 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2004 if (prop) {
2005 const char pname[] = "ti,edma-memcpy-channels";
2006 size_t nelm = sz / sizeof(s32);
2007 s32 *memcpy_ch;
2008
2009 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2010 GFP_KERNEL);
2011 if (!memcpy_ch)
2012 return ERR_PTR(-ENOMEM);
2013
2014 ret = of_property_read_u32_array(dev->of_node, pname,
2015 (u32 *)memcpy_ch, nelm);
2016 if (ret)
2017 return ERR_PTR(ret);
2018
2019 memcpy_ch[nelm] = -1;
2020 info->memcpy_channels = memcpy_ch;
2021 }
2022
2023 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2024 &sz);
2025 if (prop) {
2026 const char pname[] = "ti,edma-reserved-slot-ranges";
2027 u32 (*tmp)[2];
2028 s16 (*rsv_slots)[2];
2029 size_t nelm = sz / sizeof(*tmp);
2030 struct edma_rsv_info *rsv_info;
2031 int i;
2032
2033 if (!nelm)
2034 return info;
2035
2036 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2037 if (!tmp)
2038 return ERR_PTR(-ENOMEM);
2039
2040 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2041 if (!rsv_info) {
2042 kfree(tmp);
2043 return ERR_PTR(-ENOMEM);
2044 }
2045
2046 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2047 GFP_KERNEL);
2048 if (!rsv_slots) {
2049 kfree(tmp);
2050 return ERR_PTR(-ENOMEM);
2051 }
2052
2053 ret = of_property_read_u32_array(dev->of_node, pname,
2054 (u32 *)tmp, nelm * 2);
2055 if (ret) {
2056 kfree(tmp);
2057 return ERR_PTR(ret);
2058 }
2059
2060 for (i = 0; i < nelm; i++) {
2061 rsv_slots[i][0] = tmp[i][0];
2062 rsv_slots[i][1] = tmp[i][1];
2063 }
2064 rsv_slots[nelm][0] = -1;
2065 rsv_slots[nelm][1] = -1;
2066
2067 info->rsv = rsv_info;
2068 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2069
2070 kfree(tmp);
2071 }
2072
2073 return info;
2074 }
2075
2076 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2077 struct of_dma *ofdma)
2078 {
2079 struct edma_cc *ecc = ofdma->of_dma_data;
2080 struct dma_chan *chan = NULL;
2081 struct edma_chan *echan;
2082 int i;
2083
2084 if (!ecc || dma_spec->args_count < 1)
2085 return NULL;
2086
2087 for (i = 0; i < ecc->num_channels; i++) {
2088 echan = &ecc->slave_chans[i];
2089 if (echan->ch_num == dma_spec->args[0]) {
2090 chan = &echan->vchan.chan;
2091 break;
2092 }
2093 }
2094
2095 if (!chan)
2096 return NULL;
2097
2098 if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2099 goto out;
2100
2101 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2102 dma_spec->args[1] < echan->ecc->num_tc) {
2103 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2104 goto out;
2105 }
2106
2107 return NULL;
2108 out:
2109 /* The channel is going to be used as HW synchronized */
2110 echan->hw_triggered = true;
2111 return dma_get_slave_channel(chan);
2112 }
2113 #else
2114 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2115 bool legacy_mode)
2116 {
2117 return ERR_PTR(-EINVAL);
2118 }
2119
2120 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2121 struct of_dma *ofdma)
2122 {
2123 return NULL;
2124 }
2125 #endif
2126
2127 static int edma_probe(struct platform_device *pdev)
2128 {
2129 struct edma_soc_info *info = pdev->dev.platform_data;
2130 s8 (*queue_priority_mapping)[2];
2131 int i, off, ln;
2132 const s16 (*rsv_slots)[2];
2133 const s16 (*xbar_chans)[2];
2134 int irq;
2135 char *irq_name;
2136 struct resource *mem;
2137 struct device_node *node = pdev->dev.of_node;
2138 struct device *dev = &pdev->dev;
2139 struct edma_cc *ecc;
2140 bool legacy_mode = true;
2141 int ret;
2142
2143 if (node) {
2144 const struct of_device_id *match;
2145
2146 match = of_match_node(edma_of_ids, node);
2147 if (match && (u32)match->data == EDMA_BINDING_TPCC)
2148 legacy_mode = false;
2149
2150 info = edma_setup_info_from_dt(dev, legacy_mode);
2151 if (IS_ERR(info)) {
2152 dev_err(dev, "failed to get DT data\n");
2153 return PTR_ERR(info);
2154 }
2155 }
2156
2157 if (!info)
2158 return -ENODEV;
2159
2160 pm_runtime_enable(dev);
2161 ret = pm_runtime_get_sync(dev);
2162 if (ret < 0) {
2163 dev_err(dev, "pm_runtime_get_sync() failed\n");
2164 return ret;
2165 }
2166
2167 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2168 if (ret)
2169 return ret;
2170
2171 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2172 if (!ecc) {
2173 dev_err(dev, "Can't allocate controller\n");
2174 return -ENOMEM;
2175 }
2176
2177 ecc->dev = dev;
2178 ecc->id = pdev->id;
2179 ecc->legacy_mode = legacy_mode;
2180 /* When booting with DT the pdev->id is -1 */
2181 if (ecc->id < 0)
2182 ecc->id = 0;
2183
2184 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2185 if (!mem) {
2186 dev_dbg(dev, "mem resource not found, using index 0\n");
2187 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2188 if (!mem) {
2189 dev_err(dev, "no mem resource?\n");
2190 return -ENODEV;
2191 }
2192 }
2193 ecc->base = devm_ioremap_resource(dev, mem);
2194 if (IS_ERR(ecc->base))
2195 return PTR_ERR(ecc->base);
2196
2197 platform_set_drvdata(pdev, ecc);
2198
2199 /* Get eDMA3 configuration from IP */
2200 ret = edma_setup_from_hw(dev, info, ecc);
2201 if (ret)
2202 return ret;
2203
2204 /* Allocate memory based on the information we got from the IP */
2205 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2206 sizeof(*ecc->slave_chans), GFP_KERNEL);
2207 if (!ecc->slave_chans)
2208 return -ENOMEM;
2209
2210 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2211 sizeof(unsigned long), GFP_KERNEL);
2212 if (!ecc->slot_inuse)
2213 return -ENOMEM;
2214
2215 ecc->default_queue = info->default_queue;
2216
2217 for (i = 0; i < ecc->num_slots; i++)
2218 edma_write_slot(ecc, i, &dummy_paramset);
2219
2220 if (info->rsv) {
2221 /* Set the reserved slots in inuse list */
2222 rsv_slots = info->rsv->rsv_slots;
2223 if (rsv_slots) {
2224 for (i = 0; rsv_slots[i][0] != -1; i++) {
2225 off = rsv_slots[i][0];
2226 ln = rsv_slots[i][1];
2227 set_bits(off, ln, ecc->slot_inuse);
2228 }
2229 }
2230 }
2231
2232 /* Clear the xbar mapped channels in unused list */
2233 xbar_chans = info->xbar_chans;
2234 if (xbar_chans) {
2235 for (i = 0; xbar_chans[i][1] != -1; i++) {
2236 off = xbar_chans[i][1];
2237 }
2238 }
2239
2240 irq = platform_get_irq_byname(pdev, "edma3_ccint");
2241 if (irq < 0 && node)
2242 irq = irq_of_parse_and_map(node, 0);
2243
2244 if (irq >= 0) {
2245 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2246 dev_name(dev));
2247 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2248 ecc);
2249 if (ret) {
2250 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2251 return ret;
2252 }
2253 }
2254
2255 irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2256 if (irq < 0 && node)
2257 irq = irq_of_parse_and_map(node, 2);
2258
2259 if (irq >= 0) {
2260 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2261 dev_name(dev));
2262 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2263 ecc);
2264 if (ret) {
2265 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2266 return ret;
2267 }
2268 }
2269
2270 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2271 if (ecc->dummy_slot < 0) {
2272 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2273 return ecc->dummy_slot;
2274 }
2275
2276 queue_priority_mapping = info->queue_priority_mapping;
2277
2278 if (!ecc->legacy_mode) {
2279 int lowest_priority = 0;
2280 struct of_phandle_args tc_args;
2281
2282 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2283 sizeof(*ecc->tc_list), GFP_KERNEL);
2284 if (!ecc->tc_list)
2285 return -ENOMEM;
2286
2287 for (i = 0;; i++) {
2288 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2289 1, i, &tc_args);
2290 if (ret || i == ecc->num_tc)
2291 break;
2292
2293 ecc->tc_list[i].node = tc_args.np;
2294 ecc->tc_list[i].id = i;
2295 queue_priority_mapping[i][1] = tc_args.args[0];
2296 if (queue_priority_mapping[i][1] > lowest_priority) {
2297 lowest_priority = queue_priority_mapping[i][1];
2298 info->default_queue = i;
2299 }
2300 }
2301 }
2302
2303 /* Event queue priority mapping */
2304 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2305 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2306 queue_priority_mapping[i][1]);
2307
2308 for (i = 0; i < ecc->num_region; i++) {
2309 edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2310 edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2311 edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2312 }
2313 ecc->info = info;
2314
2315 /* Init the dma device and channels */
2316 edma_dma_init(ecc, legacy_mode);
2317
2318 for (i = 0; i < ecc->num_channels; i++) {
2319 /* Assign all channels to the default queue */
2320 edma_assign_channel_eventq(&ecc->slave_chans[i],
2321 info->default_queue);
2322 /* Set entry slot to the dummy slot */
2323 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2324 }
2325
2326 ecc->dma_slave.filter.map = info->slave_map;
2327 ecc->dma_slave.filter.mapcnt = info->slavecnt;
2328 ecc->dma_slave.filter.fn = edma_filter_fn;
2329
2330 ret = dma_async_device_register(&ecc->dma_slave);
2331 if (ret) {
2332 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2333 goto err_reg1;
2334 }
2335
2336 if (ecc->dma_memcpy) {
2337 ret = dma_async_device_register(ecc->dma_memcpy);
2338 if (ret) {
2339 dev_err(dev, "memcpy ddev registration failed (%d)\n",
2340 ret);
2341 dma_async_device_unregister(&ecc->dma_slave);
2342 goto err_reg1;
2343 }
2344 }
2345
2346 if (node)
2347 of_dma_controller_register(node, of_edma_xlate, ecc);
2348
2349 dev_info(dev, "TI EDMA DMA engine driver\n");
2350
2351 return 0;
2352
2353 err_reg1:
2354 edma_free_slot(ecc, ecc->dummy_slot);
2355 return ret;
2356 }
2357
2358 static int edma_remove(struct platform_device *pdev)
2359 {
2360 struct device *dev = &pdev->dev;
2361 struct edma_cc *ecc = dev_get_drvdata(dev);
2362
2363 if (dev->of_node)
2364 of_dma_controller_free(dev->of_node);
2365 dma_async_device_unregister(&ecc->dma_slave);
2366 if (ecc->dma_memcpy)
2367 dma_async_device_unregister(ecc->dma_memcpy);
2368 edma_free_slot(ecc, ecc->dummy_slot);
2369
2370 return 0;
2371 }
2372
2373 #ifdef CONFIG_PM_SLEEP
2374 static int edma_pm_suspend(struct device *dev)
2375 {
2376 struct edma_cc *ecc = dev_get_drvdata(dev);
2377 struct edma_chan *echan = ecc->slave_chans;
2378 int i;
2379
2380 for (i = 0; i < ecc->num_channels; i++) {
2381 if (echan[i].alloced) {
2382 edma_setup_interrupt(&echan[i], false);
2383 edma_tc_set_pm_state(echan[i].tc, false);
2384 }
2385 }
2386
2387 return 0;
2388 }
2389
2390 static int edma_pm_resume(struct device *dev)
2391 {
2392 struct edma_cc *ecc = dev_get_drvdata(dev);
2393 struct edma_chan *echan = ecc->slave_chans;
2394 int i;
2395 s8 (*queue_priority_mapping)[2];
2396
2397 queue_priority_mapping = ecc->info->queue_priority_mapping;
2398
2399 /* Event queue priority mapping */
2400 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2401 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2402 queue_priority_mapping[i][1]);
2403
2404 for (i = 0; i < ecc->num_channels; i++) {
2405 if (echan[i].alloced) {
2406 /* ensure access through shadow region 0 */
2407 edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2408 BIT(i & 0x1f));
2409
2410 edma_setup_interrupt(&echan[i], true);
2411
2412 /* Set up channel -> slot mapping for the entry slot */
2413 edma_set_chmap(&echan[i], echan[i].slot[0]);
2414
2415 edma_tc_set_pm_state(echan[i].tc, true);
2416 }
2417 }
2418
2419 return 0;
2420 }
2421 #endif
2422
2423 static const struct dev_pm_ops edma_pm_ops = {
2424 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2425 };
2426
2427 static struct platform_driver edma_driver = {
2428 .probe = edma_probe,
2429 .remove = edma_remove,
2430 .driver = {
2431 .name = "edma",
2432 .pm = &edma_pm_ops,
2433 .of_match_table = edma_of_ids,
2434 },
2435 };
2436
2437 static int edma_tptc_probe(struct platform_device *pdev)
2438 {
2439 return 0;
2440 }
2441
2442 static struct platform_driver edma_tptc_driver = {
2443 .probe = edma_tptc_probe,
2444 .driver = {
2445 .name = "edma3-tptc",
2446 .of_match_table = edma_tptc_of_ids,
2447 },
2448 };
2449
2450 bool edma_filter_fn(struct dma_chan *chan, void *param)
2451 {
2452 bool match = false;
2453
2454 if (chan->device->dev->driver == &edma_driver.driver) {
2455 struct edma_chan *echan = to_edma_chan(chan);
2456 unsigned ch_req = *(unsigned *)param;
2457 if (ch_req == echan->ch_num) {
2458 /* The channel is going to be used as HW synchronized */
2459 echan->hw_triggered = true;
2460 match = true;
2461 }
2462 }
2463 return match;
2464 }
2465 EXPORT_SYMBOL(edma_filter_fn);
2466
2467 static int edma_init(void)
2468 {
2469 int ret;
2470
2471 ret = platform_driver_register(&edma_tptc_driver);
2472 if (ret)
2473 return ret;
2474
2475 return platform_driver_register(&edma_driver);
2476 }
2477 subsys_initcall(edma_init);
2478
2479 static void __exit edma_exit(void)
2480 {
2481 platform_driver_unregister(&edma_driver);
2482 platform_driver_unregister(&edma_tptc_driver);
2483 }
2484 module_exit(edma_exit);
2485
2486 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2487 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2488 MODULE_LICENSE("GPL v2");
This page took 0.135171 seconds and 5 git commands to generate.