cpufreq: governor: Always schedule work on the CPU running update
[deliverable/linux.git] / drivers / dma / edma.c
1 /*
2 * TI EDMA DMA engine driver
3 *
4 * Copyright 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
33
34 #include <linux/platform_data/edma.h>
35
36 #include "dmaengine.h"
37 #include "virt-dma.h"
38
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT 0x00
41 #define PARM_SRC 0x04
42 #define PARM_A_B_CNT 0x08
43 #define PARM_DST 0x0c
44 #define PARM_SRC_DST_BIDX 0x10
45 #define PARM_LINK_BCNTRLD 0x14
46 #define PARM_SRC_DST_CIDX 0x18
47 #define PARM_CCNT 0x1c
48
49 #define PARM_SIZE 0x20
50
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER 0x00 /* 64 bits */
53 #define SH_ECR 0x08 /* 64 bits */
54 #define SH_ESR 0x10 /* 64 bits */
55 #define SH_CER 0x18 /* 64 bits */
56 #define SH_EER 0x20 /* 64 bits */
57 #define SH_EECR 0x28 /* 64 bits */
58 #define SH_EESR 0x30 /* 64 bits */
59 #define SH_SER 0x38 /* 64 bits */
60 #define SH_SECR 0x40 /* 64 bits */
61 #define SH_IER 0x50 /* 64 bits */
62 #define SH_IECR 0x58 /* 64 bits */
63 #define SH_IESR 0x60 /* 64 bits */
64 #define SH_IPR 0x68 /* 64 bits */
65 #define SH_ICR 0x70 /* 64 bits */
66 #define SH_IEVAL 0x78
67 #define SH_QER 0x80
68 #define SH_QEER 0x84
69 #define SH_QEECR 0x88
70 #define SH_QEESR 0x8c
71 #define SH_QSER 0x90
72 #define SH_QSECR 0x94
73 #define SH_SIZE 0x200
74
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV 0x0000
77 #define EDMA_CCCFG 0x0004
78 #define EDMA_QCHMAP 0x0200 /* 8 registers */
79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM 0x0260
81 #define EDMA_QUETCMAP 0x0280
82 #define EDMA_QUEPRI 0x0284
83 #define EDMA_EMR 0x0300 /* 64 bits */
84 #define EDMA_EMCR 0x0308 /* 64 bits */
85 #define EDMA_QEMR 0x0310
86 #define EDMA_QEMCR 0x0314
87 #define EDMA_CCERR 0x0318
88 #define EDMA_CCERRCLR 0x031c
89 #define EDMA_EEVAL 0x0320
90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
91 #define EDMA_QRAE 0x0380 /* 4 registers */
92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
93 #define EDMA_QSTAT 0x0600 /* 2 registers */
94 #define EDMA_QWMTHRA 0x0620
95 #define EDMA_QWMTHRB 0x0624
96 #define EDMA_CCSTAT 0x0640
97
98 #define EDMA_M 0x1000 /* global channel registers */
99 #define EDMA_ECR 0x1008
100 #define EDMA_ECRH 0x100C
101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
102 #define EDMA_PARM 0x4000 /* PaRAM entries */
103
104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
105
106 #define EDMA_DCHMAP 0x0100 /* 64 registers */
107
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST BIT(24)
115
116 /*
117 * Max of 20 segments per channel to conserve PaRAM slots
118 * Also note that MAX_NR_SG should be atleast the no.of periods
119 * that are required for ASoC, otherwise DMA prep calls will
120 * fail. Today davinci-pcm is the only user of this driver and
121 * requires atleast 17 slots, so we setup the default to 20.
122 */
123 #define MAX_NR_SG 20
124 #define EDMA_MAX_SLOTS MAX_NR_SG
125 #define EDMA_DESCRIPTORS 16
126
127 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
128 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
129 #define EDMA_CONT_PARAMS_ANY 1001
130 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
131 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
132
133 /* PaRAM slots are laid out like this */
134 struct edmacc_param {
135 u32 opt;
136 u32 src;
137 u32 a_b_cnt;
138 u32 dst;
139 u32 src_dst_bidx;
140 u32 link_bcntrld;
141 u32 src_dst_cidx;
142 u32 ccnt;
143 } __packed;
144
145 /* fields in edmacc_param.opt */
146 #define SAM BIT(0)
147 #define DAM BIT(1)
148 #define SYNCDIM BIT(2)
149 #define STATIC BIT(3)
150 #define EDMA_FWID (0x07 << 8)
151 #define TCCMODE BIT(11)
152 #define EDMA_TCC(t) ((t) << 12)
153 #define TCINTEN BIT(20)
154 #define ITCINTEN BIT(21)
155 #define TCCHEN BIT(22)
156 #define ITCCHEN BIT(23)
157
158 struct edma_pset {
159 u32 len;
160 dma_addr_t addr;
161 struct edmacc_param param;
162 };
163
164 struct edma_desc {
165 struct virt_dma_desc vdesc;
166 struct list_head node;
167 enum dma_transfer_direction direction;
168 int cyclic;
169 int absync;
170 int pset_nr;
171 struct edma_chan *echan;
172 int processed;
173
174 /*
175 * The following 4 elements are used for residue accounting.
176 *
177 * - processed_stat: the number of SG elements we have traversed
178 * so far to cover accounting. This is updated directly to processed
179 * during edma_callback and is always <= processed, because processed
180 * refers to the number of pending transfer (programmed to EDMA
181 * controller), where as processed_stat tracks number of transfers
182 * accounted for so far.
183 *
184 * - residue: The amount of bytes we have left to transfer for this desc
185 *
186 * - residue_stat: The residue in bytes of data we have covered
187 * so far for accounting. This is updated directly to residue
188 * during callbacks to keep it current.
189 *
190 * - sg_len: Tracks the length of the current intermediate transfer,
191 * this is required to update the residue during intermediate transfer
192 * completion callback.
193 */
194 int processed_stat;
195 u32 sg_len;
196 u32 residue;
197 u32 residue_stat;
198
199 struct edma_pset pset[0];
200 };
201
202 struct edma_cc;
203
204 struct edma_tc {
205 struct device_node *node;
206 u16 id;
207 };
208
209 struct edma_chan {
210 struct virt_dma_chan vchan;
211 struct list_head node;
212 struct edma_desc *edesc;
213 struct edma_cc *ecc;
214 struct edma_tc *tc;
215 int ch_num;
216 bool alloced;
217 bool hw_triggered;
218 int slot[EDMA_MAX_SLOTS];
219 int missed;
220 struct dma_slave_config cfg;
221 };
222
223 struct edma_cc {
224 struct device *dev;
225 struct edma_soc_info *info;
226 void __iomem *base;
227 int id;
228 bool legacy_mode;
229
230 /* eDMA3 resource information */
231 unsigned num_channels;
232 unsigned num_qchannels;
233 unsigned num_region;
234 unsigned num_slots;
235 unsigned num_tc;
236 bool chmap_exist;
237 enum dma_event_q default_queue;
238
239 /*
240 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
241 * in use by Linux or if it is allocated to be used by DSP.
242 */
243 unsigned long *slot_inuse;
244
245 struct dma_device dma_slave;
246 struct dma_device *dma_memcpy;
247 struct edma_chan *slave_chans;
248 struct edma_tc *tc_list;
249 int dummy_slot;
250 };
251
252 /* dummy param set used to (re)initialize parameter RAM slots */
253 static const struct edmacc_param dummy_paramset = {
254 .link_bcntrld = 0xffff,
255 .ccnt = 1,
256 };
257
258 #define EDMA_BINDING_LEGACY 0
259 #define EDMA_BINDING_TPCC 1
260 static const struct of_device_id edma_of_ids[] = {
261 {
262 .compatible = "ti,edma3",
263 .data = (void *)EDMA_BINDING_LEGACY,
264 },
265 {
266 .compatible = "ti,edma3-tpcc",
267 .data = (void *)EDMA_BINDING_TPCC,
268 },
269 {}
270 };
271
272 static const struct of_device_id edma_tptc_of_ids[] = {
273 { .compatible = "ti,edma3-tptc", },
274 {}
275 };
276
277 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
278 {
279 return (unsigned int)__raw_readl(ecc->base + offset);
280 }
281
282 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
283 {
284 __raw_writel(val, ecc->base + offset);
285 }
286
287 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
288 unsigned or)
289 {
290 unsigned val = edma_read(ecc, offset);
291
292 val &= and;
293 val |= or;
294 edma_write(ecc, offset, val);
295 }
296
297 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
298 {
299 unsigned val = edma_read(ecc, offset);
300
301 val &= and;
302 edma_write(ecc, offset, val);
303 }
304
305 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
306 {
307 unsigned val = edma_read(ecc, offset);
308
309 val |= or;
310 edma_write(ecc, offset, val);
311 }
312
313 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
314 int i)
315 {
316 return edma_read(ecc, offset + (i << 2));
317 }
318
319 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
320 unsigned val)
321 {
322 edma_write(ecc, offset + (i << 2), val);
323 }
324
325 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
326 unsigned and, unsigned or)
327 {
328 edma_modify(ecc, offset + (i << 2), and, or);
329 }
330
331 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
332 unsigned or)
333 {
334 edma_or(ecc, offset + (i << 2), or);
335 }
336
337 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
338 unsigned or)
339 {
340 edma_or(ecc, offset + ((i * 2 + j) << 2), or);
341 }
342
343 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
344 int j, unsigned val)
345 {
346 edma_write(ecc, offset + ((i * 2 + j) << 2), val);
347 }
348
349 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
350 {
351 return edma_read(ecc, EDMA_SHADOW0 + offset);
352 }
353
354 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
355 int offset, int i)
356 {
357 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
358 }
359
360 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
361 unsigned val)
362 {
363 edma_write(ecc, EDMA_SHADOW0 + offset, val);
364 }
365
366 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
367 int i, unsigned val)
368 {
369 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
370 }
371
372 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
373 int param_no)
374 {
375 return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
376 }
377
378 static inline void edma_param_write(struct edma_cc *ecc, int offset,
379 int param_no, unsigned val)
380 {
381 edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
382 }
383
384 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
385 int param_no, unsigned and, unsigned or)
386 {
387 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
388 }
389
390 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
391 unsigned and)
392 {
393 edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
394 }
395
396 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
397 unsigned or)
398 {
399 edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
400 }
401
402 static inline void set_bits(int offset, int len, unsigned long *p)
403 {
404 for (; len > 0; len--)
405 set_bit(offset + (len - 1), p);
406 }
407
408 static inline void clear_bits(int offset, int len, unsigned long *p)
409 {
410 for (; len > 0; len--)
411 clear_bit(offset + (len - 1), p);
412 }
413
414 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
415 int priority)
416 {
417 int bit = queue_no * 4;
418
419 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
420 }
421
422 static void edma_set_chmap(struct edma_chan *echan, int slot)
423 {
424 struct edma_cc *ecc = echan->ecc;
425 int channel = EDMA_CHAN_SLOT(echan->ch_num);
426
427 if (ecc->chmap_exist) {
428 slot = EDMA_CHAN_SLOT(slot);
429 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
430 }
431 }
432
433 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
434 {
435 struct edma_cc *ecc = echan->ecc;
436 int channel = EDMA_CHAN_SLOT(echan->ch_num);
437
438 if (enable) {
439 edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
440 BIT(channel & 0x1f));
441 edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
442 BIT(channel & 0x1f));
443 } else {
444 edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
445 BIT(channel & 0x1f));
446 }
447 }
448
449 /*
450 * paRAM slot management functions
451 */
452 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
453 const struct edmacc_param *param)
454 {
455 slot = EDMA_CHAN_SLOT(slot);
456 if (slot >= ecc->num_slots)
457 return;
458 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
459 }
460
461 static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
462 struct edmacc_param *param)
463 {
464 slot = EDMA_CHAN_SLOT(slot);
465 if (slot >= ecc->num_slots)
466 return;
467 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
468 }
469
470 /**
471 * edma_alloc_slot - allocate DMA parameter RAM
472 * @ecc: pointer to edma_cc struct
473 * @slot: specific slot to allocate; negative for "any unused slot"
474 *
475 * This allocates a parameter RAM slot, initializing it to hold a
476 * dummy transfer. Slots allocated using this routine have not been
477 * mapped to a hardware DMA channel, and will normally be used by
478 * linking to them from a slot associated with a DMA channel.
479 *
480 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
481 * slots may be allocated on behalf of DSP firmware.
482 *
483 * Returns the number of the slot, else negative errno.
484 */
485 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
486 {
487 if (slot >= 0) {
488 slot = EDMA_CHAN_SLOT(slot);
489 /* Requesting entry paRAM slot for a HW triggered channel. */
490 if (ecc->chmap_exist && slot < ecc->num_channels)
491 slot = EDMA_SLOT_ANY;
492 }
493
494 if (slot < 0) {
495 if (ecc->chmap_exist)
496 slot = 0;
497 else
498 slot = ecc->num_channels;
499 for (;;) {
500 slot = find_next_zero_bit(ecc->slot_inuse,
501 ecc->num_slots,
502 slot);
503 if (slot == ecc->num_slots)
504 return -ENOMEM;
505 if (!test_and_set_bit(slot, ecc->slot_inuse))
506 break;
507 }
508 } else if (slot >= ecc->num_slots) {
509 return -EINVAL;
510 } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
511 return -EBUSY;
512 }
513
514 edma_write_slot(ecc, slot, &dummy_paramset);
515
516 return EDMA_CTLR_CHAN(ecc->id, slot);
517 }
518
519 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
520 {
521 slot = EDMA_CHAN_SLOT(slot);
522 if (slot >= ecc->num_slots)
523 return;
524
525 edma_write_slot(ecc, slot, &dummy_paramset);
526 clear_bit(slot, ecc->slot_inuse);
527 }
528
529 /**
530 * edma_link - link one parameter RAM slot to another
531 * @ecc: pointer to edma_cc struct
532 * @from: parameter RAM slot originating the link
533 * @to: parameter RAM slot which is the link target
534 *
535 * The originating slot should not be part of any active DMA transfer.
536 */
537 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
538 {
539 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
540 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
541
542 from = EDMA_CHAN_SLOT(from);
543 to = EDMA_CHAN_SLOT(to);
544 if (from >= ecc->num_slots || to >= ecc->num_slots)
545 return;
546
547 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
548 PARM_OFFSET(to));
549 }
550
551 /**
552 * edma_get_position - returns the current transfer point
553 * @ecc: pointer to edma_cc struct
554 * @slot: parameter RAM slot being examined
555 * @dst: true selects the dest position, false the source
556 *
557 * Returns the position of the current active slot
558 */
559 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
560 bool dst)
561 {
562 u32 offs;
563
564 slot = EDMA_CHAN_SLOT(slot);
565 offs = PARM_OFFSET(slot);
566 offs += dst ? PARM_DST : PARM_SRC;
567
568 return edma_read(ecc, offs);
569 }
570
571 /*
572 * Channels with event associations will be triggered by their hardware
573 * events, and channels without such associations will be triggered by
574 * software. (At this writing there is no interface for using software
575 * triggers except with channels that don't support hardware triggers.)
576 */
577 static void edma_start(struct edma_chan *echan)
578 {
579 struct edma_cc *ecc = echan->ecc;
580 int channel = EDMA_CHAN_SLOT(echan->ch_num);
581 int j = (channel >> 5);
582 unsigned int mask = BIT(channel & 0x1f);
583
584 if (!echan->hw_triggered) {
585 /* EDMA channels without event association */
586 dev_dbg(ecc->dev, "ESR%d %08x\n", j,
587 edma_shadow0_read_array(ecc, SH_ESR, j));
588 edma_shadow0_write_array(ecc, SH_ESR, j, mask);
589 } else {
590 /* EDMA channel with event association */
591 dev_dbg(ecc->dev, "ER%d %08x\n", j,
592 edma_shadow0_read_array(ecc, SH_ER, j));
593 /* Clear any pending event or error */
594 edma_write_array(ecc, EDMA_ECR, j, mask);
595 edma_write_array(ecc, EDMA_EMCR, j, mask);
596 /* Clear any SER */
597 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
598 edma_shadow0_write_array(ecc, SH_EESR, j, mask);
599 dev_dbg(ecc->dev, "EER%d %08x\n", j,
600 edma_shadow0_read_array(ecc, SH_EER, j));
601 }
602 }
603
604 static void edma_stop(struct edma_chan *echan)
605 {
606 struct edma_cc *ecc = echan->ecc;
607 int channel = EDMA_CHAN_SLOT(echan->ch_num);
608 int j = (channel >> 5);
609 unsigned int mask = BIT(channel & 0x1f);
610
611 edma_shadow0_write_array(ecc, SH_EECR, j, mask);
612 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
613 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
614 edma_write_array(ecc, EDMA_EMCR, j, mask);
615
616 /* clear possibly pending completion interrupt */
617 edma_shadow0_write_array(ecc, SH_ICR, j, mask);
618
619 dev_dbg(ecc->dev, "EER%d %08x\n", j,
620 edma_shadow0_read_array(ecc, SH_EER, j));
621
622 /* REVISIT: consider guarding against inappropriate event
623 * chaining by overwriting with dummy_paramset.
624 */
625 }
626
627 /*
628 * Temporarily disable EDMA hardware events on the specified channel,
629 * preventing them from triggering new transfers
630 */
631 static void edma_pause(struct edma_chan *echan)
632 {
633 int channel = EDMA_CHAN_SLOT(echan->ch_num);
634 unsigned int mask = BIT(channel & 0x1f);
635
636 edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
637 }
638
639 /* Re-enable EDMA hardware events on the specified channel. */
640 static void edma_resume(struct edma_chan *echan)
641 {
642 int channel = EDMA_CHAN_SLOT(echan->ch_num);
643 unsigned int mask = BIT(channel & 0x1f);
644
645 edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
646 }
647
648 static void edma_trigger_channel(struct edma_chan *echan)
649 {
650 struct edma_cc *ecc = echan->ecc;
651 int channel = EDMA_CHAN_SLOT(echan->ch_num);
652 unsigned int mask = BIT(channel & 0x1f);
653
654 edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
655
656 dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
657 edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
658 }
659
660 static void edma_clean_channel(struct edma_chan *echan)
661 {
662 struct edma_cc *ecc = echan->ecc;
663 int channel = EDMA_CHAN_SLOT(echan->ch_num);
664 int j = (channel >> 5);
665 unsigned int mask = BIT(channel & 0x1f);
666
667 dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
668 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
669 /* Clear the corresponding EMR bits */
670 edma_write_array(ecc, EDMA_EMCR, j, mask);
671 /* Clear any SER */
672 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
673 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
674 }
675
676 /* Move channel to a specific event queue */
677 static void edma_assign_channel_eventq(struct edma_chan *echan,
678 enum dma_event_q eventq_no)
679 {
680 struct edma_cc *ecc = echan->ecc;
681 int channel = EDMA_CHAN_SLOT(echan->ch_num);
682 int bit = (channel & 0x7) * 4;
683
684 /* default to low priority queue */
685 if (eventq_no == EVENTQ_DEFAULT)
686 eventq_no = ecc->default_queue;
687 if (eventq_no >= ecc->num_tc)
688 return;
689
690 eventq_no &= 7;
691 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
692 eventq_no << bit);
693 }
694
695 static int edma_alloc_channel(struct edma_chan *echan,
696 enum dma_event_q eventq_no)
697 {
698 struct edma_cc *ecc = echan->ecc;
699 int channel = EDMA_CHAN_SLOT(echan->ch_num);
700
701 /* ensure access through shadow region 0 */
702 edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
703
704 /* ensure no events are pending */
705 edma_stop(echan);
706
707 edma_setup_interrupt(echan, true);
708
709 edma_assign_channel_eventq(echan, eventq_no);
710
711 return 0;
712 }
713
714 static void edma_free_channel(struct edma_chan *echan)
715 {
716 /* ensure no events are pending */
717 edma_stop(echan);
718 /* REVISIT should probably take out of shadow region 0 */
719 edma_setup_interrupt(echan, false);
720 }
721
722 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
723 {
724 return container_of(d, struct edma_cc, dma_slave);
725 }
726
727 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
728 {
729 return container_of(c, struct edma_chan, vchan.chan);
730 }
731
732 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
733 {
734 return container_of(tx, struct edma_desc, vdesc.tx);
735 }
736
737 static void edma_desc_free(struct virt_dma_desc *vdesc)
738 {
739 kfree(container_of(vdesc, struct edma_desc, vdesc));
740 }
741
742 /* Dispatch a queued descriptor to the controller (caller holds lock) */
743 static void edma_execute(struct edma_chan *echan)
744 {
745 struct edma_cc *ecc = echan->ecc;
746 struct virt_dma_desc *vdesc;
747 struct edma_desc *edesc;
748 struct device *dev = echan->vchan.chan.device->dev;
749 int i, j, left, nslots;
750
751 if (!echan->edesc) {
752 /* Setup is needed for the first transfer */
753 vdesc = vchan_next_desc(&echan->vchan);
754 if (!vdesc)
755 return;
756 list_del(&vdesc->node);
757 echan->edesc = to_edma_desc(&vdesc->tx);
758 }
759
760 edesc = echan->edesc;
761
762 /* Find out how many left */
763 left = edesc->pset_nr - edesc->processed;
764 nslots = min(MAX_NR_SG, left);
765 edesc->sg_len = 0;
766
767 /* Write descriptor PaRAM set(s) */
768 for (i = 0; i < nslots; i++) {
769 j = i + edesc->processed;
770 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
771 edesc->sg_len += edesc->pset[j].len;
772 dev_vdbg(dev,
773 "\n pset[%d]:\n"
774 " chnum\t%d\n"
775 " slot\t%d\n"
776 " opt\t%08x\n"
777 " src\t%08x\n"
778 " dst\t%08x\n"
779 " abcnt\t%08x\n"
780 " ccnt\t%08x\n"
781 " bidx\t%08x\n"
782 " cidx\t%08x\n"
783 " lkrld\t%08x\n",
784 j, echan->ch_num, echan->slot[i],
785 edesc->pset[j].param.opt,
786 edesc->pset[j].param.src,
787 edesc->pset[j].param.dst,
788 edesc->pset[j].param.a_b_cnt,
789 edesc->pset[j].param.ccnt,
790 edesc->pset[j].param.src_dst_bidx,
791 edesc->pset[j].param.src_dst_cidx,
792 edesc->pset[j].param.link_bcntrld);
793 /* Link to the previous slot if not the last set */
794 if (i != (nslots - 1))
795 edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
796 }
797
798 edesc->processed += nslots;
799
800 /*
801 * If this is either the last set in a set of SG-list transactions
802 * then setup a link to the dummy slot, this results in all future
803 * events being absorbed and that's OK because we're done
804 */
805 if (edesc->processed == edesc->pset_nr) {
806 if (edesc->cyclic)
807 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
808 else
809 edma_link(ecc, echan->slot[nslots - 1],
810 echan->ecc->dummy_slot);
811 }
812
813 if (echan->missed) {
814 /*
815 * This happens due to setup times between intermediate
816 * transfers in long SG lists which have to be broken up into
817 * transfers of MAX_NR_SG
818 */
819 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
820 edma_clean_channel(echan);
821 edma_stop(echan);
822 edma_start(echan);
823 edma_trigger_channel(echan);
824 echan->missed = 0;
825 } else if (edesc->processed <= MAX_NR_SG) {
826 dev_dbg(dev, "first transfer starting on channel %d\n",
827 echan->ch_num);
828 edma_start(echan);
829 } else {
830 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
831 echan->ch_num, edesc->processed);
832 edma_resume(echan);
833 }
834 }
835
836 static int edma_terminate_all(struct dma_chan *chan)
837 {
838 struct edma_chan *echan = to_edma_chan(chan);
839 unsigned long flags;
840 LIST_HEAD(head);
841
842 spin_lock_irqsave(&echan->vchan.lock, flags);
843
844 /*
845 * Stop DMA activity: we assume the callback will not be called
846 * after edma_dma() returns (even if it does, it will see
847 * echan->edesc is NULL and exit.)
848 */
849 if (echan->edesc) {
850 edma_stop(echan);
851 /* Move the cyclic channel back to default queue */
852 if (!echan->tc && echan->edesc->cyclic)
853 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
854 /*
855 * free the running request descriptor
856 * since it is not in any of the vdesc lists
857 */
858 edma_desc_free(&echan->edesc->vdesc);
859 echan->edesc = NULL;
860 }
861
862 vchan_get_all_descriptors(&echan->vchan, &head);
863 spin_unlock_irqrestore(&echan->vchan.lock, flags);
864 vchan_dma_desc_free_list(&echan->vchan, &head);
865
866 return 0;
867 }
868
869 static int edma_slave_config(struct dma_chan *chan,
870 struct dma_slave_config *cfg)
871 {
872 struct edma_chan *echan = to_edma_chan(chan);
873
874 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
875 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
876 return -EINVAL;
877
878 memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
879
880 return 0;
881 }
882
883 static int edma_dma_pause(struct dma_chan *chan)
884 {
885 struct edma_chan *echan = to_edma_chan(chan);
886
887 if (!echan->edesc)
888 return -EINVAL;
889
890 edma_pause(echan);
891 return 0;
892 }
893
894 static int edma_dma_resume(struct dma_chan *chan)
895 {
896 struct edma_chan *echan = to_edma_chan(chan);
897
898 edma_resume(echan);
899 return 0;
900 }
901
902 /*
903 * A PaRAM set configuration abstraction used by other modes
904 * @chan: Channel who's PaRAM set we're configuring
905 * @pset: PaRAM set to initialize and setup.
906 * @src_addr: Source address of the DMA
907 * @dst_addr: Destination address of the DMA
908 * @burst: In units of dev_width, how much to send
909 * @dev_width: How much is the dev_width
910 * @dma_length: Total length of the DMA transfer
911 * @direction: Direction of the transfer
912 */
913 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
914 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
915 unsigned int acnt, unsigned int dma_length,
916 enum dma_transfer_direction direction)
917 {
918 struct edma_chan *echan = to_edma_chan(chan);
919 struct device *dev = chan->device->dev;
920 struct edmacc_param *param = &epset->param;
921 int bcnt, ccnt, cidx;
922 int src_bidx, dst_bidx, src_cidx, dst_cidx;
923 int absync;
924
925 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
926 if (!burst)
927 burst = 1;
928 /*
929 * If the maxburst is equal to the fifo width, use
930 * A-synced transfers. This allows for large contiguous
931 * buffer transfers using only one PaRAM set.
932 */
933 if (burst == 1) {
934 /*
935 * For the A-sync case, bcnt and ccnt are the remainder
936 * and quotient respectively of the division of:
937 * (dma_length / acnt) by (SZ_64K -1). This is so
938 * that in case bcnt over flows, we have ccnt to use.
939 * Note: In A-sync tranfer only, bcntrld is used, but it
940 * only applies for sg_dma_len(sg) >= SZ_64K.
941 * In this case, the best way adopted is- bccnt for the
942 * first frame will be the remainder below. Then for
943 * every successive frame, bcnt will be SZ_64K-1. This
944 * is assured as bcntrld = 0xffff in end of function.
945 */
946 absync = false;
947 ccnt = dma_length / acnt / (SZ_64K - 1);
948 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
949 /*
950 * If bcnt is non-zero, we have a remainder and hence an
951 * extra frame to transfer, so increment ccnt.
952 */
953 if (bcnt)
954 ccnt++;
955 else
956 bcnt = SZ_64K - 1;
957 cidx = acnt;
958 } else {
959 /*
960 * If maxburst is greater than the fifo address_width,
961 * use AB-synced transfers where A count is the fifo
962 * address_width and B count is the maxburst. In this
963 * case, we are limited to transfers of C count frames
964 * of (address_width * maxburst) where C count is limited
965 * to SZ_64K-1. This places an upper bound on the length
966 * of an SG segment that can be handled.
967 */
968 absync = true;
969 bcnt = burst;
970 ccnt = dma_length / (acnt * bcnt);
971 if (ccnt > (SZ_64K - 1)) {
972 dev_err(dev, "Exceeded max SG segment size\n");
973 return -EINVAL;
974 }
975 cidx = acnt * bcnt;
976 }
977
978 epset->len = dma_length;
979
980 if (direction == DMA_MEM_TO_DEV) {
981 src_bidx = acnt;
982 src_cidx = cidx;
983 dst_bidx = 0;
984 dst_cidx = 0;
985 epset->addr = src_addr;
986 } else if (direction == DMA_DEV_TO_MEM) {
987 src_bidx = 0;
988 src_cidx = 0;
989 dst_bidx = acnt;
990 dst_cidx = cidx;
991 epset->addr = dst_addr;
992 } else if (direction == DMA_MEM_TO_MEM) {
993 src_bidx = acnt;
994 src_cidx = cidx;
995 dst_bidx = acnt;
996 dst_cidx = cidx;
997 } else {
998 dev_err(dev, "%s: direction not implemented yet\n", __func__);
999 return -EINVAL;
1000 }
1001
1002 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1003 /* Configure A or AB synchronized transfers */
1004 if (absync)
1005 param->opt |= SYNCDIM;
1006
1007 param->src = src_addr;
1008 param->dst = dst_addr;
1009
1010 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1011 param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1012
1013 param->a_b_cnt = bcnt << 16 | acnt;
1014 param->ccnt = ccnt;
1015 /*
1016 * Only time when (bcntrld) auto reload is required is for
1017 * A-sync case, and in this case, a requirement of reload value
1018 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1019 * and then later will be populated by edma_execute.
1020 */
1021 param->link_bcntrld = 0xffffffff;
1022 return absync;
1023 }
1024
1025 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1026 struct dma_chan *chan, struct scatterlist *sgl,
1027 unsigned int sg_len, enum dma_transfer_direction direction,
1028 unsigned long tx_flags, void *context)
1029 {
1030 struct edma_chan *echan = to_edma_chan(chan);
1031 struct device *dev = chan->device->dev;
1032 struct edma_desc *edesc;
1033 dma_addr_t src_addr = 0, dst_addr = 0;
1034 enum dma_slave_buswidth dev_width;
1035 u32 burst;
1036 struct scatterlist *sg;
1037 int i, nslots, ret;
1038
1039 if (unlikely(!echan || !sgl || !sg_len))
1040 return NULL;
1041
1042 if (direction == DMA_DEV_TO_MEM) {
1043 src_addr = echan->cfg.src_addr;
1044 dev_width = echan->cfg.src_addr_width;
1045 burst = echan->cfg.src_maxburst;
1046 } else if (direction == DMA_MEM_TO_DEV) {
1047 dst_addr = echan->cfg.dst_addr;
1048 dev_width = echan->cfg.dst_addr_width;
1049 burst = echan->cfg.dst_maxburst;
1050 } else {
1051 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1052 return NULL;
1053 }
1054
1055 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1056 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1057 return NULL;
1058 }
1059
1060 edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
1061 GFP_ATOMIC);
1062 if (!edesc) {
1063 dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1064 return NULL;
1065 }
1066
1067 edesc->pset_nr = sg_len;
1068 edesc->residue = 0;
1069 edesc->direction = direction;
1070 edesc->echan = echan;
1071
1072 /* Allocate a PaRAM slot, if needed */
1073 nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1074
1075 for (i = 0; i < nslots; i++) {
1076 if (echan->slot[i] < 0) {
1077 echan->slot[i] =
1078 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1079 if (echan->slot[i] < 0) {
1080 kfree(edesc);
1081 dev_err(dev, "%s: Failed to allocate slot\n",
1082 __func__);
1083 return NULL;
1084 }
1085 }
1086 }
1087
1088 /* Configure PaRAM sets for each SG */
1089 for_each_sg(sgl, sg, sg_len, i) {
1090 /* Get address for each SG */
1091 if (direction == DMA_DEV_TO_MEM)
1092 dst_addr = sg_dma_address(sg);
1093 else
1094 src_addr = sg_dma_address(sg);
1095
1096 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1097 dst_addr, burst, dev_width,
1098 sg_dma_len(sg), direction);
1099 if (ret < 0) {
1100 kfree(edesc);
1101 return NULL;
1102 }
1103
1104 edesc->absync = ret;
1105 edesc->residue += sg_dma_len(sg);
1106
1107 /* If this is the last in a current SG set of transactions,
1108 enable interrupts so that next set is processed */
1109 if (!((i+1) % MAX_NR_SG))
1110 edesc->pset[i].param.opt |= TCINTEN;
1111
1112 /* If this is the last set, enable completion interrupt flag */
1113 if (i == sg_len - 1)
1114 edesc->pset[i].param.opt |= TCINTEN;
1115 }
1116 edesc->residue_stat = edesc->residue;
1117
1118 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1119 }
1120
1121 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1122 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1123 size_t len, unsigned long tx_flags)
1124 {
1125 int ret, nslots;
1126 struct edma_desc *edesc;
1127 struct device *dev = chan->device->dev;
1128 struct edma_chan *echan = to_edma_chan(chan);
1129 unsigned int width, pset_len;
1130
1131 if (unlikely(!echan || !len))
1132 return NULL;
1133
1134 if (len < SZ_64K) {
1135 /*
1136 * Transfer size less than 64K can be handled with one paRAM
1137 * slot and with one burst.
1138 * ACNT = length
1139 */
1140 width = len;
1141 pset_len = len;
1142 nslots = 1;
1143 } else {
1144 /*
1145 * Transfer size bigger than 64K will be handled with maximum of
1146 * two paRAM slots.
1147 * slot1: (full_length / 32767) times 32767 bytes bursts.
1148 * ACNT = 32767, length1: (full_length / 32767) * 32767
1149 * slot2: the remaining amount of data after slot1.
1150 * ACNT = full_length - length1, length2 = ACNT
1151 *
1152 * When the full_length is multibple of 32767 one slot can be
1153 * used to complete the transfer.
1154 */
1155 width = SZ_32K - 1;
1156 pset_len = rounddown(len, width);
1157 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1158 if (unlikely(pset_len == len))
1159 nslots = 1;
1160 else
1161 nslots = 2;
1162 }
1163
1164 edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1165 GFP_ATOMIC);
1166 if (!edesc) {
1167 dev_dbg(dev, "Failed to allocate a descriptor\n");
1168 return NULL;
1169 }
1170
1171 edesc->pset_nr = nslots;
1172 edesc->residue = edesc->residue_stat = len;
1173 edesc->direction = DMA_MEM_TO_MEM;
1174 edesc->echan = echan;
1175
1176 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1177 width, pset_len, DMA_MEM_TO_MEM);
1178 if (ret < 0) {
1179 kfree(edesc);
1180 return NULL;
1181 }
1182
1183 edesc->absync = ret;
1184
1185 edesc->pset[0].param.opt |= ITCCHEN;
1186 if (nslots == 1) {
1187 /* Enable transfer complete interrupt */
1188 edesc->pset[0].param.opt |= TCINTEN;
1189 } else {
1190 /* Enable transfer complete chaining for the first slot */
1191 edesc->pset[0].param.opt |= TCCHEN;
1192
1193 if (echan->slot[1] < 0) {
1194 echan->slot[1] = edma_alloc_slot(echan->ecc,
1195 EDMA_SLOT_ANY);
1196 if (echan->slot[1] < 0) {
1197 kfree(edesc);
1198 dev_err(dev, "%s: Failed to allocate slot\n",
1199 __func__);
1200 return NULL;
1201 }
1202 }
1203 dest += pset_len;
1204 src += pset_len;
1205 pset_len = width = len % (SZ_32K - 1);
1206
1207 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1208 width, pset_len, DMA_MEM_TO_MEM);
1209 if (ret < 0) {
1210 kfree(edesc);
1211 return NULL;
1212 }
1213
1214 edesc->pset[1].param.opt |= ITCCHEN;
1215 edesc->pset[1].param.opt |= TCINTEN;
1216 }
1217
1218 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1219 }
1220
1221 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1222 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1223 size_t period_len, enum dma_transfer_direction direction,
1224 unsigned long tx_flags)
1225 {
1226 struct edma_chan *echan = to_edma_chan(chan);
1227 struct device *dev = chan->device->dev;
1228 struct edma_desc *edesc;
1229 dma_addr_t src_addr, dst_addr;
1230 enum dma_slave_buswidth dev_width;
1231 u32 burst;
1232 int i, ret, nslots;
1233
1234 if (unlikely(!echan || !buf_len || !period_len))
1235 return NULL;
1236
1237 if (direction == DMA_DEV_TO_MEM) {
1238 src_addr = echan->cfg.src_addr;
1239 dst_addr = buf_addr;
1240 dev_width = echan->cfg.src_addr_width;
1241 burst = echan->cfg.src_maxburst;
1242 } else if (direction == DMA_MEM_TO_DEV) {
1243 src_addr = buf_addr;
1244 dst_addr = echan->cfg.dst_addr;
1245 dev_width = echan->cfg.dst_addr_width;
1246 burst = echan->cfg.dst_maxburst;
1247 } else {
1248 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1249 return NULL;
1250 }
1251
1252 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1253 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1254 return NULL;
1255 }
1256
1257 if (unlikely(buf_len % period_len)) {
1258 dev_err(dev, "Period should be multiple of Buffer length\n");
1259 return NULL;
1260 }
1261
1262 nslots = (buf_len / period_len) + 1;
1263
1264 /*
1265 * Cyclic DMA users such as audio cannot tolerate delays introduced
1266 * by cases where the number of periods is more than the maximum
1267 * number of SGs the EDMA driver can handle at a time. For DMA types
1268 * such as Slave SGs, such delays are tolerable and synchronized,
1269 * but the synchronization is difficult to achieve with Cyclic and
1270 * cannot be guaranteed, so we error out early.
1271 */
1272 if (nslots > MAX_NR_SG)
1273 return NULL;
1274
1275 edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1276 GFP_ATOMIC);
1277 if (!edesc) {
1278 dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1279 return NULL;
1280 }
1281
1282 edesc->cyclic = 1;
1283 edesc->pset_nr = nslots;
1284 edesc->residue = edesc->residue_stat = buf_len;
1285 edesc->direction = direction;
1286 edesc->echan = echan;
1287
1288 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1289 __func__, echan->ch_num, nslots, period_len, buf_len);
1290
1291 for (i = 0; i < nslots; i++) {
1292 /* Allocate a PaRAM slot, if needed */
1293 if (echan->slot[i] < 0) {
1294 echan->slot[i] =
1295 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1296 if (echan->slot[i] < 0) {
1297 kfree(edesc);
1298 dev_err(dev, "%s: Failed to allocate slot\n",
1299 __func__);
1300 return NULL;
1301 }
1302 }
1303
1304 if (i == nslots - 1) {
1305 memcpy(&edesc->pset[i], &edesc->pset[0],
1306 sizeof(edesc->pset[0]));
1307 break;
1308 }
1309
1310 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1311 dst_addr, burst, dev_width, period_len,
1312 direction);
1313 if (ret < 0) {
1314 kfree(edesc);
1315 return NULL;
1316 }
1317
1318 if (direction == DMA_DEV_TO_MEM)
1319 dst_addr += period_len;
1320 else
1321 src_addr += period_len;
1322
1323 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1324 dev_vdbg(dev,
1325 "\n pset[%d]:\n"
1326 " chnum\t%d\n"
1327 " slot\t%d\n"
1328 " opt\t%08x\n"
1329 " src\t%08x\n"
1330 " dst\t%08x\n"
1331 " abcnt\t%08x\n"
1332 " ccnt\t%08x\n"
1333 " bidx\t%08x\n"
1334 " cidx\t%08x\n"
1335 " lkrld\t%08x\n",
1336 i, echan->ch_num, echan->slot[i],
1337 edesc->pset[i].param.opt,
1338 edesc->pset[i].param.src,
1339 edesc->pset[i].param.dst,
1340 edesc->pset[i].param.a_b_cnt,
1341 edesc->pset[i].param.ccnt,
1342 edesc->pset[i].param.src_dst_bidx,
1343 edesc->pset[i].param.src_dst_cidx,
1344 edesc->pset[i].param.link_bcntrld);
1345
1346 edesc->absync = ret;
1347
1348 /*
1349 * Enable period interrupt only if it is requested
1350 */
1351 if (tx_flags & DMA_PREP_INTERRUPT)
1352 edesc->pset[i].param.opt |= TCINTEN;
1353 }
1354
1355 /* Place the cyclic channel to highest priority queue */
1356 if (!echan->tc)
1357 edma_assign_channel_eventq(echan, EVENTQ_0);
1358
1359 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1360 }
1361
1362 static void edma_completion_handler(struct edma_chan *echan)
1363 {
1364 struct device *dev = echan->vchan.chan.device->dev;
1365 struct edma_desc *edesc = echan->edesc;
1366
1367 if (!edesc)
1368 return;
1369
1370 spin_lock(&echan->vchan.lock);
1371 if (edesc->cyclic) {
1372 vchan_cyclic_callback(&edesc->vdesc);
1373 spin_unlock(&echan->vchan.lock);
1374 return;
1375 } else if (edesc->processed == edesc->pset_nr) {
1376 edesc->residue = 0;
1377 edma_stop(echan);
1378 vchan_cookie_complete(&edesc->vdesc);
1379 echan->edesc = NULL;
1380
1381 dev_dbg(dev, "Transfer completed on channel %d\n",
1382 echan->ch_num);
1383 } else {
1384 dev_dbg(dev, "Sub transfer completed on channel %d\n",
1385 echan->ch_num);
1386
1387 edma_pause(echan);
1388
1389 /* Update statistics for tx_status */
1390 edesc->residue -= edesc->sg_len;
1391 edesc->residue_stat = edesc->residue;
1392 edesc->processed_stat = edesc->processed;
1393 }
1394 edma_execute(echan);
1395
1396 spin_unlock(&echan->vchan.lock);
1397 }
1398
1399 /* eDMA interrupt handler */
1400 static irqreturn_t dma_irq_handler(int irq, void *data)
1401 {
1402 struct edma_cc *ecc = data;
1403 int ctlr;
1404 u32 sh_ier;
1405 u32 sh_ipr;
1406 u32 bank;
1407
1408 ctlr = ecc->id;
1409 if (ctlr < 0)
1410 return IRQ_NONE;
1411
1412 dev_vdbg(ecc->dev, "dma_irq_handler\n");
1413
1414 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1415 if (!sh_ipr) {
1416 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1417 if (!sh_ipr)
1418 return IRQ_NONE;
1419 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1420 bank = 1;
1421 } else {
1422 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1423 bank = 0;
1424 }
1425
1426 do {
1427 u32 slot;
1428 u32 channel;
1429
1430 slot = __ffs(sh_ipr);
1431 sh_ipr &= ~(BIT(slot));
1432
1433 if (sh_ier & BIT(slot)) {
1434 channel = (bank << 5) | slot;
1435 /* Clear the corresponding IPR bits */
1436 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1437 edma_completion_handler(&ecc->slave_chans[channel]);
1438 }
1439 } while (sh_ipr);
1440
1441 edma_shadow0_write(ecc, SH_IEVAL, 1);
1442 return IRQ_HANDLED;
1443 }
1444
1445 static void edma_error_handler(struct edma_chan *echan)
1446 {
1447 struct edma_cc *ecc = echan->ecc;
1448 struct device *dev = echan->vchan.chan.device->dev;
1449 struct edmacc_param p;
1450
1451 if (!echan->edesc)
1452 return;
1453
1454 spin_lock(&echan->vchan.lock);
1455
1456 edma_read_slot(ecc, echan->slot[0], &p);
1457 /*
1458 * Issue later based on missed flag which will be sure
1459 * to happen as:
1460 * (1) we finished transmitting an intermediate slot and
1461 * edma_execute is coming up.
1462 * (2) or we finished current transfer and issue will
1463 * call edma_execute.
1464 *
1465 * Important note: issuing can be dangerous here and
1466 * lead to some nasty recursion when we are in a NULL
1467 * slot. So we avoid doing so and set the missed flag.
1468 */
1469 if (p.a_b_cnt == 0 && p.ccnt == 0) {
1470 dev_dbg(dev, "Error on null slot, setting miss\n");
1471 echan->missed = 1;
1472 } else {
1473 /*
1474 * The slot is already programmed but the event got
1475 * missed, so its safe to issue it here.
1476 */
1477 dev_dbg(dev, "Missed event, TRIGGERING\n");
1478 edma_clean_channel(echan);
1479 edma_stop(echan);
1480 edma_start(echan);
1481 edma_trigger_channel(echan);
1482 }
1483 spin_unlock(&echan->vchan.lock);
1484 }
1485
1486 static inline bool edma_error_pending(struct edma_cc *ecc)
1487 {
1488 if (edma_read_array(ecc, EDMA_EMR, 0) ||
1489 edma_read_array(ecc, EDMA_EMR, 1) ||
1490 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1491 return true;
1492
1493 return false;
1494 }
1495
1496 /* eDMA error interrupt handler */
1497 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1498 {
1499 struct edma_cc *ecc = data;
1500 int i, j;
1501 int ctlr;
1502 unsigned int cnt = 0;
1503 unsigned int val;
1504
1505 ctlr = ecc->id;
1506 if (ctlr < 0)
1507 return IRQ_NONE;
1508
1509 dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1510
1511 if (!edma_error_pending(ecc))
1512 return IRQ_NONE;
1513
1514 while (1) {
1515 /* Event missed register(s) */
1516 for (j = 0; j < 2; j++) {
1517 unsigned long emr;
1518
1519 val = edma_read_array(ecc, EDMA_EMR, j);
1520 if (!val)
1521 continue;
1522
1523 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1524 emr = val;
1525 for (i = find_next_bit(&emr, 32, 0); i < 32;
1526 i = find_next_bit(&emr, 32, i + 1)) {
1527 int k = (j << 5) + i;
1528
1529 /* Clear the corresponding EMR bits */
1530 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1531 /* Clear any SER */
1532 edma_shadow0_write_array(ecc, SH_SECR, j,
1533 BIT(i));
1534 edma_error_handler(&ecc->slave_chans[k]);
1535 }
1536 }
1537
1538 val = edma_read(ecc, EDMA_QEMR);
1539 if (val) {
1540 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1541 /* Not reported, just clear the interrupt reason. */
1542 edma_write(ecc, EDMA_QEMCR, val);
1543 edma_shadow0_write(ecc, SH_QSECR, val);
1544 }
1545
1546 val = edma_read(ecc, EDMA_CCERR);
1547 if (val) {
1548 dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1549 /* Not reported, just clear the interrupt reason. */
1550 edma_write(ecc, EDMA_CCERRCLR, val);
1551 }
1552
1553 if (!edma_error_pending(ecc))
1554 break;
1555 cnt++;
1556 if (cnt > 10)
1557 break;
1558 }
1559 edma_write(ecc, EDMA_EEVAL, 1);
1560 return IRQ_HANDLED;
1561 }
1562
1563 static void edma_tc_set_pm_state(struct edma_tc *tc, bool enable)
1564 {
1565 struct platform_device *tc_pdev;
1566 int ret;
1567
1568 if (!IS_ENABLED(CONFIG_OF) || !tc)
1569 return;
1570
1571 tc_pdev = of_find_device_by_node(tc->node);
1572 if (!tc_pdev) {
1573 pr_err("%s: TPTC device is not found\n", __func__);
1574 return;
1575 }
1576 if (!pm_runtime_enabled(&tc_pdev->dev))
1577 pm_runtime_enable(&tc_pdev->dev);
1578
1579 if (enable)
1580 ret = pm_runtime_get_sync(&tc_pdev->dev);
1581 else
1582 ret = pm_runtime_put_sync(&tc_pdev->dev);
1583
1584 if (ret < 0)
1585 pr_err("%s: pm_runtime_%s_sync() failed for %s\n", __func__,
1586 enable ? "get" : "put", dev_name(&tc_pdev->dev));
1587 }
1588
1589 /* Alloc channel resources */
1590 static int edma_alloc_chan_resources(struct dma_chan *chan)
1591 {
1592 struct edma_chan *echan = to_edma_chan(chan);
1593 struct edma_cc *ecc = echan->ecc;
1594 struct device *dev = ecc->dev;
1595 enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1596 int ret;
1597
1598 if (echan->tc) {
1599 eventq_no = echan->tc->id;
1600 } else if (ecc->tc_list) {
1601 /* memcpy channel */
1602 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1603 eventq_no = echan->tc->id;
1604 }
1605
1606 ret = edma_alloc_channel(echan, eventq_no);
1607 if (ret)
1608 return ret;
1609
1610 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1611 if (echan->slot[0] < 0) {
1612 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1613 EDMA_CHAN_SLOT(echan->ch_num));
1614 goto err_slot;
1615 }
1616
1617 /* Set up channel -> slot mapping for the entry slot */
1618 edma_set_chmap(echan, echan->slot[0]);
1619 echan->alloced = true;
1620
1621 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1622 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1623 echan->hw_triggered ? "HW" : "SW");
1624
1625 edma_tc_set_pm_state(echan->tc, true);
1626
1627 return 0;
1628
1629 err_slot:
1630 edma_free_channel(echan);
1631 return ret;
1632 }
1633
1634 /* Free channel resources */
1635 static void edma_free_chan_resources(struct dma_chan *chan)
1636 {
1637 struct edma_chan *echan = to_edma_chan(chan);
1638 struct device *dev = echan->ecc->dev;
1639 int i;
1640
1641 /* Terminate transfers */
1642 edma_stop(echan);
1643
1644 vchan_free_chan_resources(&echan->vchan);
1645
1646 /* Free EDMA PaRAM slots */
1647 for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1648 if (echan->slot[i] >= 0) {
1649 edma_free_slot(echan->ecc, echan->slot[i]);
1650 echan->slot[i] = -1;
1651 }
1652 }
1653
1654 /* Set entry slot to the dummy slot */
1655 edma_set_chmap(echan, echan->ecc->dummy_slot);
1656
1657 /* Free EDMA channel */
1658 if (echan->alloced) {
1659 edma_free_channel(echan);
1660 echan->alloced = false;
1661 }
1662
1663 edma_tc_set_pm_state(echan->tc, false);
1664 echan->tc = NULL;
1665 echan->hw_triggered = false;
1666
1667 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1668 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1669 }
1670
1671 /* Send pending descriptor to hardware */
1672 static void edma_issue_pending(struct dma_chan *chan)
1673 {
1674 struct edma_chan *echan = to_edma_chan(chan);
1675 unsigned long flags;
1676
1677 spin_lock_irqsave(&echan->vchan.lock, flags);
1678 if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1679 edma_execute(echan);
1680 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1681 }
1682
1683 static u32 edma_residue(struct edma_desc *edesc)
1684 {
1685 bool dst = edesc->direction == DMA_DEV_TO_MEM;
1686 struct edma_pset *pset = edesc->pset;
1687 dma_addr_t done, pos;
1688 int i;
1689
1690 /*
1691 * We always read the dst/src position from the first RamPar
1692 * pset. That's the one which is active now.
1693 */
1694 pos = edma_get_position(edesc->echan->ecc, edesc->echan->slot[0], dst);
1695
1696 /*
1697 * Cyclic is simple. Just subtract pset[0].addr from pos.
1698 *
1699 * We never update edesc->residue in the cyclic case, so we
1700 * can tell the remaining room to the end of the circular
1701 * buffer.
1702 */
1703 if (edesc->cyclic) {
1704 done = pos - pset->addr;
1705 edesc->residue_stat = edesc->residue - done;
1706 return edesc->residue_stat;
1707 }
1708
1709 /*
1710 * For SG operation we catch up with the last processed
1711 * status.
1712 */
1713 pset += edesc->processed_stat;
1714
1715 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1716 /*
1717 * If we are inside this pset address range, we know
1718 * this is the active one. Get the current delta and
1719 * stop walking the psets.
1720 */
1721 if (pos >= pset->addr && pos < pset->addr + pset->len)
1722 return edesc->residue_stat - (pos - pset->addr);
1723
1724 /* Otherwise mark it done and update residue_stat. */
1725 edesc->processed_stat++;
1726 edesc->residue_stat -= pset->len;
1727 }
1728 return edesc->residue_stat;
1729 }
1730
1731 /* Check request completion status */
1732 static enum dma_status edma_tx_status(struct dma_chan *chan,
1733 dma_cookie_t cookie,
1734 struct dma_tx_state *txstate)
1735 {
1736 struct edma_chan *echan = to_edma_chan(chan);
1737 struct virt_dma_desc *vdesc;
1738 enum dma_status ret;
1739 unsigned long flags;
1740
1741 ret = dma_cookie_status(chan, cookie, txstate);
1742 if (ret == DMA_COMPLETE || !txstate)
1743 return ret;
1744
1745 spin_lock_irqsave(&echan->vchan.lock, flags);
1746 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1747 txstate->residue = edma_residue(echan->edesc);
1748 else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1749 txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1750 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1751
1752 return ret;
1753 }
1754
1755 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1756 {
1757 if (!memcpy_channels)
1758 return false;
1759 while (*memcpy_channels != -1) {
1760 if (*memcpy_channels == ch_num)
1761 return true;
1762 memcpy_channels++;
1763 }
1764 return false;
1765 }
1766
1767 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1768 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1769 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1770 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1771
1772 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1773 {
1774 struct dma_device *s_ddev = &ecc->dma_slave;
1775 struct dma_device *m_ddev = NULL;
1776 s32 *memcpy_channels = ecc->info->memcpy_channels;
1777 int i, j;
1778
1779 dma_cap_zero(s_ddev->cap_mask);
1780 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1781 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1782 if (ecc->legacy_mode && !memcpy_channels) {
1783 dev_warn(ecc->dev,
1784 "Legacy memcpy is enabled, things might not work\n");
1785
1786 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1787 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1788 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1789 }
1790
1791 s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1792 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1793 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1794 s_ddev->device_free_chan_resources = edma_free_chan_resources;
1795 s_ddev->device_issue_pending = edma_issue_pending;
1796 s_ddev->device_tx_status = edma_tx_status;
1797 s_ddev->device_config = edma_slave_config;
1798 s_ddev->device_pause = edma_dma_pause;
1799 s_ddev->device_resume = edma_dma_resume;
1800 s_ddev->device_terminate_all = edma_terminate_all;
1801
1802 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1803 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1804 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1805 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1806
1807 s_ddev->dev = ecc->dev;
1808 INIT_LIST_HEAD(&s_ddev->channels);
1809
1810 if (memcpy_channels) {
1811 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1812 ecc->dma_memcpy = m_ddev;
1813
1814 dma_cap_zero(m_ddev->cap_mask);
1815 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1816
1817 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1818 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1819 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1820 m_ddev->device_issue_pending = edma_issue_pending;
1821 m_ddev->device_tx_status = edma_tx_status;
1822 m_ddev->device_config = edma_slave_config;
1823 m_ddev->device_pause = edma_dma_pause;
1824 m_ddev->device_resume = edma_dma_resume;
1825 m_ddev->device_terminate_all = edma_terminate_all;
1826
1827 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1828 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1829 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1830 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1831
1832 m_ddev->dev = ecc->dev;
1833 INIT_LIST_HEAD(&m_ddev->channels);
1834 } else if (!ecc->legacy_mode) {
1835 dev_info(ecc->dev, "memcpy is disabled\n");
1836 }
1837
1838 for (i = 0; i < ecc->num_channels; i++) {
1839 struct edma_chan *echan = &ecc->slave_chans[i];
1840 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1841 echan->ecc = ecc;
1842 echan->vchan.desc_free = edma_desc_free;
1843
1844 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1845 vchan_init(&echan->vchan, m_ddev);
1846 else
1847 vchan_init(&echan->vchan, s_ddev);
1848
1849 INIT_LIST_HEAD(&echan->node);
1850 for (j = 0; j < EDMA_MAX_SLOTS; j++)
1851 echan->slot[j] = -1;
1852 }
1853 }
1854
1855 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1856 struct edma_cc *ecc)
1857 {
1858 int i;
1859 u32 value, cccfg;
1860 s8 (*queue_priority_map)[2];
1861
1862 /* Decode the eDMA3 configuration from CCCFG register */
1863 cccfg = edma_read(ecc, EDMA_CCCFG);
1864
1865 value = GET_NUM_REGN(cccfg);
1866 ecc->num_region = BIT(value);
1867
1868 value = GET_NUM_DMACH(cccfg);
1869 ecc->num_channels = BIT(value + 1);
1870
1871 value = GET_NUM_QDMACH(cccfg);
1872 ecc->num_qchannels = value * 2;
1873
1874 value = GET_NUM_PAENTRY(cccfg);
1875 ecc->num_slots = BIT(value + 4);
1876
1877 value = GET_NUM_EVQUE(cccfg);
1878 ecc->num_tc = value + 1;
1879
1880 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
1881
1882 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1883 dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1884 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1885 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1886 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1887 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1888 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1889
1890 /* Nothing need to be done if queue priority is provided */
1891 if (pdata->queue_priority_mapping)
1892 return 0;
1893
1894 /*
1895 * Configure TC/queue priority as follows:
1896 * Q0 - priority 0
1897 * Q1 - priority 1
1898 * Q2 - priority 2
1899 * ...
1900 * The meaning of priority numbers: 0 highest priority, 7 lowest
1901 * priority. So Q0 is the highest priority queue and the last queue has
1902 * the lowest priority.
1903 */
1904 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1905 GFP_KERNEL);
1906 if (!queue_priority_map)
1907 return -ENOMEM;
1908
1909 for (i = 0; i < ecc->num_tc; i++) {
1910 queue_priority_map[i][0] = i;
1911 queue_priority_map[i][1] = i;
1912 }
1913 queue_priority_map[i][0] = -1;
1914 queue_priority_map[i][1] = -1;
1915
1916 pdata->queue_priority_mapping = queue_priority_map;
1917 /* Default queue has the lowest priority */
1918 pdata->default_queue = i - 1;
1919
1920 return 0;
1921 }
1922
1923 #if IS_ENABLED(CONFIG_OF)
1924 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1925 size_t sz)
1926 {
1927 const char pname[] = "ti,edma-xbar-event-map";
1928 struct resource res;
1929 void __iomem *xbar;
1930 s16 (*xbar_chans)[2];
1931 size_t nelm = sz / sizeof(s16);
1932 u32 shift, offset, mux;
1933 int ret, i;
1934
1935 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1936 if (!xbar_chans)
1937 return -ENOMEM;
1938
1939 ret = of_address_to_resource(dev->of_node, 1, &res);
1940 if (ret)
1941 return -ENOMEM;
1942
1943 xbar = devm_ioremap(dev, res.start, resource_size(&res));
1944 if (!xbar)
1945 return -ENOMEM;
1946
1947 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
1948 nelm);
1949 if (ret)
1950 return -EIO;
1951
1952 /* Invalidate last entry for the other user of this mess */
1953 nelm >>= 1;
1954 xbar_chans[nelm][0] = -1;
1955 xbar_chans[nelm][1] = -1;
1956
1957 for (i = 0; i < nelm; i++) {
1958 shift = (xbar_chans[i][1] & 0x03) << 3;
1959 offset = xbar_chans[i][1] & 0xfffffffc;
1960 mux = readl(xbar + offset);
1961 mux &= ~(0xff << shift);
1962 mux |= xbar_chans[i][0] << shift;
1963 writel(mux, (xbar + offset));
1964 }
1965
1966 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
1967 return 0;
1968 }
1969
1970 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
1971 bool legacy_mode)
1972 {
1973 struct edma_soc_info *info;
1974 struct property *prop;
1975 size_t sz;
1976 int ret;
1977
1978 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
1979 if (!info)
1980 return ERR_PTR(-ENOMEM);
1981
1982 if (legacy_mode) {
1983 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
1984 &sz);
1985 if (prop) {
1986 ret = edma_xbar_event_map(dev, info, sz);
1987 if (ret)
1988 return ERR_PTR(ret);
1989 }
1990 return info;
1991 }
1992
1993 /* Get the list of channels allocated to be used for memcpy */
1994 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
1995 if (prop) {
1996 const char pname[] = "ti,edma-memcpy-channels";
1997 size_t nelm = sz / sizeof(s32);
1998 s32 *memcpy_ch;
1999
2000 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2001 GFP_KERNEL);
2002 if (!memcpy_ch)
2003 return ERR_PTR(-ENOMEM);
2004
2005 ret = of_property_read_u32_array(dev->of_node, pname,
2006 (u32 *)memcpy_ch, nelm);
2007 if (ret)
2008 return ERR_PTR(ret);
2009
2010 memcpy_ch[nelm] = -1;
2011 info->memcpy_channels = memcpy_ch;
2012 }
2013
2014 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2015 &sz);
2016 if (prop) {
2017 const char pname[] = "ti,edma-reserved-slot-ranges";
2018 u32 (*tmp)[2];
2019 s16 (*rsv_slots)[2];
2020 size_t nelm = sz / sizeof(*tmp);
2021 struct edma_rsv_info *rsv_info;
2022 int i;
2023
2024 if (!nelm)
2025 return info;
2026
2027 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2028 if (!tmp)
2029 return ERR_PTR(-ENOMEM);
2030
2031 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2032 if (!rsv_info) {
2033 kfree(tmp);
2034 return ERR_PTR(-ENOMEM);
2035 }
2036
2037 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2038 GFP_KERNEL);
2039 if (!rsv_slots) {
2040 kfree(tmp);
2041 return ERR_PTR(-ENOMEM);
2042 }
2043
2044 ret = of_property_read_u32_array(dev->of_node, pname,
2045 (u32 *)tmp, nelm * 2);
2046 if (ret) {
2047 kfree(tmp);
2048 return ERR_PTR(ret);
2049 }
2050
2051 for (i = 0; i < nelm; i++) {
2052 rsv_slots[i][0] = tmp[i][0];
2053 rsv_slots[i][1] = tmp[i][1];
2054 }
2055 rsv_slots[nelm][0] = -1;
2056 rsv_slots[nelm][1] = -1;
2057
2058 info->rsv = rsv_info;
2059 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2060
2061 kfree(tmp);
2062 }
2063
2064 return info;
2065 }
2066
2067 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2068 struct of_dma *ofdma)
2069 {
2070 struct edma_cc *ecc = ofdma->of_dma_data;
2071 struct dma_chan *chan = NULL;
2072 struct edma_chan *echan;
2073 int i;
2074
2075 if (!ecc || dma_spec->args_count < 1)
2076 return NULL;
2077
2078 for (i = 0; i < ecc->num_channels; i++) {
2079 echan = &ecc->slave_chans[i];
2080 if (echan->ch_num == dma_spec->args[0]) {
2081 chan = &echan->vchan.chan;
2082 break;
2083 }
2084 }
2085
2086 if (!chan)
2087 return NULL;
2088
2089 if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2090 goto out;
2091
2092 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2093 dma_spec->args[1] < echan->ecc->num_tc) {
2094 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2095 goto out;
2096 }
2097
2098 return NULL;
2099 out:
2100 /* The channel is going to be used as HW synchronized */
2101 echan->hw_triggered = true;
2102 return dma_get_slave_channel(chan);
2103 }
2104 #else
2105 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2106 bool legacy_mode)
2107 {
2108 return ERR_PTR(-EINVAL);
2109 }
2110
2111 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2112 struct of_dma *ofdma)
2113 {
2114 return NULL;
2115 }
2116 #endif
2117
2118 static int edma_probe(struct platform_device *pdev)
2119 {
2120 struct edma_soc_info *info = pdev->dev.platform_data;
2121 s8 (*queue_priority_mapping)[2];
2122 int i, off, ln;
2123 const s16 (*rsv_slots)[2];
2124 const s16 (*xbar_chans)[2];
2125 int irq;
2126 char *irq_name;
2127 struct resource *mem;
2128 struct device_node *node = pdev->dev.of_node;
2129 struct device *dev = &pdev->dev;
2130 struct edma_cc *ecc;
2131 bool legacy_mode = true;
2132 int ret;
2133
2134 if (node) {
2135 const struct of_device_id *match;
2136
2137 match = of_match_node(edma_of_ids, node);
2138 if (match && (u32)match->data == EDMA_BINDING_TPCC)
2139 legacy_mode = false;
2140
2141 info = edma_setup_info_from_dt(dev, legacy_mode);
2142 if (IS_ERR(info)) {
2143 dev_err(dev, "failed to get DT data\n");
2144 return PTR_ERR(info);
2145 }
2146 }
2147
2148 if (!info)
2149 return -ENODEV;
2150
2151 pm_runtime_enable(dev);
2152 ret = pm_runtime_get_sync(dev);
2153 if (ret < 0) {
2154 dev_err(dev, "pm_runtime_get_sync() failed\n");
2155 return ret;
2156 }
2157
2158 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2159 if (ret)
2160 return ret;
2161
2162 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2163 if (!ecc) {
2164 dev_err(dev, "Can't allocate controller\n");
2165 return -ENOMEM;
2166 }
2167
2168 ecc->dev = dev;
2169 ecc->id = pdev->id;
2170 ecc->legacy_mode = legacy_mode;
2171 /* When booting with DT the pdev->id is -1 */
2172 if (ecc->id < 0)
2173 ecc->id = 0;
2174
2175 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2176 if (!mem) {
2177 dev_dbg(dev, "mem resource not found, using index 0\n");
2178 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2179 if (!mem) {
2180 dev_err(dev, "no mem resource?\n");
2181 return -ENODEV;
2182 }
2183 }
2184 ecc->base = devm_ioremap_resource(dev, mem);
2185 if (IS_ERR(ecc->base))
2186 return PTR_ERR(ecc->base);
2187
2188 platform_set_drvdata(pdev, ecc);
2189
2190 /* Get eDMA3 configuration from IP */
2191 ret = edma_setup_from_hw(dev, info, ecc);
2192 if (ret)
2193 return ret;
2194
2195 /* Allocate memory based on the information we got from the IP */
2196 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2197 sizeof(*ecc->slave_chans), GFP_KERNEL);
2198 if (!ecc->slave_chans)
2199 return -ENOMEM;
2200
2201 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2202 sizeof(unsigned long), GFP_KERNEL);
2203 if (!ecc->slot_inuse)
2204 return -ENOMEM;
2205
2206 ecc->default_queue = info->default_queue;
2207
2208 for (i = 0; i < ecc->num_slots; i++)
2209 edma_write_slot(ecc, i, &dummy_paramset);
2210
2211 if (info->rsv) {
2212 /* Set the reserved slots in inuse list */
2213 rsv_slots = info->rsv->rsv_slots;
2214 if (rsv_slots) {
2215 for (i = 0; rsv_slots[i][0] != -1; i++) {
2216 off = rsv_slots[i][0];
2217 ln = rsv_slots[i][1];
2218 set_bits(off, ln, ecc->slot_inuse);
2219 }
2220 }
2221 }
2222
2223 /* Clear the xbar mapped channels in unused list */
2224 xbar_chans = info->xbar_chans;
2225 if (xbar_chans) {
2226 for (i = 0; xbar_chans[i][1] != -1; i++) {
2227 off = xbar_chans[i][1];
2228 }
2229 }
2230
2231 irq = platform_get_irq_byname(pdev, "edma3_ccint");
2232 if (irq < 0 && node)
2233 irq = irq_of_parse_and_map(node, 0);
2234
2235 if (irq >= 0) {
2236 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2237 dev_name(dev));
2238 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2239 ecc);
2240 if (ret) {
2241 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2242 return ret;
2243 }
2244 }
2245
2246 irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2247 if (irq < 0 && node)
2248 irq = irq_of_parse_and_map(node, 2);
2249
2250 if (irq >= 0) {
2251 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2252 dev_name(dev));
2253 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2254 ecc);
2255 if (ret) {
2256 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2257 return ret;
2258 }
2259 }
2260
2261 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2262 if (ecc->dummy_slot < 0) {
2263 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2264 return ecc->dummy_slot;
2265 }
2266
2267 queue_priority_mapping = info->queue_priority_mapping;
2268
2269 if (!ecc->legacy_mode) {
2270 int lowest_priority = 0;
2271 struct of_phandle_args tc_args;
2272
2273 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2274 sizeof(*ecc->tc_list), GFP_KERNEL);
2275 if (!ecc->tc_list)
2276 return -ENOMEM;
2277
2278 for (i = 0;; i++) {
2279 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2280 1, i, &tc_args);
2281 if (ret || i == ecc->num_tc)
2282 break;
2283
2284 ecc->tc_list[i].node = tc_args.np;
2285 ecc->tc_list[i].id = i;
2286 queue_priority_mapping[i][1] = tc_args.args[0];
2287 if (queue_priority_mapping[i][1] > lowest_priority) {
2288 lowest_priority = queue_priority_mapping[i][1];
2289 info->default_queue = i;
2290 }
2291 }
2292 }
2293
2294 /* Event queue priority mapping */
2295 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2296 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2297 queue_priority_mapping[i][1]);
2298
2299 for (i = 0; i < ecc->num_region; i++) {
2300 edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2301 edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2302 edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2303 }
2304 ecc->info = info;
2305
2306 /* Init the dma device and channels */
2307 edma_dma_init(ecc, legacy_mode);
2308
2309 for (i = 0; i < ecc->num_channels; i++) {
2310 /* Assign all channels to the default queue */
2311 edma_assign_channel_eventq(&ecc->slave_chans[i],
2312 info->default_queue);
2313 /* Set entry slot to the dummy slot */
2314 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2315 }
2316
2317 ecc->dma_slave.filter.map = info->slave_map;
2318 ecc->dma_slave.filter.mapcnt = info->slavecnt;
2319 ecc->dma_slave.filter.fn = edma_filter_fn;
2320
2321 ret = dma_async_device_register(&ecc->dma_slave);
2322 if (ret) {
2323 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2324 goto err_reg1;
2325 }
2326
2327 if (ecc->dma_memcpy) {
2328 ret = dma_async_device_register(ecc->dma_memcpy);
2329 if (ret) {
2330 dev_err(dev, "memcpy ddev registration failed (%d)\n",
2331 ret);
2332 dma_async_device_unregister(&ecc->dma_slave);
2333 goto err_reg1;
2334 }
2335 }
2336
2337 if (node)
2338 of_dma_controller_register(node, of_edma_xlate, ecc);
2339
2340 dev_info(dev, "TI EDMA DMA engine driver\n");
2341
2342 return 0;
2343
2344 err_reg1:
2345 edma_free_slot(ecc, ecc->dummy_slot);
2346 return ret;
2347 }
2348
2349 static int edma_remove(struct platform_device *pdev)
2350 {
2351 struct device *dev = &pdev->dev;
2352 struct edma_cc *ecc = dev_get_drvdata(dev);
2353
2354 if (dev->of_node)
2355 of_dma_controller_free(dev->of_node);
2356 dma_async_device_unregister(&ecc->dma_slave);
2357 if (ecc->dma_memcpy)
2358 dma_async_device_unregister(ecc->dma_memcpy);
2359 edma_free_slot(ecc, ecc->dummy_slot);
2360
2361 return 0;
2362 }
2363
2364 #ifdef CONFIG_PM_SLEEP
2365 static int edma_pm_suspend(struct device *dev)
2366 {
2367 struct edma_cc *ecc = dev_get_drvdata(dev);
2368 struct edma_chan *echan = ecc->slave_chans;
2369 int i;
2370
2371 for (i = 0; i < ecc->num_channels; i++) {
2372 if (echan[i].alloced) {
2373 edma_setup_interrupt(&echan[i], false);
2374 edma_tc_set_pm_state(echan[i].tc, false);
2375 }
2376 }
2377
2378 return 0;
2379 }
2380
2381 static int edma_pm_resume(struct device *dev)
2382 {
2383 struct edma_cc *ecc = dev_get_drvdata(dev);
2384 struct edma_chan *echan = ecc->slave_chans;
2385 int i;
2386 s8 (*queue_priority_mapping)[2];
2387
2388 queue_priority_mapping = ecc->info->queue_priority_mapping;
2389
2390 /* Event queue priority mapping */
2391 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2392 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2393 queue_priority_mapping[i][1]);
2394
2395 for (i = 0; i < ecc->num_channels; i++) {
2396 if (echan[i].alloced) {
2397 /* ensure access through shadow region 0 */
2398 edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2399 BIT(i & 0x1f));
2400
2401 edma_setup_interrupt(&echan[i], true);
2402
2403 /* Set up channel -> slot mapping for the entry slot */
2404 edma_set_chmap(&echan[i], echan[i].slot[0]);
2405
2406 edma_tc_set_pm_state(echan[i].tc, true);
2407 }
2408 }
2409
2410 return 0;
2411 }
2412 #endif
2413
2414 static const struct dev_pm_ops edma_pm_ops = {
2415 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2416 };
2417
2418 static struct platform_driver edma_driver = {
2419 .probe = edma_probe,
2420 .remove = edma_remove,
2421 .driver = {
2422 .name = "edma",
2423 .pm = &edma_pm_ops,
2424 .of_match_table = edma_of_ids,
2425 },
2426 };
2427
2428 static int edma_tptc_probe(struct platform_device *pdev)
2429 {
2430 return 0;
2431 }
2432
2433 static struct platform_driver edma_tptc_driver = {
2434 .probe = edma_tptc_probe,
2435 .driver = {
2436 .name = "edma3-tptc",
2437 .of_match_table = edma_tptc_of_ids,
2438 },
2439 };
2440
2441 bool edma_filter_fn(struct dma_chan *chan, void *param)
2442 {
2443 bool match = false;
2444
2445 if (chan->device->dev->driver == &edma_driver.driver) {
2446 struct edma_chan *echan = to_edma_chan(chan);
2447 unsigned ch_req = *(unsigned *)param;
2448 if (ch_req == echan->ch_num) {
2449 /* The channel is going to be used as HW synchronized */
2450 echan->hw_triggered = true;
2451 match = true;
2452 }
2453 }
2454 return match;
2455 }
2456 EXPORT_SYMBOL(edma_filter_fn);
2457
2458 static int edma_init(void)
2459 {
2460 int ret;
2461
2462 ret = platform_driver_register(&edma_tptc_driver);
2463 if (ret)
2464 return ret;
2465
2466 return platform_driver_register(&edma_driver);
2467 }
2468 subsys_initcall(edma_init);
2469
2470 static void __exit edma_exit(void)
2471 {
2472 platform_driver_unregister(&edma_driver);
2473 platform_driver_unregister(&edma_tptc_driver);
2474 }
2475 module_exit(edma_exit);
2476
2477 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2478 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2479 MODULE_LICENSE("GPL v2");
This page took 0.080348 seconds and 5 git commands to generate.