drivers: clean-up prom.h implicit includes
[deliverable/linux.git] / drivers / dma / fsldma.c
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
3 *
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5 *
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9 *
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
14 *
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
19 *
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
24 *
25 */
26
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39
40 #include "dmaengine.h"
41 #include "fsldma.h"
42
43 #define chan_dbg(chan, fmt, arg...) \
44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...) \
46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
47
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
49
50 /*
51 * Register Helpers
52 */
53
54 static void set_sr(struct fsldma_chan *chan, u32 val)
55 {
56 DMA_OUT(chan, &chan->regs->sr, val, 32);
57 }
58
59 static u32 get_sr(struct fsldma_chan *chan)
60 {
61 return DMA_IN(chan, &chan->regs->sr, 32);
62 }
63
64 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
65 {
66 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
67 }
68
69 static dma_addr_t get_cdar(struct fsldma_chan *chan)
70 {
71 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
72 }
73
74 static u32 get_bcr(struct fsldma_chan *chan)
75 {
76 return DMA_IN(chan, &chan->regs->bcr, 32);
77 }
78
79 /*
80 * Descriptor Helpers
81 */
82
83 static void set_desc_cnt(struct fsldma_chan *chan,
84 struct fsl_dma_ld_hw *hw, u32 count)
85 {
86 hw->count = CPU_TO_DMA(chan, count, 32);
87 }
88
89 static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
90 {
91 return DMA_TO_CPU(chan, desc->hw.count, 32);
92 }
93
94 static void set_desc_src(struct fsldma_chan *chan,
95 struct fsl_dma_ld_hw *hw, dma_addr_t src)
96 {
97 u64 snoop_bits;
98
99 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
100 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
101 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
102 }
103
104 static dma_addr_t get_desc_src(struct fsldma_chan *chan,
105 struct fsl_desc_sw *desc)
106 {
107 u64 snoop_bits;
108
109 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits;
112 }
113
114 static void set_desc_dst(struct fsldma_chan *chan,
115 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
116 {
117 u64 snoop_bits;
118
119 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
122 }
123
124 static dma_addr_t get_desc_dst(struct fsldma_chan *chan,
125 struct fsl_desc_sw *desc)
126 {
127 u64 snoop_bits;
128
129 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
130 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
131 return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits;
132 }
133
134 static void set_desc_next(struct fsldma_chan *chan,
135 struct fsl_dma_ld_hw *hw, dma_addr_t next)
136 {
137 u64 snoop_bits;
138
139 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
140 ? FSL_DMA_SNEN : 0;
141 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
142 }
143
144 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
145 {
146 u64 snoop_bits;
147
148 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
149 ? FSL_DMA_SNEN : 0;
150
151 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
152 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
153 | snoop_bits, 64);
154 }
155
156 /*
157 * DMA Engine Hardware Control Helpers
158 */
159
160 static void dma_init(struct fsldma_chan *chan)
161 {
162 /* Reset the channel */
163 DMA_OUT(chan, &chan->regs->mr, 0, 32);
164
165 switch (chan->feature & FSL_DMA_IP_MASK) {
166 case FSL_DMA_IP_85XX:
167 /* Set the channel to below modes:
168 * EIE - Error interrupt enable
169 * EOLNIE - End of links interrupt enable
170 * BWC - Bandwidth sharing among channels
171 */
172 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
173 | FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
174 break;
175 case FSL_DMA_IP_83XX:
176 /* Set the channel to below modes:
177 * EOTIE - End-of-transfer interrupt enable
178 * PRC_RM - PCI read multiple
179 */
180 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
181 | FSL_DMA_MR_PRC_RM, 32);
182 break;
183 }
184 }
185
186 static int dma_is_idle(struct fsldma_chan *chan)
187 {
188 u32 sr = get_sr(chan);
189 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
190 }
191
192 /*
193 * Start the DMA controller
194 *
195 * Preconditions:
196 * - the CDAR register must point to the start descriptor
197 * - the MRn[CS] bit must be cleared
198 */
199 static void dma_start(struct fsldma_chan *chan)
200 {
201 u32 mode;
202
203 mode = DMA_IN(chan, &chan->regs->mr, 32);
204
205 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
206 DMA_OUT(chan, &chan->regs->bcr, 0, 32);
207 mode |= FSL_DMA_MR_EMP_EN;
208 } else {
209 mode &= ~FSL_DMA_MR_EMP_EN;
210 }
211
212 if (chan->feature & FSL_DMA_CHAN_START_EXT) {
213 mode |= FSL_DMA_MR_EMS_EN;
214 } else {
215 mode &= ~FSL_DMA_MR_EMS_EN;
216 mode |= FSL_DMA_MR_CS;
217 }
218
219 DMA_OUT(chan, &chan->regs->mr, mode, 32);
220 }
221
222 static void dma_halt(struct fsldma_chan *chan)
223 {
224 u32 mode;
225 int i;
226
227 /* read the mode register */
228 mode = DMA_IN(chan, &chan->regs->mr, 32);
229
230 /*
231 * The 85xx controller supports channel abort, which will stop
232 * the current transfer. On 83xx, this bit is the transfer error
233 * mask bit, which should not be changed.
234 */
235 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
236 mode |= FSL_DMA_MR_CA;
237 DMA_OUT(chan, &chan->regs->mr, mode, 32);
238
239 mode &= ~FSL_DMA_MR_CA;
240 }
241
242 /* stop the DMA controller */
243 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
244 DMA_OUT(chan, &chan->regs->mr, mode, 32);
245
246 /* wait for the DMA controller to become idle */
247 for (i = 0; i < 100; i++) {
248 if (dma_is_idle(chan))
249 return;
250
251 udelay(10);
252 }
253
254 if (!dma_is_idle(chan))
255 chan_err(chan, "DMA halt timeout!\n");
256 }
257
258 /**
259 * fsl_chan_set_src_loop_size - Set source address hold transfer size
260 * @chan : Freescale DMA channel
261 * @size : Address loop size, 0 for disable loop
262 *
263 * The set source address hold transfer size. The source
264 * address hold or loop transfer size is when the DMA transfer
265 * data from source address (SA), if the loop size is 4, the DMA will
266 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
267 * SA + 1 ... and so on.
268 */
269 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
270 {
271 u32 mode;
272
273 mode = DMA_IN(chan, &chan->regs->mr, 32);
274
275 switch (size) {
276 case 0:
277 mode &= ~FSL_DMA_MR_SAHE;
278 break;
279 case 1:
280 case 2:
281 case 4:
282 case 8:
283 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
284 break;
285 }
286
287 DMA_OUT(chan, &chan->regs->mr, mode, 32);
288 }
289
290 /**
291 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
292 * @chan : Freescale DMA channel
293 * @size : Address loop size, 0 for disable loop
294 *
295 * The set destination address hold transfer size. The destination
296 * address hold or loop transfer size is when the DMA transfer
297 * data to destination address (TA), if the loop size is 4, the DMA will
298 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
299 * TA + 1 ... and so on.
300 */
301 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
302 {
303 u32 mode;
304
305 mode = DMA_IN(chan, &chan->regs->mr, 32);
306
307 switch (size) {
308 case 0:
309 mode &= ~FSL_DMA_MR_DAHE;
310 break;
311 case 1:
312 case 2:
313 case 4:
314 case 8:
315 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
316 break;
317 }
318
319 DMA_OUT(chan, &chan->regs->mr, mode, 32);
320 }
321
322 /**
323 * fsl_chan_set_request_count - Set DMA Request Count for external control
324 * @chan : Freescale DMA channel
325 * @size : Number of bytes to transfer in a single request
326 *
327 * The Freescale DMA channel can be controlled by the external signal DREQ#.
328 * The DMA request count is how many bytes are allowed to transfer before
329 * pausing the channel, after which a new assertion of DREQ# resumes channel
330 * operation.
331 *
332 * A size of 0 disables external pause control. The maximum size is 1024.
333 */
334 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
335 {
336 u32 mode;
337
338 BUG_ON(size > 1024);
339
340 mode = DMA_IN(chan, &chan->regs->mr, 32);
341 mode |= (__ilog2(size) << 24) & 0x0f000000;
342
343 DMA_OUT(chan, &chan->regs->mr, mode, 32);
344 }
345
346 /**
347 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
348 * @chan : Freescale DMA channel
349 * @enable : 0 is disabled, 1 is enabled.
350 *
351 * The Freescale DMA channel can be controlled by the external signal DREQ#.
352 * The DMA Request Count feature should be used in addition to this feature
353 * to set the number of bytes to transfer before pausing the channel.
354 */
355 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
356 {
357 if (enable)
358 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
359 else
360 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
361 }
362
363 /**
364 * fsl_chan_toggle_ext_start - Toggle channel external start status
365 * @chan : Freescale DMA channel
366 * @enable : 0 is disabled, 1 is enabled.
367 *
368 * If enable the external start, the channel can be started by an
369 * external DMA start pin. So the dma_start() does not start the
370 * transfer immediately. The DMA channel will wait for the
371 * control pin asserted.
372 */
373 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
374 {
375 if (enable)
376 chan->feature |= FSL_DMA_CHAN_START_EXT;
377 else
378 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
379 }
380
381 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
382 {
383 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
384
385 if (list_empty(&chan->ld_pending))
386 goto out_splice;
387
388 /*
389 * Add the hardware descriptor to the chain of hardware descriptors
390 * that already exists in memory.
391 *
392 * This will un-set the EOL bit of the existing transaction, and the
393 * last link in this transaction will become the EOL descriptor.
394 */
395 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
396
397 /*
398 * Add the software descriptor and all children to the list
399 * of pending transactions
400 */
401 out_splice:
402 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
403 }
404
405 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
406 {
407 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
408 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
409 struct fsl_desc_sw *child;
410 unsigned long flags;
411 dma_cookie_t cookie;
412
413 spin_lock_irqsave(&chan->desc_lock, flags);
414
415 /*
416 * assign cookies to all of the software descriptors
417 * that make up this transaction
418 */
419 list_for_each_entry(child, &desc->tx_list, node) {
420 cookie = dma_cookie_assign(&child->async_tx);
421 }
422
423 /* put this transaction onto the tail of the pending queue */
424 append_ld_queue(chan, desc);
425
426 spin_unlock_irqrestore(&chan->desc_lock, flags);
427
428 return cookie;
429 }
430
431 /**
432 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
433 * @chan : Freescale DMA channel
434 *
435 * Return - The descriptor allocated. NULL for failed.
436 */
437 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
438 {
439 struct fsl_desc_sw *desc;
440 dma_addr_t pdesc;
441
442 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
443 if (!desc) {
444 chan_dbg(chan, "out of memory for link descriptor\n");
445 return NULL;
446 }
447
448 memset(desc, 0, sizeof(*desc));
449 INIT_LIST_HEAD(&desc->tx_list);
450 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
451 desc->async_tx.tx_submit = fsl_dma_tx_submit;
452 desc->async_tx.phys = pdesc;
453
454 #ifdef FSL_DMA_LD_DEBUG
455 chan_dbg(chan, "LD %p allocated\n", desc);
456 #endif
457
458 return desc;
459 }
460
461 /**
462 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
463 * @chan : Freescale DMA channel
464 *
465 * This function will create a dma pool for descriptor allocation.
466 *
467 * Return - The number of descriptors allocated.
468 */
469 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
470 {
471 struct fsldma_chan *chan = to_fsl_chan(dchan);
472
473 /* Has this channel already been allocated? */
474 if (chan->desc_pool)
475 return 1;
476
477 /*
478 * We need the descriptor to be aligned to 32bytes
479 * for meeting FSL DMA specification requirement.
480 */
481 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
482 sizeof(struct fsl_desc_sw),
483 __alignof__(struct fsl_desc_sw), 0);
484 if (!chan->desc_pool) {
485 chan_err(chan, "unable to allocate descriptor pool\n");
486 return -ENOMEM;
487 }
488
489 /* there is at least one descriptor free to be allocated */
490 return 1;
491 }
492
493 /**
494 * fsldma_free_desc_list - Free all descriptors in a queue
495 * @chan: Freescae DMA channel
496 * @list: the list to free
497 *
498 * LOCKING: must hold chan->desc_lock
499 */
500 static void fsldma_free_desc_list(struct fsldma_chan *chan,
501 struct list_head *list)
502 {
503 struct fsl_desc_sw *desc, *_desc;
504
505 list_for_each_entry_safe(desc, _desc, list, node) {
506 list_del(&desc->node);
507 #ifdef FSL_DMA_LD_DEBUG
508 chan_dbg(chan, "LD %p free\n", desc);
509 #endif
510 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
511 }
512 }
513
514 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
515 struct list_head *list)
516 {
517 struct fsl_desc_sw *desc, *_desc;
518
519 list_for_each_entry_safe_reverse(desc, _desc, list, node) {
520 list_del(&desc->node);
521 #ifdef FSL_DMA_LD_DEBUG
522 chan_dbg(chan, "LD %p free\n", desc);
523 #endif
524 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
525 }
526 }
527
528 /**
529 * fsl_dma_free_chan_resources - Free all resources of the channel.
530 * @chan : Freescale DMA channel
531 */
532 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
533 {
534 struct fsldma_chan *chan = to_fsl_chan(dchan);
535 unsigned long flags;
536
537 chan_dbg(chan, "free all channel resources\n");
538 spin_lock_irqsave(&chan->desc_lock, flags);
539 fsldma_free_desc_list(chan, &chan->ld_pending);
540 fsldma_free_desc_list(chan, &chan->ld_running);
541 spin_unlock_irqrestore(&chan->desc_lock, flags);
542
543 dma_pool_destroy(chan->desc_pool);
544 chan->desc_pool = NULL;
545 }
546
547 static struct dma_async_tx_descriptor *
548 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
549 {
550 struct fsldma_chan *chan;
551 struct fsl_desc_sw *new;
552
553 if (!dchan)
554 return NULL;
555
556 chan = to_fsl_chan(dchan);
557
558 new = fsl_dma_alloc_descriptor(chan);
559 if (!new) {
560 chan_err(chan, "%s\n", msg_ld_oom);
561 return NULL;
562 }
563
564 new->async_tx.cookie = -EBUSY;
565 new->async_tx.flags = flags;
566
567 /* Insert the link descriptor to the LD ring */
568 list_add_tail(&new->node, &new->tx_list);
569
570 /* Set End-of-link to the last link descriptor of new list */
571 set_ld_eol(chan, new);
572
573 return &new->async_tx;
574 }
575
576 static struct dma_async_tx_descriptor *
577 fsl_dma_prep_memcpy(struct dma_chan *dchan,
578 dma_addr_t dma_dst, dma_addr_t dma_src,
579 size_t len, unsigned long flags)
580 {
581 struct fsldma_chan *chan;
582 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
583 size_t copy;
584
585 if (!dchan)
586 return NULL;
587
588 if (!len)
589 return NULL;
590
591 chan = to_fsl_chan(dchan);
592
593 do {
594
595 /* Allocate the link descriptor from DMA pool */
596 new = fsl_dma_alloc_descriptor(chan);
597 if (!new) {
598 chan_err(chan, "%s\n", msg_ld_oom);
599 goto fail;
600 }
601
602 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
603
604 set_desc_cnt(chan, &new->hw, copy);
605 set_desc_src(chan, &new->hw, dma_src);
606 set_desc_dst(chan, &new->hw, dma_dst);
607
608 if (!first)
609 first = new;
610 else
611 set_desc_next(chan, &prev->hw, new->async_tx.phys);
612
613 new->async_tx.cookie = 0;
614 async_tx_ack(&new->async_tx);
615
616 prev = new;
617 len -= copy;
618 dma_src += copy;
619 dma_dst += copy;
620
621 /* Insert the link descriptor to the LD ring */
622 list_add_tail(&new->node, &first->tx_list);
623 } while (len);
624
625 new->async_tx.flags = flags; /* client is in control of this ack */
626 new->async_tx.cookie = -EBUSY;
627
628 /* Set End-of-link to the last link descriptor of new list */
629 set_ld_eol(chan, new);
630
631 return &first->async_tx;
632
633 fail:
634 if (!first)
635 return NULL;
636
637 fsldma_free_desc_list_reverse(chan, &first->tx_list);
638 return NULL;
639 }
640
641 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
642 struct scatterlist *dst_sg, unsigned int dst_nents,
643 struct scatterlist *src_sg, unsigned int src_nents,
644 unsigned long flags)
645 {
646 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
647 struct fsldma_chan *chan = to_fsl_chan(dchan);
648 size_t dst_avail, src_avail;
649 dma_addr_t dst, src;
650 size_t len;
651
652 /* basic sanity checks */
653 if (dst_nents == 0 || src_nents == 0)
654 return NULL;
655
656 if (dst_sg == NULL || src_sg == NULL)
657 return NULL;
658
659 /*
660 * TODO: should we check that both scatterlists have the same
661 * TODO: number of bytes in total? Is that really an error?
662 */
663
664 /* get prepared for the loop */
665 dst_avail = sg_dma_len(dst_sg);
666 src_avail = sg_dma_len(src_sg);
667
668 /* run until we are out of scatterlist entries */
669 while (true) {
670
671 /* create the largest transaction possible */
672 len = min_t(size_t, src_avail, dst_avail);
673 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
674 if (len == 0)
675 goto fetch;
676
677 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
678 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
679
680 /* allocate and populate the descriptor */
681 new = fsl_dma_alloc_descriptor(chan);
682 if (!new) {
683 chan_err(chan, "%s\n", msg_ld_oom);
684 goto fail;
685 }
686
687 set_desc_cnt(chan, &new->hw, len);
688 set_desc_src(chan, &new->hw, src);
689 set_desc_dst(chan, &new->hw, dst);
690
691 if (!first)
692 first = new;
693 else
694 set_desc_next(chan, &prev->hw, new->async_tx.phys);
695
696 new->async_tx.cookie = 0;
697 async_tx_ack(&new->async_tx);
698 prev = new;
699
700 /* Insert the link descriptor to the LD ring */
701 list_add_tail(&new->node, &first->tx_list);
702
703 /* update metadata */
704 dst_avail -= len;
705 src_avail -= len;
706
707 fetch:
708 /* fetch the next dst scatterlist entry */
709 if (dst_avail == 0) {
710
711 /* no more entries: we're done */
712 if (dst_nents == 0)
713 break;
714
715 /* fetch the next entry: if there are no more: done */
716 dst_sg = sg_next(dst_sg);
717 if (dst_sg == NULL)
718 break;
719
720 dst_nents--;
721 dst_avail = sg_dma_len(dst_sg);
722 }
723
724 /* fetch the next src scatterlist entry */
725 if (src_avail == 0) {
726
727 /* no more entries: we're done */
728 if (src_nents == 0)
729 break;
730
731 /* fetch the next entry: if there are no more: done */
732 src_sg = sg_next(src_sg);
733 if (src_sg == NULL)
734 break;
735
736 src_nents--;
737 src_avail = sg_dma_len(src_sg);
738 }
739 }
740
741 new->async_tx.flags = flags; /* client is in control of this ack */
742 new->async_tx.cookie = -EBUSY;
743
744 /* Set End-of-link to the last link descriptor of new list */
745 set_ld_eol(chan, new);
746
747 return &first->async_tx;
748
749 fail:
750 if (!first)
751 return NULL;
752
753 fsldma_free_desc_list_reverse(chan, &first->tx_list);
754 return NULL;
755 }
756
757 /**
758 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
759 * @chan: DMA channel
760 * @sgl: scatterlist to transfer to/from
761 * @sg_len: number of entries in @scatterlist
762 * @direction: DMA direction
763 * @flags: DMAEngine flags
764 * @context: transaction context (ignored)
765 *
766 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
767 * DMA_SLAVE API, this gets the device-specific information from the
768 * chan->private variable.
769 */
770 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
771 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
772 enum dma_transfer_direction direction, unsigned long flags,
773 void *context)
774 {
775 /*
776 * This operation is not supported on the Freescale DMA controller
777 *
778 * However, we need to provide the function pointer to allow the
779 * device_control() method to work.
780 */
781 return NULL;
782 }
783
784 static int fsl_dma_device_control(struct dma_chan *dchan,
785 enum dma_ctrl_cmd cmd, unsigned long arg)
786 {
787 struct dma_slave_config *config;
788 struct fsldma_chan *chan;
789 unsigned long flags;
790 int size;
791
792 if (!dchan)
793 return -EINVAL;
794
795 chan = to_fsl_chan(dchan);
796
797 switch (cmd) {
798 case DMA_TERMINATE_ALL:
799 spin_lock_irqsave(&chan->desc_lock, flags);
800
801 /* Halt the DMA engine */
802 dma_halt(chan);
803
804 /* Remove and free all of the descriptors in the LD queue */
805 fsldma_free_desc_list(chan, &chan->ld_pending);
806 fsldma_free_desc_list(chan, &chan->ld_running);
807 chan->idle = true;
808
809 spin_unlock_irqrestore(&chan->desc_lock, flags);
810 return 0;
811
812 case DMA_SLAVE_CONFIG:
813 config = (struct dma_slave_config *)arg;
814
815 /* make sure the channel supports setting burst size */
816 if (!chan->set_request_count)
817 return -ENXIO;
818
819 /* we set the controller burst size depending on direction */
820 if (config->direction == DMA_MEM_TO_DEV)
821 size = config->dst_addr_width * config->dst_maxburst;
822 else
823 size = config->src_addr_width * config->src_maxburst;
824
825 chan->set_request_count(chan, size);
826 return 0;
827
828 case FSLDMA_EXTERNAL_START:
829
830 /* make sure the channel supports external start */
831 if (!chan->toggle_ext_start)
832 return -ENXIO;
833
834 chan->toggle_ext_start(chan, arg);
835 return 0;
836
837 default:
838 return -ENXIO;
839 }
840
841 return 0;
842 }
843
844 /**
845 * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
846 * @chan: Freescale DMA channel
847 * @desc: descriptor to cleanup and free
848 *
849 * This function is used on a descriptor which has been executed by the DMA
850 * controller. It will run any callbacks, submit any dependencies, and then
851 * free the descriptor.
852 */
853 static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
854 struct fsl_desc_sw *desc)
855 {
856 struct dma_async_tx_descriptor *txd = &desc->async_tx;
857 struct device *dev = chan->common.device->dev;
858 dma_addr_t src = get_desc_src(chan, desc);
859 dma_addr_t dst = get_desc_dst(chan, desc);
860 u32 len = get_desc_cnt(chan, desc);
861
862 /* Run the link descriptor callback function */
863 if (txd->callback) {
864 #ifdef FSL_DMA_LD_DEBUG
865 chan_dbg(chan, "LD %p callback\n", desc);
866 #endif
867 txd->callback(txd->callback_param);
868 }
869
870 /* Run any dependencies */
871 dma_run_dependencies(txd);
872
873 /* Unmap the dst buffer, if requested */
874 if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
875 if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
876 dma_unmap_single(dev, dst, len, DMA_FROM_DEVICE);
877 else
878 dma_unmap_page(dev, dst, len, DMA_FROM_DEVICE);
879 }
880
881 /* Unmap the src buffer, if requested */
882 if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
883 if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
884 dma_unmap_single(dev, src, len, DMA_TO_DEVICE);
885 else
886 dma_unmap_page(dev, src, len, DMA_TO_DEVICE);
887 }
888
889 #ifdef FSL_DMA_LD_DEBUG
890 chan_dbg(chan, "LD %p free\n", desc);
891 #endif
892 dma_pool_free(chan->desc_pool, desc, txd->phys);
893 }
894
895 /**
896 * fsl_chan_xfer_ld_queue - transfer any pending transactions
897 * @chan : Freescale DMA channel
898 *
899 * HARDWARE STATE: idle
900 * LOCKING: must hold chan->desc_lock
901 */
902 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
903 {
904 struct fsl_desc_sw *desc;
905
906 /*
907 * If the list of pending descriptors is empty, then we
908 * don't need to do any work at all
909 */
910 if (list_empty(&chan->ld_pending)) {
911 chan_dbg(chan, "no pending LDs\n");
912 return;
913 }
914
915 /*
916 * The DMA controller is not idle, which means that the interrupt
917 * handler will start any queued transactions when it runs after
918 * this transaction finishes
919 */
920 if (!chan->idle) {
921 chan_dbg(chan, "DMA controller still busy\n");
922 return;
923 }
924
925 /*
926 * If there are some link descriptors which have not been
927 * transferred, we need to start the controller
928 */
929
930 /*
931 * Move all elements from the queue of pending transactions
932 * onto the list of running transactions
933 */
934 chan_dbg(chan, "idle, starting controller\n");
935 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
936 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
937
938 /*
939 * The 85xx DMA controller doesn't clear the channel start bit
940 * automatically at the end of a transfer. Therefore we must clear
941 * it in software before starting the transfer.
942 */
943 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
944 u32 mode;
945
946 mode = DMA_IN(chan, &chan->regs->mr, 32);
947 mode &= ~FSL_DMA_MR_CS;
948 DMA_OUT(chan, &chan->regs->mr, mode, 32);
949 }
950
951 /*
952 * Program the descriptor's address into the DMA controller,
953 * then start the DMA transaction
954 */
955 set_cdar(chan, desc->async_tx.phys);
956 get_cdar(chan);
957
958 dma_start(chan);
959 chan->idle = false;
960 }
961
962 /**
963 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
964 * @chan : Freescale DMA channel
965 */
966 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
967 {
968 struct fsldma_chan *chan = to_fsl_chan(dchan);
969 unsigned long flags;
970
971 spin_lock_irqsave(&chan->desc_lock, flags);
972 fsl_chan_xfer_ld_queue(chan);
973 spin_unlock_irqrestore(&chan->desc_lock, flags);
974 }
975
976 /**
977 * fsl_tx_status - Determine the DMA status
978 * @chan : Freescale DMA channel
979 */
980 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
981 dma_cookie_t cookie,
982 struct dma_tx_state *txstate)
983 {
984 return dma_cookie_status(dchan, cookie, txstate);
985 }
986
987 /*----------------------------------------------------------------------------*/
988 /* Interrupt Handling */
989 /*----------------------------------------------------------------------------*/
990
991 static irqreturn_t fsldma_chan_irq(int irq, void *data)
992 {
993 struct fsldma_chan *chan = data;
994 u32 stat;
995
996 /* save and clear the status register */
997 stat = get_sr(chan);
998 set_sr(chan, stat);
999 chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1000
1001 /* check that this was really our device */
1002 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1003 if (!stat)
1004 return IRQ_NONE;
1005
1006 if (stat & FSL_DMA_SR_TE)
1007 chan_err(chan, "Transfer Error!\n");
1008
1009 /*
1010 * Programming Error
1011 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1012 * trigger a PE interrupt.
1013 */
1014 if (stat & FSL_DMA_SR_PE) {
1015 chan_dbg(chan, "irq: Programming Error INT\n");
1016 stat &= ~FSL_DMA_SR_PE;
1017 if (get_bcr(chan) != 0)
1018 chan_err(chan, "Programming Error!\n");
1019 }
1020
1021 /*
1022 * For MPC8349, EOCDI event need to update cookie
1023 * and start the next transfer if it exist.
1024 */
1025 if (stat & FSL_DMA_SR_EOCDI) {
1026 chan_dbg(chan, "irq: End-of-Chain link INT\n");
1027 stat &= ~FSL_DMA_SR_EOCDI;
1028 }
1029
1030 /*
1031 * If it current transfer is the end-of-transfer,
1032 * we should clear the Channel Start bit for
1033 * prepare next transfer.
1034 */
1035 if (stat & FSL_DMA_SR_EOLNI) {
1036 chan_dbg(chan, "irq: End-of-link INT\n");
1037 stat &= ~FSL_DMA_SR_EOLNI;
1038 }
1039
1040 /* check that the DMA controller is really idle */
1041 if (!dma_is_idle(chan))
1042 chan_err(chan, "irq: controller not idle!\n");
1043
1044 /* check that we handled all of the bits */
1045 if (stat)
1046 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1047
1048 /*
1049 * Schedule the tasklet to handle all cleanup of the current
1050 * transaction. It will start a new transaction if there is
1051 * one pending.
1052 */
1053 tasklet_schedule(&chan->tasklet);
1054 chan_dbg(chan, "irq: Exit\n");
1055 return IRQ_HANDLED;
1056 }
1057
1058 static void dma_do_tasklet(unsigned long data)
1059 {
1060 struct fsldma_chan *chan = (struct fsldma_chan *)data;
1061 struct fsl_desc_sw *desc, *_desc;
1062 LIST_HEAD(ld_cleanup);
1063 unsigned long flags;
1064
1065 chan_dbg(chan, "tasklet entry\n");
1066
1067 spin_lock_irqsave(&chan->desc_lock, flags);
1068
1069 /* update the cookie if we have some descriptors to cleanup */
1070 if (!list_empty(&chan->ld_running)) {
1071 dma_cookie_t cookie;
1072
1073 desc = to_fsl_desc(chan->ld_running.prev);
1074 cookie = desc->async_tx.cookie;
1075 dma_cookie_complete(&desc->async_tx);
1076
1077 chan_dbg(chan, "completed_cookie=%d\n", cookie);
1078 }
1079
1080 /*
1081 * move the descriptors to a temporary list so we can drop the lock
1082 * during the entire cleanup operation
1083 */
1084 list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1085
1086 /* the hardware is now idle and ready for more */
1087 chan->idle = true;
1088
1089 /*
1090 * Start any pending transactions automatically
1091 *
1092 * In the ideal case, we keep the DMA controller busy while we go
1093 * ahead and free the descriptors below.
1094 */
1095 fsl_chan_xfer_ld_queue(chan);
1096 spin_unlock_irqrestore(&chan->desc_lock, flags);
1097
1098 /* Run the callback for each descriptor, in order */
1099 list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1100
1101 /* Remove from the list of transactions */
1102 list_del(&desc->node);
1103
1104 /* Run all cleanup for this descriptor */
1105 fsldma_cleanup_descriptor(chan, desc);
1106 }
1107
1108 chan_dbg(chan, "tasklet exit\n");
1109 }
1110
1111 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1112 {
1113 struct fsldma_device *fdev = data;
1114 struct fsldma_chan *chan;
1115 unsigned int handled = 0;
1116 u32 gsr, mask;
1117 int i;
1118
1119 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1120 : in_le32(fdev->regs);
1121 mask = 0xff000000;
1122 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1123
1124 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1125 chan = fdev->chan[i];
1126 if (!chan)
1127 continue;
1128
1129 if (gsr & mask) {
1130 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1131 fsldma_chan_irq(irq, chan);
1132 handled++;
1133 }
1134
1135 gsr &= ~mask;
1136 mask >>= 8;
1137 }
1138
1139 return IRQ_RETVAL(handled);
1140 }
1141
1142 static void fsldma_free_irqs(struct fsldma_device *fdev)
1143 {
1144 struct fsldma_chan *chan;
1145 int i;
1146
1147 if (fdev->irq != NO_IRQ) {
1148 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1149 free_irq(fdev->irq, fdev);
1150 return;
1151 }
1152
1153 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1154 chan = fdev->chan[i];
1155 if (chan && chan->irq != NO_IRQ) {
1156 chan_dbg(chan, "free per-channel IRQ\n");
1157 free_irq(chan->irq, chan);
1158 }
1159 }
1160 }
1161
1162 static int fsldma_request_irqs(struct fsldma_device *fdev)
1163 {
1164 struct fsldma_chan *chan;
1165 int ret;
1166 int i;
1167
1168 /* if we have a per-controller IRQ, use that */
1169 if (fdev->irq != NO_IRQ) {
1170 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1171 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1172 "fsldma-controller", fdev);
1173 return ret;
1174 }
1175
1176 /* no per-controller IRQ, use the per-channel IRQs */
1177 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1178 chan = fdev->chan[i];
1179 if (!chan)
1180 continue;
1181
1182 if (chan->irq == NO_IRQ) {
1183 chan_err(chan, "interrupts property missing in device tree\n");
1184 ret = -ENODEV;
1185 goto out_unwind;
1186 }
1187
1188 chan_dbg(chan, "request per-channel IRQ\n");
1189 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1190 "fsldma-chan", chan);
1191 if (ret) {
1192 chan_err(chan, "unable to request per-channel IRQ\n");
1193 goto out_unwind;
1194 }
1195 }
1196
1197 return 0;
1198
1199 out_unwind:
1200 for (/* none */; i >= 0; i--) {
1201 chan = fdev->chan[i];
1202 if (!chan)
1203 continue;
1204
1205 if (chan->irq == NO_IRQ)
1206 continue;
1207
1208 free_irq(chan->irq, chan);
1209 }
1210
1211 return ret;
1212 }
1213
1214 /*----------------------------------------------------------------------------*/
1215 /* OpenFirmware Subsystem */
1216 /*----------------------------------------------------------------------------*/
1217
1218 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1219 struct device_node *node, u32 feature, const char *compatible)
1220 {
1221 struct fsldma_chan *chan;
1222 struct resource res;
1223 int err;
1224
1225 /* alloc channel */
1226 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1227 if (!chan) {
1228 dev_err(fdev->dev, "no free memory for DMA channels!\n");
1229 err = -ENOMEM;
1230 goto out_return;
1231 }
1232
1233 /* ioremap registers for use */
1234 chan->regs = of_iomap(node, 0);
1235 if (!chan->regs) {
1236 dev_err(fdev->dev, "unable to ioremap registers\n");
1237 err = -ENOMEM;
1238 goto out_free_chan;
1239 }
1240
1241 err = of_address_to_resource(node, 0, &res);
1242 if (err) {
1243 dev_err(fdev->dev, "unable to find 'reg' property\n");
1244 goto out_iounmap_regs;
1245 }
1246
1247 chan->feature = feature;
1248 if (!fdev->feature)
1249 fdev->feature = chan->feature;
1250
1251 /*
1252 * If the DMA device's feature is different than the feature
1253 * of its channels, report the bug
1254 */
1255 WARN_ON(fdev->feature != chan->feature);
1256
1257 chan->dev = fdev->dev;
1258 chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1259 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1260 dev_err(fdev->dev, "too many channels for device\n");
1261 err = -EINVAL;
1262 goto out_iounmap_regs;
1263 }
1264
1265 fdev->chan[chan->id] = chan;
1266 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1267 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1268
1269 /* Initialize the channel */
1270 dma_init(chan);
1271
1272 /* Clear cdar registers */
1273 set_cdar(chan, 0);
1274
1275 switch (chan->feature & FSL_DMA_IP_MASK) {
1276 case FSL_DMA_IP_85XX:
1277 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1278 case FSL_DMA_IP_83XX:
1279 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1280 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1281 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1282 chan->set_request_count = fsl_chan_set_request_count;
1283 }
1284
1285 spin_lock_init(&chan->desc_lock);
1286 INIT_LIST_HEAD(&chan->ld_pending);
1287 INIT_LIST_HEAD(&chan->ld_running);
1288 chan->idle = true;
1289
1290 chan->common.device = &fdev->common;
1291 dma_cookie_init(&chan->common);
1292
1293 /* find the IRQ line, if it exists in the device tree */
1294 chan->irq = irq_of_parse_and_map(node, 0);
1295
1296 /* Add the channel to DMA device channel list */
1297 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1298 fdev->common.chancnt++;
1299
1300 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1301 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1302
1303 return 0;
1304
1305 out_iounmap_regs:
1306 iounmap(chan->regs);
1307 out_free_chan:
1308 kfree(chan);
1309 out_return:
1310 return err;
1311 }
1312
1313 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1314 {
1315 irq_dispose_mapping(chan->irq);
1316 list_del(&chan->common.device_node);
1317 iounmap(chan->regs);
1318 kfree(chan);
1319 }
1320
1321 static int fsldma_of_probe(struct platform_device *op)
1322 {
1323 struct fsldma_device *fdev;
1324 struct device_node *child;
1325 int err;
1326
1327 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1328 if (!fdev) {
1329 dev_err(&op->dev, "No enough memory for 'priv'\n");
1330 err = -ENOMEM;
1331 goto out_return;
1332 }
1333
1334 fdev->dev = &op->dev;
1335 INIT_LIST_HEAD(&fdev->common.channels);
1336
1337 /* ioremap the registers for use */
1338 fdev->regs = of_iomap(op->dev.of_node, 0);
1339 if (!fdev->regs) {
1340 dev_err(&op->dev, "unable to ioremap registers\n");
1341 err = -ENOMEM;
1342 goto out_free_fdev;
1343 }
1344
1345 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1346 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1347
1348 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1349 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1350 dma_cap_set(DMA_SG, fdev->common.cap_mask);
1351 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1352 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1353 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1354 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1355 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1356 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1357 fdev->common.device_tx_status = fsl_tx_status;
1358 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1359 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1360 fdev->common.device_control = fsl_dma_device_control;
1361 fdev->common.dev = &op->dev;
1362
1363 dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1364
1365 platform_set_drvdata(op, fdev);
1366
1367 /*
1368 * We cannot use of_platform_bus_probe() because there is no
1369 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1370 * channel object.
1371 */
1372 for_each_child_of_node(op->dev.of_node, child) {
1373 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1374 fsl_dma_chan_probe(fdev, child,
1375 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1376 "fsl,eloplus-dma-channel");
1377 }
1378
1379 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1380 fsl_dma_chan_probe(fdev, child,
1381 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1382 "fsl,elo-dma-channel");
1383 }
1384 }
1385
1386 /*
1387 * Hookup the IRQ handler(s)
1388 *
1389 * If we have a per-controller interrupt, we prefer that to the
1390 * per-channel interrupts to reduce the number of shared interrupt
1391 * handlers on the same IRQ line
1392 */
1393 err = fsldma_request_irqs(fdev);
1394 if (err) {
1395 dev_err(fdev->dev, "unable to request IRQs\n");
1396 goto out_free_fdev;
1397 }
1398
1399 dma_async_device_register(&fdev->common);
1400 return 0;
1401
1402 out_free_fdev:
1403 irq_dispose_mapping(fdev->irq);
1404 kfree(fdev);
1405 out_return:
1406 return err;
1407 }
1408
1409 static int fsldma_of_remove(struct platform_device *op)
1410 {
1411 struct fsldma_device *fdev;
1412 unsigned int i;
1413
1414 fdev = platform_get_drvdata(op);
1415 dma_async_device_unregister(&fdev->common);
1416
1417 fsldma_free_irqs(fdev);
1418
1419 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1420 if (fdev->chan[i])
1421 fsl_dma_chan_remove(fdev->chan[i]);
1422 }
1423
1424 iounmap(fdev->regs);
1425 kfree(fdev);
1426
1427 return 0;
1428 }
1429
1430 static const struct of_device_id fsldma_of_ids[] = {
1431 { .compatible = "fsl,eloplus-dma", },
1432 { .compatible = "fsl,elo-dma", },
1433 {}
1434 };
1435
1436 static struct platform_driver fsldma_of_driver = {
1437 .driver = {
1438 .name = "fsl-elo-dma",
1439 .owner = THIS_MODULE,
1440 .of_match_table = fsldma_of_ids,
1441 },
1442 .probe = fsldma_of_probe,
1443 .remove = fsldma_of_remove,
1444 };
1445
1446 /*----------------------------------------------------------------------------*/
1447 /* Module Init / Exit */
1448 /*----------------------------------------------------------------------------*/
1449
1450 static __init int fsldma_init(void)
1451 {
1452 pr_info("Freescale Elo / Elo Plus DMA driver\n");
1453 return platform_driver_register(&fsldma_of_driver);
1454 }
1455
1456 static void __exit fsldma_exit(void)
1457 {
1458 platform_driver_unregister(&fsldma_of_driver);
1459 }
1460
1461 subsys_initcall(fsldma_init);
1462 module_exit(fsldma_exit);
1463
1464 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1465 MODULE_LICENSE("GPL");
This page took 0.075258 seconds and 5 git commands to generate.