dmaengine: add context parameter to prep_slave_sg and prep_dma_cyclic
[deliverable/linux.git] / drivers / dma / ep93xx_dma.c
1 /*
2 * Driver for the Cirrus Logic EP93xx DMA Controller
3 *
4 * Copyright (C) 2011 Mika Westerberg
5 *
6 * DMA M2P implementation is based on the original
7 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
8 *
9 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10 * Copyright (C) 2006 Applied Data Systems
11 * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
12 *
13 * This driver is based on dw_dmac and amba-pl08x drivers.
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 */
20
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28
29 #include <mach/dma.h>
30
31 #include "dmaengine.h"
32
33 /* M2P registers */
34 #define M2P_CONTROL 0x0000
35 #define M2P_CONTROL_STALLINT BIT(0)
36 #define M2P_CONTROL_NFBINT BIT(1)
37 #define M2P_CONTROL_CH_ERROR_INT BIT(3)
38 #define M2P_CONTROL_ENABLE BIT(4)
39 #define M2P_CONTROL_ICE BIT(6)
40
41 #define M2P_INTERRUPT 0x0004
42 #define M2P_INTERRUPT_STALL BIT(0)
43 #define M2P_INTERRUPT_NFB BIT(1)
44 #define M2P_INTERRUPT_ERROR BIT(3)
45
46 #define M2P_PPALLOC 0x0008
47 #define M2P_STATUS 0x000c
48
49 #define M2P_MAXCNT0 0x0020
50 #define M2P_BASE0 0x0024
51 #define M2P_MAXCNT1 0x0030
52 #define M2P_BASE1 0x0034
53
54 #define M2P_STATE_IDLE 0
55 #define M2P_STATE_STALL 1
56 #define M2P_STATE_ON 2
57 #define M2P_STATE_NEXT 3
58
59 /* M2M registers */
60 #define M2M_CONTROL 0x0000
61 #define M2M_CONTROL_DONEINT BIT(2)
62 #define M2M_CONTROL_ENABLE BIT(3)
63 #define M2M_CONTROL_START BIT(4)
64 #define M2M_CONTROL_DAH BIT(11)
65 #define M2M_CONTROL_SAH BIT(12)
66 #define M2M_CONTROL_PW_SHIFT 9
67 #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT)
70 #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT)
71 #define M2M_CONTROL_TM_SHIFT 13
72 #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT)
73 #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT)
74 #define M2M_CONTROL_RSS_SHIFT 22
75 #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT)
76 #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT)
77 #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT)
78 #define M2M_CONTROL_NO_HDSK BIT(24)
79 #define M2M_CONTROL_PWSC_SHIFT 25
80
81 #define M2M_INTERRUPT 0x0004
82 #define M2M_INTERRUPT_DONEINT BIT(1)
83
84 #define M2M_BCR0 0x0010
85 #define M2M_BCR1 0x0014
86 #define M2M_SAR_BASE0 0x0018
87 #define M2M_SAR_BASE1 0x001c
88 #define M2M_DAR_BASE0 0x002c
89 #define M2M_DAR_BASE1 0x0030
90
91 #define DMA_MAX_CHAN_BYTES 0xffff
92 #define DMA_MAX_CHAN_DESCRIPTORS 32
93
94 struct ep93xx_dma_engine;
95
96 /**
97 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
98 * @src_addr: source address of the transaction
99 * @dst_addr: destination address of the transaction
100 * @size: size of the transaction (in bytes)
101 * @complete: this descriptor is completed
102 * @txd: dmaengine API descriptor
103 * @tx_list: list of linked descriptors
104 * @node: link used for putting this into a channel queue
105 */
106 struct ep93xx_dma_desc {
107 u32 src_addr;
108 u32 dst_addr;
109 size_t size;
110 bool complete;
111 struct dma_async_tx_descriptor txd;
112 struct list_head tx_list;
113 struct list_head node;
114 };
115
116 /**
117 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
118 * @chan: dmaengine API channel
119 * @edma: pointer to to the engine device
120 * @regs: memory mapped registers
121 * @irq: interrupt number of the channel
122 * @clk: clock used by this channel
123 * @tasklet: channel specific tasklet used for callbacks
124 * @lock: lock protecting the fields following
125 * @flags: flags for the channel
126 * @buffer: which buffer to use next (0/1)
127 * @active: flattened chain of descriptors currently being processed
128 * @queue: pending descriptors which are handled next
129 * @free_list: list of free descriptors which can be used
130 * @runtime_addr: physical address currently used as dest/src (M2M only). This
131 * is set via %DMA_SLAVE_CONFIG before slave operation is
132 * prepared
133 * @runtime_ctrl: M2M runtime values for the control register.
134 *
135 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
136 * will have slightly different scheme here: @active points to a head of
137 * flattened DMA descriptor chain.
138 *
139 * @queue holds pending transactions. These are linked through the first
140 * descriptor in the chain. When a descriptor is moved to the @active queue,
141 * the first and chained descriptors are flattened into a single list.
142 *
143 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
144 * necessary channel configuration information. For memcpy channels this must
145 * be %NULL.
146 */
147 struct ep93xx_dma_chan {
148 struct dma_chan chan;
149 const struct ep93xx_dma_engine *edma;
150 void __iomem *regs;
151 int irq;
152 struct clk *clk;
153 struct tasklet_struct tasklet;
154 /* protects the fields following */
155 spinlock_t lock;
156 unsigned long flags;
157 /* Channel is configured for cyclic transfers */
158 #define EP93XX_DMA_IS_CYCLIC 0
159
160 int buffer;
161 struct list_head active;
162 struct list_head queue;
163 struct list_head free_list;
164 u32 runtime_addr;
165 u32 runtime_ctrl;
166 };
167
168 /**
169 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
170 * @dma_dev: holds the dmaengine device
171 * @m2m: is this an M2M or M2P device
172 * @hw_setup: method which sets the channel up for operation
173 * @hw_shutdown: shuts the channel down and flushes whatever is left
174 * @hw_submit: pushes active descriptor(s) to the hardware
175 * @hw_interrupt: handle the interrupt
176 * @num_channels: number of channels for this instance
177 * @channels: array of channels
178 *
179 * There is one instance of this struct for the M2P channels and one for the
180 * M2M channels. hw_xxx() methods are used to perform operations which are
181 * different on M2M and M2P channels. These methods are called with channel
182 * lock held and interrupts disabled so they cannot sleep.
183 */
184 struct ep93xx_dma_engine {
185 struct dma_device dma_dev;
186 bool m2m;
187 int (*hw_setup)(struct ep93xx_dma_chan *);
188 void (*hw_shutdown)(struct ep93xx_dma_chan *);
189 void (*hw_submit)(struct ep93xx_dma_chan *);
190 int (*hw_interrupt)(struct ep93xx_dma_chan *);
191 #define INTERRUPT_UNKNOWN 0
192 #define INTERRUPT_DONE 1
193 #define INTERRUPT_NEXT_BUFFER 2
194
195 size_t num_channels;
196 struct ep93xx_dma_chan channels[];
197 };
198
199 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
200 {
201 return &edmac->chan.dev->device;
202 }
203
204 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
205 {
206 return container_of(chan, struct ep93xx_dma_chan, chan);
207 }
208
209 /**
210 * ep93xx_dma_set_active - set new active descriptor chain
211 * @edmac: channel
212 * @desc: head of the new active descriptor chain
213 *
214 * Sets @desc to be the head of the new active descriptor chain. This is the
215 * chain which is processed next. The active list must be empty before calling
216 * this function.
217 *
218 * Called with @edmac->lock held and interrupts disabled.
219 */
220 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
221 struct ep93xx_dma_desc *desc)
222 {
223 BUG_ON(!list_empty(&edmac->active));
224
225 list_add_tail(&desc->node, &edmac->active);
226
227 /* Flatten the @desc->tx_list chain into @edmac->active list */
228 while (!list_empty(&desc->tx_list)) {
229 struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
230 struct ep93xx_dma_desc, node);
231
232 /*
233 * We copy the callback parameters from the first descriptor
234 * to all the chained descriptors. This way we can call the
235 * callback without having to find out the first descriptor in
236 * the chain. Useful for cyclic transfers.
237 */
238 d->txd.callback = desc->txd.callback;
239 d->txd.callback_param = desc->txd.callback_param;
240
241 list_move_tail(&d->node, &edmac->active);
242 }
243 }
244
245 /* Called with @edmac->lock held and interrupts disabled */
246 static struct ep93xx_dma_desc *
247 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
248 {
249 if (list_empty(&edmac->active))
250 return NULL;
251
252 return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node);
253 }
254
255 /**
256 * ep93xx_dma_advance_active - advances to the next active descriptor
257 * @edmac: channel
258 *
259 * Function advances active descriptor to the next in the @edmac->active and
260 * returns %true if we still have descriptors in the chain to process.
261 * Otherwise returns %false.
262 *
263 * When the channel is in cyclic mode always returns %true.
264 *
265 * Called with @edmac->lock held and interrupts disabled.
266 */
267 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
268 {
269 struct ep93xx_dma_desc *desc;
270
271 list_rotate_left(&edmac->active);
272
273 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
274 return true;
275
276 desc = ep93xx_dma_get_active(edmac);
277 if (!desc)
278 return false;
279
280 /*
281 * If txd.cookie is set it means that we are back in the first
282 * descriptor in the chain and hence done with it.
283 */
284 return !desc->txd.cookie;
285 }
286
287 /*
288 * M2P DMA implementation
289 */
290
291 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
292 {
293 writel(control, edmac->regs + M2P_CONTROL);
294 /*
295 * EP93xx User's Guide states that we must perform a dummy read after
296 * write to the control register.
297 */
298 readl(edmac->regs + M2P_CONTROL);
299 }
300
301 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
302 {
303 struct ep93xx_dma_data *data = edmac->chan.private;
304 u32 control;
305
306 writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
307
308 control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
309 | M2P_CONTROL_ENABLE;
310 m2p_set_control(edmac, control);
311
312 return 0;
313 }
314
315 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
316 {
317 return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
318 }
319
320 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
321 {
322 u32 control;
323
324 control = readl(edmac->regs + M2P_CONTROL);
325 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
326 m2p_set_control(edmac, control);
327
328 while (m2p_channel_state(edmac) >= M2P_STATE_ON)
329 cpu_relax();
330
331 m2p_set_control(edmac, 0);
332
333 while (m2p_channel_state(edmac) == M2P_STATE_STALL)
334 cpu_relax();
335 }
336
337 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
338 {
339 struct ep93xx_dma_desc *desc;
340 u32 bus_addr;
341
342 desc = ep93xx_dma_get_active(edmac);
343 if (!desc) {
344 dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
345 return;
346 }
347
348 if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
349 bus_addr = desc->src_addr;
350 else
351 bus_addr = desc->dst_addr;
352
353 if (edmac->buffer == 0) {
354 writel(desc->size, edmac->regs + M2P_MAXCNT0);
355 writel(bus_addr, edmac->regs + M2P_BASE0);
356 } else {
357 writel(desc->size, edmac->regs + M2P_MAXCNT1);
358 writel(bus_addr, edmac->regs + M2P_BASE1);
359 }
360
361 edmac->buffer ^= 1;
362 }
363
364 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
365 {
366 u32 control = readl(edmac->regs + M2P_CONTROL);
367
368 m2p_fill_desc(edmac);
369 control |= M2P_CONTROL_STALLINT;
370
371 if (ep93xx_dma_advance_active(edmac)) {
372 m2p_fill_desc(edmac);
373 control |= M2P_CONTROL_NFBINT;
374 }
375
376 m2p_set_control(edmac, control);
377 }
378
379 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
380 {
381 u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
382 u32 control;
383
384 if (irq_status & M2P_INTERRUPT_ERROR) {
385 struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
386
387 /* Clear the error interrupt */
388 writel(1, edmac->regs + M2P_INTERRUPT);
389
390 /*
391 * It seems that there is no easy way of reporting errors back
392 * to client so we just report the error here and continue as
393 * usual.
394 *
395 * Revisit this when there is a mechanism to report back the
396 * errors.
397 */
398 dev_err(chan2dev(edmac),
399 "DMA transfer failed! Details:\n"
400 "\tcookie : %d\n"
401 "\tsrc_addr : 0x%08x\n"
402 "\tdst_addr : 0x%08x\n"
403 "\tsize : %zu\n",
404 desc->txd.cookie, desc->src_addr, desc->dst_addr,
405 desc->size);
406 }
407
408 switch (irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)) {
409 case M2P_INTERRUPT_STALL:
410 /* Disable interrupts */
411 control = readl(edmac->regs + M2P_CONTROL);
412 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
413 m2p_set_control(edmac, control);
414
415 return INTERRUPT_DONE;
416
417 case M2P_INTERRUPT_NFB:
418 if (ep93xx_dma_advance_active(edmac))
419 m2p_fill_desc(edmac);
420
421 return INTERRUPT_NEXT_BUFFER;
422 }
423
424 return INTERRUPT_UNKNOWN;
425 }
426
427 /*
428 * M2M DMA implementation
429 *
430 * For the M2M transfers we don't use NFB at all. This is because it simply
431 * doesn't work well with memcpy transfers. When you submit both buffers it is
432 * extremely unlikely that you get an NFB interrupt, but it instead reports
433 * DONE interrupt and both buffers are already transferred which means that we
434 * weren't able to update the next buffer.
435 *
436 * So for now we "simulate" NFB by just submitting buffer after buffer
437 * without double buffering.
438 */
439
440 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
441 {
442 const struct ep93xx_dma_data *data = edmac->chan.private;
443 u32 control = 0;
444
445 if (!data) {
446 /* This is memcpy channel, nothing to configure */
447 writel(control, edmac->regs + M2M_CONTROL);
448 return 0;
449 }
450
451 switch (data->port) {
452 case EP93XX_DMA_SSP:
453 /*
454 * This was found via experimenting - anything less than 5
455 * causes the channel to perform only a partial transfer which
456 * leads to problems since we don't get DONE interrupt then.
457 */
458 control = (5 << M2M_CONTROL_PWSC_SHIFT);
459 control |= M2M_CONTROL_NO_HDSK;
460
461 if (data->direction == DMA_MEM_TO_DEV) {
462 control |= M2M_CONTROL_DAH;
463 control |= M2M_CONTROL_TM_TX;
464 control |= M2M_CONTROL_RSS_SSPTX;
465 } else {
466 control |= M2M_CONTROL_SAH;
467 control |= M2M_CONTROL_TM_RX;
468 control |= M2M_CONTROL_RSS_SSPRX;
469 }
470 break;
471
472 case EP93XX_DMA_IDE:
473 /*
474 * This IDE part is totally untested. Values below are taken
475 * from the EP93xx Users's Guide and might not be correct.
476 */
477 if (data->direction == DMA_MEM_TO_DEV) {
478 /* Worst case from the UG */
479 control = (3 << M2M_CONTROL_PWSC_SHIFT);
480 control |= M2M_CONTROL_DAH;
481 control |= M2M_CONTROL_TM_TX;
482 } else {
483 control = (2 << M2M_CONTROL_PWSC_SHIFT);
484 control |= M2M_CONTROL_SAH;
485 control |= M2M_CONTROL_TM_RX;
486 }
487
488 control |= M2M_CONTROL_NO_HDSK;
489 control |= M2M_CONTROL_RSS_IDE;
490 control |= M2M_CONTROL_PW_16;
491 break;
492
493 default:
494 return -EINVAL;
495 }
496
497 writel(control, edmac->regs + M2M_CONTROL);
498 return 0;
499 }
500
501 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
502 {
503 /* Just disable the channel */
504 writel(0, edmac->regs + M2M_CONTROL);
505 }
506
507 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
508 {
509 struct ep93xx_dma_desc *desc;
510
511 desc = ep93xx_dma_get_active(edmac);
512 if (!desc) {
513 dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
514 return;
515 }
516
517 if (edmac->buffer == 0) {
518 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
519 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
520 writel(desc->size, edmac->regs + M2M_BCR0);
521 } else {
522 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
523 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
524 writel(desc->size, edmac->regs + M2M_BCR1);
525 }
526
527 edmac->buffer ^= 1;
528 }
529
530 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
531 {
532 struct ep93xx_dma_data *data = edmac->chan.private;
533 u32 control = readl(edmac->regs + M2M_CONTROL);
534
535 /*
536 * Since we allow clients to configure PW (peripheral width) we always
537 * clear PW bits here and then set them according what is given in
538 * the runtime configuration.
539 */
540 control &= ~M2M_CONTROL_PW_MASK;
541 control |= edmac->runtime_ctrl;
542
543 m2m_fill_desc(edmac);
544 control |= M2M_CONTROL_DONEINT;
545
546 /*
547 * Now we can finally enable the channel. For M2M channel this must be
548 * done _after_ the BCRx registers are programmed.
549 */
550 control |= M2M_CONTROL_ENABLE;
551 writel(control, edmac->regs + M2M_CONTROL);
552
553 if (!data) {
554 /*
555 * For memcpy channels the software trigger must be asserted
556 * in order to start the memcpy operation.
557 */
558 control |= M2M_CONTROL_START;
559 writel(control, edmac->regs + M2M_CONTROL);
560 }
561 }
562
563 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
564 {
565 u32 control;
566
567 if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_DONEINT))
568 return INTERRUPT_UNKNOWN;
569
570 /* Clear the DONE bit */
571 writel(0, edmac->regs + M2M_INTERRUPT);
572
573 /* Disable interrupts and the channel */
574 control = readl(edmac->regs + M2M_CONTROL);
575 control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_ENABLE);
576 writel(control, edmac->regs + M2M_CONTROL);
577
578 /*
579 * Since we only get DONE interrupt we have to find out ourselves
580 * whether there still is something to process. So we try to advance
581 * the chain an see whether it succeeds.
582 */
583 if (ep93xx_dma_advance_active(edmac)) {
584 edmac->edma->hw_submit(edmac);
585 return INTERRUPT_NEXT_BUFFER;
586 }
587
588 return INTERRUPT_DONE;
589 }
590
591 /*
592 * DMA engine API implementation
593 */
594
595 static struct ep93xx_dma_desc *
596 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
597 {
598 struct ep93xx_dma_desc *desc, *_desc;
599 struct ep93xx_dma_desc *ret = NULL;
600 unsigned long flags;
601
602 spin_lock_irqsave(&edmac->lock, flags);
603 list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
604 if (async_tx_test_ack(&desc->txd)) {
605 list_del_init(&desc->node);
606
607 /* Re-initialize the descriptor */
608 desc->src_addr = 0;
609 desc->dst_addr = 0;
610 desc->size = 0;
611 desc->complete = false;
612 desc->txd.cookie = 0;
613 desc->txd.callback = NULL;
614 desc->txd.callback_param = NULL;
615
616 ret = desc;
617 break;
618 }
619 }
620 spin_unlock_irqrestore(&edmac->lock, flags);
621 return ret;
622 }
623
624 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
625 struct ep93xx_dma_desc *desc)
626 {
627 if (desc) {
628 unsigned long flags;
629
630 spin_lock_irqsave(&edmac->lock, flags);
631 list_splice_init(&desc->tx_list, &edmac->free_list);
632 list_add(&desc->node, &edmac->free_list);
633 spin_unlock_irqrestore(&edmac->lock, flags);
634 }
635 }
636
637 /**
638 * ep93xx_dma_advance_work - start processing the next pending transaction
639 * @edmac: channel
640 *
641 * If we have pending transactions queued and we are currently idling, this
642 * function takes the next queued transaction from the @edmac->queue and
643 * pushes it to the hardware for execution.
644 */
645 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
646 {
647 struct ep93xx_dma_desc *new;
648 unsigned long flags;
649
650 spin_lock_irqsave(&edmac->lock, flags);
651 if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
652 spin_unlock_irqrestore(&edmac->lock, flags);
653 return;
654 }
655
656 /* Take the next descriptor from the pending queue */
657 new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
658 list_del_init(&new->node);
659
660 ep93xx_dma_set_active(edmac, new);
661
662 /* Push it to the hardware */
663 edmac->edma->hw_submit(edmac);
664 spin_unlock_irqrestore(&edmac->lock, flags);
665 }
666
667 static void ep93xx_dma_unmap_buffers(struct ep93xx_dma_desc *desc)
668 {
669 struct device *dev = desc->txd.chan->device->dev;
670
671 if (!(desc->txd.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
672 if (desc->txd.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
673 dma_unmap_single(dev, desc->src_addr, desc->size,
674 DMA_TO_DEVICE);
675 else
676 dma_unmap_page(dev, desc->src_addr, desc->size,
677 DMA_TO_DEVICE);
678 }
679 if (!(desc->txd.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
680 if (desc->txd.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
681 dma_unmap_single(dev, desc->dst_addr, desc->size,
682 DMA_FROM_DEVICE);
683 else
684 dma_unmap_page(dev, desc->dst_addr, desc->size,
685 DMA_FROM_DEVICE);
686 }
687 }
688
689 static void ep93xx_dma_tasklet(unsigned long data)
690 {
691 struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
692 struct ep93xx_dma_desc *desc, *d;
693 dma_async_tx_callback callback = NULL;
694 void *callback_param = NULL;
695 LIST_HEAD(list);
696
697 spin_lock_irq(&edmac->lock);
698 /*
699 * If dma_terminate_all() was called before we get to run, the active
700 * list has become empty. If that happens we aren't supposed to do
701 * anything more than call ep93xx_dma_advance_work().
702 */
703 desc = ep93xx_dma_get_active(edmac);
704 if (desc) {
705 if (desc->complete) {
706 dma_cookie_complete(&desc->txd);
707 list_splice_init(&edmac->active, &list);
708 }
709 callback = desc->txd.callback;
710 callback_param = desc->txd.callback_param;
711 }
712 spin_unlock_irq(&edmac->lock);
713
714 /* Pick up the next descriptor from the queue */
715 ep93xx_dma_advance_work(edmac);
716
717 /* Now we can release all the chained descriptors */
718 list_for_each_entry_safe(desc, d, &list, node) {
719 /*
720 * For the memcpy channels the API requires us to unmap the
721 * buffers unless requested otherwise.
722 */
723 if (!edmac->chan.private)
724 ep93xx_dma_unmap_buffers(desc);
725
726 ep93xx_dma_desc_put(edmac, desc);
727 }
728
729 if (callback)
730 callback(callback_param);
731 }
732
733 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
734 {
735 struct ep93xx_dma_chan *edmac = dev_id;
736 struct ep93xx_dma_desc *desc;
737 irqreturn_t ret = IRQ_HANDLED;
738
739 spin_lock(&edmac->lock);
740
741 desc = ep93xx_dma_get_active(edmac);
742 if (!desc) {
743 dev_warn(chan2dev(edmac),
744 "got interrupt while active list is empty\n");
745 spin_unlock(&edmac->lock);
746 return IRQ_NONE;
747 }
748
749 switch (edmac->edma->hw_interrupt(edmac)) {
750 case INTERRUPT_DONE:
751 desc->complete = true;
752 tasklet_schedule(&edmac->tasklet);
753 break;
754
755 case INTERRUPT_NEXT_BUFFER:
756 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
757 tasklet_schedule(&edmac->tasklet);
758 break;
759
760 default:
761 dev_warn(chan2dev(edmac), "unknown interrupt!\n");
762 ret = IRQ_NONE;
763 break;
764 }
765
766 spin_unlock(&edmac->lock);
767 return ret;
768 }
769
770 /**
771 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
772 * @tx: descriptor to be executed
773 *
774 * Function will execute given descriptor on the hardware or if the hardware
775 * is busy, queue the descriptor to be executed later on. Returns cookie which
776 * can be used to poll the status of the descriptor.
777 */
778 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
779 {
780 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
781 struct ep93xx_dma_desc *desc;
782 dma_cookie_t cookie;
783 unsigned long flags;
784
785 spin_lock_irqsave(&edmac->lock, flags);
786 cookie = dma_cookie_assign(tx);
787
788 desc = container_of(tx, struct ep93xx_dma_desc, txd);
789
790 /*
791 * If nothing is currently prosessed, we push this descriptor
792 * directly to the hardware. Otherwise we put the descriptor
793 * to the pending queue.
794 */
795 if (list_empty(&edmac->active)) {
796 ep93xx_dma_set_active(edmac, desc);
797 edmac->edma->hw_submit(edmac);
798 } else {
799 list_add_tail(&desc->node, &edmac->queue);
800 }
801
802 spin_unlock_irqrestore(&edmac->lock, flags);
803 return cookie;
804 }
805
806 /**
807 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
808 * @chan: channel to allocate resources
809 *
810 * Function allocates necessary resources for the given DMA channel and
811 * returns number of allocated descriptors for the channel. Negative errno
812 * is returned in case of failure.
813 */
814 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
815 {
816 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
817 struct ep93xx_dma_data *data = chan->private;
818 const char *name = dma_chan_name(chan);
819 int ret, i;
820
821 /* Sanity check the channel parameters */
822 if (!edmac->edma->m2m) {
823 if (!data)
824 return -EINVAL;
825 if (data->port < EP93XX_DMA_I2S1 ||
826 data->port > EP93XX_DMA_IRDA)
827 return -EINVAL;
828 if (data->direction != ep93xx_dma_chan_direction(chan))
829 return -EINVAL;
830 } else {
831 if (data) {
832 switch (data->port) {
833 case EP93XX_DMA_SSP:
834 case EP93XX_DMA_IDE:
835 if (data->direction != DMA_MEM_TO_DEV &&
836 data->direction != DMA_DEV_TO_MEM)
837 return -EINVAL;
838 break;
839 default:
840 return -EINVAL;
841 }
842 }
843 }
844
845 if (data && data->name)
846 name = data->name;
847
848 ret = clk_enable(edmac->clk);
849 if (ret)
850 return ret;
851
852 ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
853 if (ret)
854 goto fail_clk_disable;
855
856 spin_lock_irq(&edmac->lock);
857 dma_cookie_init(&edmac->chan);
858 ret = edmac->edma->hw_setup(edmac);
859 spin_unlock_irq(&edmac->lock);
860
861 if (ret)
862 goto fail_free_irq;
863
864 for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
865 struct ep93xx_dma_desc *desc;
866
867 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
868 if (!desc) {
869 dev_warn(chan2dev(edmac), "not enough descriptors\n");
870 break;
871 }
872
873 INIT_LIST_HEAD(&desc->tx_list);
874
875 dma_async_tx_descriptor_init(&desc->txd, chan);
876 desc->txd.flags = DMA_CTRL_ACK;
877 desc->txd.tx_submit = ep93xx_dma_tx_submit;
878
879 ep93xx_dma_desc_put(edmac, desc);
880 }
881
882 return i;
883
884 fail_free_irq:
885 free_irq(edmac->irq, edmac);
886 fail_clk_disable:
887 clk_disable(edmac->clk);
888
889 return ret;
890 }
891
892 /**
893 * ep93xx_dma_free_chan_resources - release resources for the channel
894 * @chan: channel
895 *
896 * Function releases all the resources allocated for the given channel.
897 * The channel must be idle when this is called.
898 */
899 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
900 {
901 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
902 struct ep93xx_dma_desc *desc, *d;
903 unsigned long flags;
904 LIST_HEAD(list);
905
906 BUG_ON(!list_empty(&edmac->active));
907 BUG_ON(!list_empty(&edmac->queue));
908
909 spin_lock_irqsave(&edmac->lock, flags);
910 edmac->edma->hw_shutdown(edmac);
911 edmac->runtime_addr = 0;
912 edmac->runtime_ctrl = 0;
913 edmac->buffer = 0;
914 list_splice_init(&edmac->free_list, &list);
915 spin_unlock_irqrestore(&edmac->lock, flags);
916
917 list_for_each_entry_safe(desc, d, &list, node)
918 kfree(desc);
919
920 clk_disable(edmac->clk);
921 free_irq(edmac->irq, edmac);
922 }
923
924 /**
925 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
926 * @chan: channel
927 * @dest: destination bus address
928 * @src: source bus address
929 * @len: size of the transaction
930 * @flags: flags for the descriptor
931 *
932 * Returns a valid DMA descriptor or %NULL in case of failure.
933 */
934 static struct dma_async_tx_descriptor *
935 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
936 dma_addr_t src, size_t len, unsigned long flags)
937 {
938 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
939 struct ep93xx_dma_desc *desc, *first;
940 size_t bytes, offset;
941
942 first = NULL;
943 for (offset = 0; offset < len; offset += bytes) {
944 desc = ep93xx_dma_desc_get(edmac);
945 if (!desc) {
946 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
947 goto fail;
948 }
949
950 bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
951
952 desc->src_addr = src + offset;
953 desc->dst_addr = dest + offset;
954 desc->size = bytes;
955
956 if (!first)
957 first = desc;
958 else
959 list_add_tail(&desc->node, &first->tx_list);
960 }
961
962 first->txd.cookie = -EBUSY;
963 first->txd.flags = flags;
964
965 return &first->txd;
966 fail:
967 ep93xx_dma_desc_put(edmac, first);
968 return NULL;
969 }
970
971 /**
972 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
973 * @chan: channel
974 * @sgl: list of buffers to transfer
975 * @sg_len: number of entries in @sgl
976 * @dir: direction of tha DMA transfer
977 * @flags: flags for the descriptor
978 * @context: operation context (ignored)
979 *
980 * Returns a valid DMA descriptor or %NULL in case of failure.
981 */
982 static struct dma_async_tx_descriptor *
983 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
984 unsigned int sg_len, enum dma_transfer_direction dir,
985 unsigned long flags, void *context)
986 {
987 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
988 struct ep93xx_dma_desc *desc, *first;
989 struct scatterlist *sg;
990 int i;
991
992 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
993 dev_warn(chan2dev(edmac),
994 "channel was configured with different direction\n");
995 return NULL;
996 }
997
998 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
999 dev_warn(chan2dev(edmac),
1000 "channel is already used for cyclic transfers\n");
1001 return NULL;
1002 }
1003
1004 first = NULL;
1005 for_each_sg(sgl, sg, sg_len, i) {
1006 size_t sg_len = sg_dma_len(sg);
1007
1008 if (sg_len > DMA_MAX_CHAN_BYTES) {
1009 dev_warn(chan2dev(edmac), "too big transfer size %d\n",
1010 sg_len);
1011 goto fail;
1012 }
1013
1014 desc = ep93xx_dma_desc_get(edmac);
1015 if (!desc) {
1016 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1017 goto fail;
1018 }
1019
1020 if (dir == DMA_MEM_TO_DEV) {
1021 desc->src_addr = sg_dma_address(sg);
1022 desc->dst_addr = edmac->runtime_addr;
1023 } else {
1024 desc->src_addr = edmac->runtime_addr;
1025 desc->dst_addr = sg_dma_address(sg);
1026 }
1027 desc->size = sg_len;
1028
1029 if (!first)
1030 first = desc;
1031 else
1032 list_add_tail(&desc->node, &first->tx_list);
1033 }
1034
1035 first->txd.cookie = -EBUSY;
1036 first->txd.flags = flags;
1037
1038 return &first->txd;
1039
1040 fail:
1041 ep93xx_dma_desc_put(edmac, first);
1042 return NULL;
1043 }
1044
1045 /**
1046 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1047 * @chan: channel
1048 * @dma_addr: DMA mapped address of the buffer
1049 * @buf_len: length of the buffer (in bytes)
1050 * @period_len: lenght of a single period
1051 * @dir: direction of the operation
1052 * @context: operation context (ignored)
1053 *
1054 * Prepares a descriptor for cyclic DMA operation. This means that once the
1055 * descriptor is submitted, we will be submitting in a @period_len sized
1056 * buffers and calling callback once the period has been elapsed. Transfer
1057 * terminates only when client calls dmaengine_terminate_all() for this
1058 * channel.
1059 *
1060 * Returns a valid DMA descriptor or %NULL in case of failure.
1061 */
1062 static struct dma_async_tx_descriptor *
1063 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1064 size_t buf_len, size_t period_len,
1065 enum dma_transfer_direction dir, void *context)
1066 {
1067 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1068 struct ep93xx_dma_desc *desc, *first;
1069 size_t offset = 0;
1070
1071 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1072 dev_warn(chan2dev(edmac),
1073 "channel was configured with different direction\n");
1074 return NULL;
1075 }
1076
1077 if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1078 dev_warn(chan2dev(edmac),
1079 "channel is already used for cyclic transfers\n");
1080 return NULL;
1081 }
1082
1083 if (period_len > DMA_MAX_CHAN_BYTES) {
1084 dev_warn(chan2dev(edmac), "too big period length %d\n",
1085 period_len);
1086 return NULL;
1087 }
1088
1089 /* Split the buffer into period size chunks */
1090 first = NULL;
1091 for (offset = 0; offset < buf_len; offset += period_len) {
1092 desc = ep93xx_dma_desc_get(edmac);
1093 if (!desc) {
1094 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1095 goto fail;
1096 }
1097
1098 if (dir == DMA_MEM_TO_DEV) {
1099 desc->src_addr = dma_addr + offset;
1100 desc->dst_addr = edmac->runtime_addr;
1101 } else {
1102 desc->src_addr = edmac->runtime_addr;
1103 desc->dst_addr = dma_addr + offset;
1104 }
1105
1106 desc->size = period_len;
1107
1108 if (!first)
1109 first = desc;
1110 else
1111 list_add_tail(&desc->node, &first->tx_list);
1112 }
1113
1114 first->txd.cookie = -EBUSY;
1115
1116 return &first->txd;
1117
1118 fail:
1119 ep93xx_dma_desc_put(edmac, first);
1120 return NULL;
1121 }
1122
1123 /**
1124 * ep93xx_dma_terminate_all - terminate all transactions
1125 * @edmac: channel
1126 *
1127 * Stops all DMA transactions. All descriptors are put back to the
1128 * @edmac->free_list and callbacks are _not_ called.
1129 */
1130 static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan *edmac)
1131 {
1132 struct ep93xx_dma_desc *desc, *_d;
1133 unsigned long flags;
1134 LIST_HEAD(list);
1135
1136 spin_lock_irqsave(&edmac->lock, flags);
1137 /* First we disable and flush the DMA channel */
1138 edmac->edma->hw_shutdown(edmac);
1139 clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1140 list_splice_init(&edmac->active, &list);
1141 list_splice_init(&edmac->queue, &list);
1142 /*
1143 * We then re-enable the channel. This way we can continue submitting
1144 * the descriptors by just calling ->hw_submit() again.
1145 */
1146 edmac->edma->hw_setup(edmac);
1147 spin_unlock_irqrestore(&edmac->lock, flags);
1148
1149 list_for_each_entry_safe(desc, _d, &list, node)
1150 ep93xx_dma_desc_put(edmac, desc);
1151
1152 return 0;
1153 }
1154
1155 static int ep93xx_dma_slave_config(struct ep93xx_dma_chan *edmac,
1156 struct dma_slave_config *config)
1157 {
1158 enum dma_slave_buswidth width;
1159 unsigned long flags;
1160 u32 addr, ctrl;
1161
1162 if (!edmac->edma->m2m)
1163 return -EINVAL;
1164
1165 switch (config->direction) {
1166 case DMA_DEV_TO_MEM:
1167 width = config->src_addr_width;
1168 addr = config->src_addr;
1169 break;
1170
1171 case DMA_MEM_TO_DEV:
1172 width = config->dst_addr_width;
1173 addr = config->dst_addr;
1174 break;
1175
1176 default:
1177 return -EINVAL;
1178 }
1179
1180 switch (width) {
1181 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1182 ctrl = 0;
1183 break;
1184 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1185 ctrl = M2M_CONTROL_PW_16;
1186 break;
1187 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1188 ctrl = M2M_CONTROL_PW_32;
1189 break;
1190 default:
1191 return -EINVAL;
1192 }
1193
1194 spin_lock_irqsave(&edmac->lock, flags);
1195 edmac->runtime_addr = addr;
1196 edmac->runtime_ctrl = ctrl;
1197 spin_unlock_irqrestore(&edmac->lock, flags);
1198
1199 return 0;
1200 }
1201
1202 /**
1203 * ep93xx_dma_control - manipulate all pending operations on a channel
1204 * @chan: channel
1205 * @cmd: control command to perform
1206 * @arg: optional argument
1207 *
1208 * Controls the channel. Function returns %0 in case of success or negative
1209 * error in case of failure.
1210 */
1211 static int ep93xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1212 unsigned long arg)
1213 {
1214 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1215 struct dma_slave_config *config;
1216
1217 switch (cmd) {
1218 case DMA_TERMINATE_ALL:
1219 return ep93xx_dma_terminate_all(edmac);
1220
1221 case DMA_SLAVE_CONFIG:
1222 config = (struct dma_slave_config *)arg;
1223 return ep93xx_dma_slave_config(edmac, config);
1224
1225 default:
1226 break;
1227 }
1228
1229 return -ENOSYS;
1230 }
1231
1232 /**
1233 * ep93xx_dma_tx_status - check if a transaction is completed
1234 * @chan: channel
1235 * @cookie: transaction specific cookie
1236 * @state: state of the transaction is stored here if given
1237 *
1238 * This function can be used to query state of a given transaction.
1239 */
1240 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1241 dma_cookie_t cookie,
1242 struct dma_tx_state *state)
1243 {
1244 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1245 enum dma_status ret;
1246 unsigned long flags;
1247
1248 spin_lock_irqsave(&edmac->lock, flags);
1249 ret = dma_cookie_status(chan, cookie, state);
1250 spin_unlock_irqrestore(&edmac->lock, flags);
1251
1252 return ret;
1253 }
1254
1255 /**
1256 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1257 * @chan: channel
1258 *
1259 * When this function is called, all pending transactions are pushed to the
1260 * hardware and executed.
1261 */
1262 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1263 {
1264 ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1265 }
1266
1267 static int __init ep93xx_dma_probe(struct platform_device *pdev)
1268 {
1269 struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1270 struct ep93xx_dma_engine *edma;
1271 struct dma_device *dma_dev;
1272 size_t edma_size;
1273 int ret, i;
1274
1275 edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1276 edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1277 if (!edma)
1278 return -ENOMEM;
1279
1280 dma_dev = &edma->dma_dev;
1281 edma->m2m = platform_get_device_id(pdev)->driver_data;
1282 edma->num_channels = pdata->num_channels;
1283
1284 INIT_LIST_HEAD(&dma_dev->channels);
1285 for (i = 0; i < pdata->num_channels; i++) {
1286 const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1287 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1288
1289 edmac->chan.device = dma_dev;
1290 edmac->regs = cdata->base;
1291 edmac->irq = cdata->irq;
1292 edmac->edma = edma;
1293
1294 edmac->clk = clk_get(NULL, cdata->name);
1295 if (IS_ERR(edmac->clk)) {
1296 dev_warn(&pdev->dev, "failed to get clock for %s\n",
1297 cdata->name);
1298 continue;
1299 }
1300
1301 spin_lock_init(&edmac->lock);
1302 INIT_LIST_HEAD(&edmac->active);
1303 INIT_LIST_HEAD(&edmac->queue);
1304 INIT_LIST_HEAD(&edmac->free_list);
1305 tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1306 (unsigned long)edmac);
1307
1308 list_add_tail(&edmac->chan.device_node,
1309 &dma_dev->channels);
1310 }
1311
1312 dma_cap_zero(dma_dev->cap_mask);
1313 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1314 dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1315
1316 dma_dev->dev = &pdev->dev;
1317 dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1318 dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1319 dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1320 dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1321 dma_dev->device_control = ep93xx_dma_control;
1322 dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1323 dma_dev->device_tx_status = ep93xx_dma_tx_status;
1324
1325 dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1326
1327 if (edma->m2m) {
1328 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1329 dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1330
1331 edma->hw_setup = m2m_hw_setup;
1332 edma->hw_shutdown = m2m_hw_shutdown;
1333 edma->hw_submit = m2m_hw_submit;
1334 edma->hw_interrupt = m2m_hw_interrupt;
1335 } else {
1336 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1337
1338 edma->hw_setup = m2p_hw_setup;
1339 edma->hw_shutdown = m2p_hw_shutdown;
1340 edma->hw_submit = m2p_hw_submit;
1341 edma->hw_interrupt = m2p_hw_interrupt;
1342 }
1343
1344 ret = dma_async_device_register(dma_dev);
1345 if (unlikely(ret)) {
1346 for (i = 0; i < edma->num_channels; i++) {
1347 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1348 if (!IS_ERR_OR_NULL(edmac->clk))
1349 clk_put(edmac->clk);
1350 }
1351 kfree(edma);
1352 } else {
1353 dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1354 edma->m2m ? "M" : "P");
1355 }
1356
1357 return ret;
1358 }
1359
1360 static struct platform_device_id ep93xx_dma_driver_ids[] = {
1361 { "ep93xx-dma-m2p", 0 },
1362 { "ep93xx-dma-m2m", 1 },
1363 { },
1364 };
1365
1366 static struct platform_driver ep93xx_dma_driver = {
1367 .driver = {
1368 .name = "ep93xx-dma",
1369 },
1370 .id_table = ep93xx_dma_driver_ids,
1371 };
1372
1373 static int __init ep93xx_dma_module_init(void)
1374 {
1375 return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1376 }
1377 subsys_initcall(ep93xx_dma_module_init);
1378
1379 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1380 MODULE_DESCRIPTION("EP93xx DMA driver");
1381 MODULE_LICENSE("GPL");
This page took 0.136142 seconds and 5 git commands to generate.