dmaengine: ensure all DMA engine drivers initialize their cookies
[deliverable/linux.git] / drivers / dma / fsldma.c
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
3 *
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5 *
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9 *
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
14 *
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
19 *
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
24 *
25 */
26
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_platform.h>
37
38 #include "dmaengine.h"
39 #include "fsldma.h"
40
41 #define chan_dbg(chan, fmt, arg...) \
42 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
43 #define chan_err(chan, fmt, arg...) \
44 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
45
46 static const char msg_ld_oom[] = "No free memory for link descriptor";
47
48 /*
49 * Register Helpers
50 */
51
52 static void set_sr(struct fsldma_chan *chan, u32 val)
53 {
54 DMA_OUT(chan, &chan->regs->sr, val, 32);
55 }
56
57 static u32 get_sr(struct fsldma_chan *chan)
58 {
59 return DMA_IN(chan, &chan->regs->sr, 32);
60 }
61
62 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
63 {
64 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
65 }
66
67 static dma_addr_t get_cdar(struct fsldma_chan *chan)
68 {
69 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
70 }
71
72 static u32 get_bcr(struct fsldma_chan *chan)
73 {
74 return DMA_IN(chan, &chan->regs->bcr, 32);
75 }
76
77 /*
78 * Descriptor Helpers
79 */
80
81 static void set_desc_cnt(struct fsldma_chan *chan,
82 struct fsl_dma_ld_hw *hw, u32 count)
83 {
84 hw->count = CPU_TO_DMA(chan, count, 32);
85 }
86
87 static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
88 {
89 return DMA_TO_CPU(chan, desc->hw.count, 32);
90 }
91
92 static void set_desc_src(struct fsldma_chan *chan,
93 struct fsl_dma_ld_hw *hw, dma_addr_t src)
94 {
95 u64 snoop_bits;
96
97 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
98 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
99 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
100 }
101
102 static dma_addr_t get_desc_src(struct fsldma_chan *chan,
103 struct fsl_desc_sw *desc)
104 {
105 u64 snoop_bits;
106
107 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
108 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
109 return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits;
110 }
111
112 static void set_desc_dst(struct fsldma_chan *chan,
113 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
114 {
115 u64 snoop_bits;
116
117 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
118 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
119 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
120 }
121
122 static dma_addr_t get_desc_dst(struct fsldma_chan *chan,
123 struct fsl_desc_sw *desc)
124 {
125 u64 snoop_bits;
126
127 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
128 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
129 return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits;
130 }
131
132 static void set_desc_next(struct fsldma_chan *chan,
133 struct fsl_dma_ld_hw *hw, dma_addr_t next)
134 {
135 u64 snoop_bits;
136
137 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
138 ? FSL_DMA_SNEN : 0;
139 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
140 }
141
142 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
143 {
144 u64 snoop_bits;
145
146 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
147 ? FSL_DMA_SNEN : 0;
148
149 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
150 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
151 | snoop_bits, 64);
152 }
153
154 /*
155 * DMA Engine Hardware Control Helpers
156 */
157
158 static void dma_init(struct fsldma_chan *chan)
159 {
160 /* Reset the channel */
161 DMA_OUT(chan, &chan->regs->mr, 0, 32);
162
163 switch (chan->feature & FSL_DMA_IP_MASK) {
164 case FSL_DMA_IP_85XX:
165 /* Set the channel to below modes:
166 * EIE - Error interrupt enable
167 * EOLNIE - End of links interrupt enable
168 * BWC - Bandwidth sharing among channels
169 */
170 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
171 | FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
172 break;
173 case FSL_DMA_IP_83XX:
174 /* Set the channel to below modes:
175 * EOTIE - End-of-transfer interrupt enable
176 * PRC_RM - PCI read multiple
177 */
178 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
179 | FSL_DMA_MR_PRC_RM, 32);
180 break;
181 }
182 }
183
184 static int dma_is_idle(struct fsldma_chan *chan)
185 {
186 u32 sr = get_sr(chan);
187 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
188 }
189
190 /*
191 * Start the DMA controller
192 *
193 * Preconditions:
194 * - the CDAR register must point to the start descriptor
195 * - the MRn[CS] bit must be cleared
196 */
197 static void dma_start(struct fsldma_chan *chan)
198 {
199 u32 mode;
200
201 mode = DMA_IN(chan, &chan->regs->mr, 32);
202
203 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
204 DMA_OUT(chan, &chan->regs->bcr, 0, 32);
205 mode |= FSL_DMA_MR_EMP_EN;
206 } else {
207 mode &= ~FSL_DMA_MR_EMP_EN;
208 }
209
210 if (chan->feature & FSL_DMA_CHAN_START_EXT) {
211 mode |= FSL_DMA_MR_EMS_EN;
212 } else {
213 mode &= ~FSL_DMA_MR_EMS_EN;
214 mode |= FSL_DMA_MR_CS;
215 }
216
217 DMA_OUT(chan, &chan->regs->mr, mode, 32);
218 }
219
220 static void dma_halt(struct fsldma_chan *chan)
221 {
222 u32 mode;
223 int i;
224
225 /* read the mode register */
226 mode = DMA_IN(chan, &chan->regs->mr, 32);
227
228 /*
229 * The 85xx controller supports channel abort, which will stop
230 * the current transfer. On 83xx, this bit is the transfer error
231 * mask bit, which should not be changed.
232 */
233 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
234 mode |= FSL_DMA_MR_CA;
235 DMA_OUT(chan, &chan->regs->mr, mode, 32);
236
237 mode &= ~FSL_DMA_MR_CA;
238 }
239
240 /* stop the DMA controller */
241 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
242 DMA_OUT(chan, &chan->regs->mr, mode, 32);
243
244 /* wait for the DMA controller to become idle */
245 for (i = 0; i < 100; i++) {
246 if (dma_is_idle(chan))
247 return;
248
249 udelay(10);
250 }
251
252 if (!dma_is_idle(chan))
253 chan_err(chan, "DMA halt timeout!\n");
254 }
255
256 /**
257 * fsl_chan_set_src_loop_size - Set source address hold transfer size
258 * @chan : Freescale DMA channel
259 * @size : Address loop size, 0 for disable loop
260 *
261 * The set source address hold transfer size. The source
262 * address hold or loop transfer size is when the DMA transfer
263 * data from source address (SA), if the loop size is 4, the DMA will
264 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
265 * SA + 1 ... and so on.
266 */
267 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
268 {
269 u32 mode;
270
271 mode = DMA_IN(chan, &chan->regs->mr, 32);
272
273 switch (size) {
274 case 0:
275 mode &= ~FSL_DMA_MR_SAHE;
276 break;
277 case 1:
278 case 2:
279 case 4:
280 case 8:
281 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
282 break;
283 }
284
285 DMA_OUT(chan, &chan->regs->mr, mode, 32);
286 }
287
288 /**
289 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
290 * @chan : Freescale DMA channel
291 * @size : Address loop size, 0 for disable loop
292 *
293 * The set destination address hold transfer size. The destination
294 * address hold or loop transfer size is when the DMA transfer
295 * data to destination address (TA), if the loop size is 4, the DMA will
296 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
297 * TA + 1 ... and so on.
298 */
299 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
300 {
301 u32 mode;
302
303 mode = DMA_IN(chan, &chan->regs->mr, 32);
304
305 switch (size) {
306 case 0:
307 mode &= ~FSL_DMA_MR_DAHE;
308 break;
309 case 1:
310 case 2:
311 case 4:
312 case 8:
313 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
314 break;
315 }
316
317 DMA_OUT(chan, &chan->regs->mr, mode, 32);
318 }
319
320 /**
321 * fsl_chan_set_request_count - Set DMA Request Count for external control
322 * @chan : Freescale DMA channel
323 * @size : Number of bytes to transfer in a single request
324 *
325 * The Freescale DMA channel can be controlled by the external signal DREQ#.
326 * The DMA request count is how many bytes are allowed to transfer before
327 * pausing the channel, after which a new assertion of DREQ# resumes channel
328 * operation.
329 *
330 * A size of 0 disables external pause control. The maximum size is 1024.
331 */
332 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
333 {
334 u32 mode;
335
336 BUG_ON(size > 1024);
337
338 mode = DMA_IN(chan, &chan->regs->mr, 32);
339 mode |= (__ilog2(size) << 24) & 0x0f000000;
340
341 DMA_OUT(chan, &chan->regs->mr, mode, 32);
342 }
343
344 /**
345 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
346 * @chan : Freescale DMA channel
347 * @enable : 0 is disabled, 1 is enabled.
348 *
349 * The Freescale DMA channel can be controlled by the external signal DREQ#.
350 * The DMA Request Count feature should be used in addition to this feature
351 * to set the number of bytes to transfer before pausing the channel.
352 */
353 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
354 {
355 if (enable)
356 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
357 else
358 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
359 }
360
361 /**
362 * fsl_chan_toggle_ext_start - Toggle channel external start status
363 * @chan : Freescale DMA channel
364 * @enable : 0 is disabled, 1 is enabled.
365 *
366 * If enable the external start, the channel can be started by an
367 * external DMA start pin. So the dma_start() does not start the
368 * transfer immediately. The DMA channel will wait for the
369 * control pin asserted.
370 */
371 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
372 {
373 if (enable)
374 chan->feature |= FSL_DMA_CHAN_START_EXT;
375 else
376 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
377 }
378
379 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
380 {
381 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
382
383 if (list_empty(&chan->ld_pending))
384 goto out_splice;
385
386 /*
387 * Add the hardware descriptor to the chain of hardware descriptors
388 * that already exists in memory.
389 *
390 * This will un-set the EOL bit of the existing transaction, and the
391 * last link in this transaction will become the EOL descriptor.
392 */
393 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
394
395 /*
396 * Add the software descriptor and all children to the list
397 * of pending transactions
398 */
399 out_splice:
400 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
401 }
402
403 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
404 {
405 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
406 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
407 struct fsl_desc_sw *child;
408 unsigned long flags;
409 dma_cookie_t cookie;
410
411 spin_lock_irqsave(&chan->desc_lock, flags);
412
413 /*
414 * assign cookies to all of the software descriptors
415 * that make up this transaction
416 */
417 list_for_each_entry(child, &desc->tx_list, node) {
418 cookie = dma_cookie_assign(&child->async_tx);
419 }
420
421 /* put this transaction onto the tail of the pending queue */
422 append_ld_queue(chan, desc);
423
424 spin_unlock_irqrestore(&chan->desc_lock, flags);
425
426 return cookie;
427 }
428
429 /**
430 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
431 * @chan : Freescale DMA channel
432 *
433 * Return - The descriptor allocated. NULL for failed.
434 */
435 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
436 {
437 struct fsl_desc_sw *desc;
438 dma_addr_t pdesc;
439
440 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
441 if (!desc) {
442 chan_dbg(chan, "out of memory for link descriptor\n");
443 return NULL;
444 }
445
446 memset(desc, 0, sizeof(*desc));
447 INIT_LIST_HEAD(&desc->tx_list);
448 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
449 desc->async_tx.tx_submit = fsl_dma_tx_submit;
450 desc->async_tx.phys = pdesc;
451
452 #ifdef FSL_DMA_LD_DEBUG
453 chan_dbg(chan, "LD %p allocated\n", desc);
454 #endif
455
456 return desc;
457 }
458
459 /**
460 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
461 * @chan : Freescale DMA channel
462 *
463 * This function will create a dma pool for descriptor allocation.
464 *
465 * Return - The number of descriptors allocated.
466 */
467 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
468 {
469 struct fsldma_chan *chan = to_fsl_chan(dchan);
470
471 /* Has this channel already been allocated? */
472 if (chan->desc_pool)
473 return 1;
474
475 /*
476 * We need the descriptor to be aligned to 32bytes
477 * for meeting FSL DMA specification requirement.
478 */
479 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
480 sizeof(struct fsl_desc_sw),
481 __alignof__(struct fsl_desc_sw), 0);
482 if (!chan->desc_pool) {
483 chan_err(chan, "unable to allocate descriptor pool\n");
484 return -ENOMEM;
485 }
486
487 /* there is at least one descriptor free to be allocated */
488 return 1;
489 }
490
491 /**
492 * fsldma_free_desc_list - Free all descriptors in a queue
493 * @chan: Freescae DMA channel
494 * @list: the list to free
495 *
496 * LOCKING: must hold chan->desc_lock
497 */
498 static void fsldma_free_desc_list(struct fsldma_chan *chan,
499 struct list_head *list)
500 {
501 struct fsl_desc_sw *desc, *_desc;
502
503 list_for_each_entry_safe(desc, _desc, list, node) {
504 list_del(&desc->node);
505 #ifdef FSL_DMA_LD_DEBUG
506 chan_dbg(chan, "LD %p free\n", desc);
507 #endif
508 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
509 }
510 }
511
512 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
513 struct list_head *list)
514 {
515 struct fsl_desc_sw *desc, *_desc;
516
517 list_for_each_entry_safe_reverse(desc, _desc, list, node) {
518 list_del(&desc->node);
519 #ifdef FSL_DMA_LD_DEBUG
520 chan_dbg(chan, "LD %p free\n", desc);
521 #endif
522 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
523 }
524 }
525
526 /**
527 * fsl_dma_free_chan_resources - Free all resources of the channel.
528 * @chan : Freescale DMA channel
529 */
530 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
531 {
532 struct fsldma_chan *chan = to_fsl_chan(dchan);
533 unsigned long flags;
534
535 chan_dbg(chan, "free all channel resources\n");
536 spin_lock_irqsave(&chan->desc_lock, flags);
537 fsldma_free_desc_list(chan, &chan->ld_pending);
538 fsldma_free_desc_list(chan, &chan->ld_running);
539 spin_unlock_irqrestore(&chan->desc_lock, flags);
540
541 dma_pool_destroy(chan->desc_pool);
542 chan->desc_pool = NULL;
543 }
544
545 static struct dma_async_tx_descriptor *
546 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
547 {
548 struct fsldma_chan *chan;
549 struct fsl_desc_sw *new;
550
551 if (!dchan)
552 return NULL;
553
554 chan = to_fsl_chan(dchan);
555
556 new = fsl_dma_alloc_descriptor(chan);
557 if (!new) {
558 chan_err(chan, "%s\n", msg_ld_oom);
559 return NULL;
560 }
561
562 new->async_tx.cookie = -EBUSY;
563 new->async_tx.flags = flags;
564
565 /* Insert the link descriptor to the LD ring */
566 list_add_tail(&new->node, &new->tx_list);
567
568 /* Set End-of-link to the last link descriptor of new list */
569 set_ld_eol(chan, new);
570
571 return &new->async_tx;
572 }
573
574 static struct dma_async_tx_descriptor *
575 fsl_dma_prep_memcpy(struct dma_chan *dchan,
576 dma_addr_t dma_dst, dma_addr_t dma_src,
577 size_t len, unsigned long flags)
578 {
579 struct fsldma_chan *chan;
580 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
581 size_t copy;
582
583 if (!dchan)
584 return NULL;
585
586 if (!len)
587 return NULL;
588
589 chan = to_fsl_chan(dchan);
590
591 do {
592
593 /* Allocate the link descriptor from DMA pool */
594 new = fsl_dma_alloc_descriptor(chan);
595 if (!new) {
596 chan_err(chan, "%s\n", msg_ld_oom);
597 goto fail;
598 }
599
600 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
601
602 set_desc_cnt(chan, &new->hw, copy);
603 set_desc_src(chan, &new->hw, dma_src);
604 set_desc_dst(chan, &new->hw, dma_dst);
605
606 if (!first)
607 first = new;
608 else
609 set_desc_next(chan, &prev->hw, new->async_tx.phys);
610
611 new->async_tx.cookie = 0;
612 async_tx_ack(&new->async_tx);
613
614 prev = new;
615 len -= copy;
616 dma_src += copy;
617 dma_dst += copy;
618
619 /* Insert the link descriptor to the LD ring */
620 list_add_tail(&new->node, &first->tx_list);
621 } while (len);
622
623 new->async_tx.flags = flags; /* client is in control of this ack */
624 new->async_tx.cookie = -EBUSY;
625
626 /* Set End-of-link to the last link descriptor of new list */
627 set_ld_eol(chan, new);
628
629 return &first->async_tx;
630
631 fail:
632 if (!first)
633 return NULL;
634
635 fsldma_free_desc_list_reverse(chan, &first->tx_list);
636 return NULL;
637 }
638
639 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
640 struct scatterlist *dst_sg, unsigned int dst_nents,
641 struct scatterlist *src_sg, unsigned int src_nents,
642 unsigned long flags)
643 {
644 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
645 struct fsldma_chan *chan = to_fsl_chan(dchan);
646 size_t dst_avail, src_avail;
647 dma_addr_t dst, src;
648 size_t len;
649
650 /* basic sanity checks */
651 if (dst_nents == 0 || src_nents == 0)
652 return NULL;
653
654 if (dst_sg == NULL || src_sg == NULL)
655 return NULL;
656
657 /*
658 * TODO: should we check that both scatterlists have the same
659 * TODO: number of bytes in total? Is that really an error?
660 */
661
662 /* get prepared for the loop */
663 dst_avail = sg_dma_len(dst_sg);
664 src_avail = sg_dma_len(src_sg);
665
666 /* run until we are out of scatterlist entries */
667 while (true) {
668
669 /* create the largest transaction possible */
670 len = min_t(size_t, src_avail, dst_avail);
671 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
672 if (len == 0)
673 goto fetch;
674
675 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
676 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
677
678 /* allocate and populate the descriptor */
679 new = fsl_dma_alloc_descriptor(chan);
680 if (!new) {
681 chan_err(chan, "%s\n", msg_ld_oom);
682 goto fail;
683 }
684
685 set_desc_cnt(chan, &new->hw, len);
686 set_desc_src(chan, &new->hw, src);
687 set_desc_dst(chan, &new->hw, dst);
688
689 if (!first)
690 first = new;
691 else
692 set_desc_next(chan, &prev->hw, new->async_tx.phys);
693
694 new->async_tx.cookie = 0;
695 async_tx_ack(&new->async_tx);
696 prev = new;
697
698 /* Insert the link descriptor to the LD ring */
699 list_add_tail(&new->node, &first->tx_list);
700
701 /* update metadata */
702 dst_avail -= len;
703 src_avail -= len;
704
705 fetch:
706 /* fetch the next dst scatterlist entry */
707 if (dst_avail == 0) {
708
709 /* no more entries: we're done */
710 if (dst_nents == 0)
711 break;
712
713 /* fetch the next entry: if there are no more: done */
714 dst_sg = sg_next(dst_sg);
715 if (dst_sg == NULL)
716 break;
717
718 dst_nents--;
719 dst_avail = sg_dma_len(dst_sg);
720 }
721
722 /* fetch the next src scatterlist entry */
723 if (src_avail == 0) {
724
725 /* no more entries: we're done */
726 if (src_nents == 0)
727 break;
728
729 /* fetch the next entry: if there are no more: done */
730 src_sg = sg_next(src_sg);
731 if (src_sg == NULL)
732 break;
733
734 src_nents--;
735 src_avail = sg_dma_len(src_sg);
736 }
737 }
738
739 new->async_tx.flags = flags; /* client is in control of this ack */
740 new->async_tx.cookie = -EBUSY;
741
742 /* Set End-of-link to the last link descriptor of new list */
743 set_ld_eol(chan, new);
744
745 return &first->async_tx;
746
747 fail:
748 if (!first)
749 return NULL;
750
751 fsldma_free_desc_list_reverse(chan, &first->tx_list);
752 return NULL;
753 }
754
755 /**
756 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
757 * @chan: DMA channel
758 * @sgl: scatterlist to transfer to/from
759 * @sg_len: number of entries in @scatterlist
760 * @direction: DMA direction
761 * @flags: DMAEngine flags
762 *
763 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
764 * DMA_SLAVE API, this gets the device-specific information from the
765 * chan->private variable.
766 */
767 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
768 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
769 enum dma_transfer_direction direction, unsigned long flags)
770 {
771 /*
772 * This operation is not supported on the Freescale DMA controller
773 *
774 * However, we need to provide the function pointer to allow the
775 * device_control() method to work.
776 */
777 return NULL;
778 }
779
780 static int fsl_dma_device_control(struct dma_chan *dchan,
781 enum dma_ctrl_cmd cmd, unsigned long arg)
782 {
783 struct dma_slave_config *config;
784 struct fsldma_chan *chan;
785 unsigned long flags;
786 int size;
787
788 if (!dchan)
789 return -EINVAL;
790
791 chan = to_fsl_chan(dchan);
792
793 switch (cmd) {
794 case DMA_TERMINATE_ALL:
795 spin_lock_irqsave(&chan->desc_lock, flags);
796
797 /* Halt the DMA engine */
798 dma_halt(chan);
799
800 /* Remove and free all of the descriptors in the LD queue */
801 fsldma_free_desc_list(chan, &chan->ld_pending);
802 fsldma_free_desc_list(chan, &chan->ld_running);
803 chan->idle = true;
804
805 spin_unlock_irqrestore(&chan->desc_lock, flags);
806 return 0;
807
808 case DMA_SLAVE_CONFIG:
809 config = (struct dma_slave_config *)arg;
810
811 /* make sure the channel supports setting burst size */
812 if (!chan->set_request_count)
813 return -ENXIO;
814
815 /* we set the controller burst size depending on direction */
816 if (config->direction == DMA_MEM_TO_DEV)
817 size = config->dst_addr_width * config->dst_maxburst;
818 else
819 size = config->src_addr_width * config->src_maxburst;
820
821 chan->set_request_count(chan, size);
822 return 0;
823
824 case FSLDMA_EXTERNAL_START:
825
826 /* make sure the channel supports external start */
827 if (!chan->toggle_ext_start)
828 return -ENXIO;
829
830 chan->toggle_ext_start(chan, arg);
831 return 0;
832
833 default:
834 return -ENXIO;
835 }
836
837 return 0;
838 }
839
840 /**
841 * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
842 * @chan: Freescale DMA channel
843 * @desc: descriptor to cleanup and free
844 *
845 * This function is used on a descriptor which has been executed by the DMA
846 * controller. It will run any callbacks, submit any dependencies, and then
847 * free the descriptor.
848 */
849 static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
850 struct fsl_desc_sw *desc)
851 {
852 struct dma_async_tx_descriptor *txd = &desc->async_tx;
853 struct device *dev = chan->common.device->dev;
854 dma_addr_t src = get_desc_src(chan, desc);
855 dma_addr_t dst = get_desc_dst(chan, desc);
856 u32 len = get_desc_cnt(chan, desc);
857
858 /* Run the link descriptor callback function */
859 if (txd->callback) {
860 #ifdef FSL_DMA_LD_DEBUG
861 chan_dbg(chan, "LD %p callback\n", desc);
862 #endif
863 txd->callback(txd->callback_param);
864 }
865
866 /* Run any dependencies */
867 dma_run_dependencies(txd);
868
869 /* Unmap the dst buffer, if requested */
870 if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
871 if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
872 dma_unmap_single(dev, dst, len, DMA_FROM_DEVICE);
873 else
874 dma_unmap_page(dev, dst, len, DMA_FROM_DEVICE);
875 }
876
877 /* Unmap the src buffer, if requested */
878 if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
879 if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
880 dma_unmap_single(dev, src, len, DMA_TO_DEVICE);
881 else
882 dma_unmap_page(dev, src, len, DMA_TO_DEVICE);
883 }
884
885 #ifdef FSL_DMA_LD_DEBUG
886 chan_dbg(chan, "LD %p free\n", desc);
887 #endif
888 dma_pool_free(chan->desc_pool, desc, txd->phys);
889 }
890
891 /**
892 * fsl_chan_xfer_ld_queue - transfer any pending transactions
893 * @chan : Freescale DMA channel
894 *
895 * HARDWARE STATE: idle
896 * LOCKING: must hold chan->desc_lock
897 */
898 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
899 {
900 struct fsl_desc_sw *desc;
901
902 /*
903 * If the list of pending descriptors is empty, then we
904 * don't need to do any work at all
905 */
906 if (list_empty(&chan->ld_pending)) {
907 chan_dbg(chan, "no pending LDs\n");
908 return;
909 }
910
911 /*
912 * The DMA controller is not idle, which means that the interrupt
913 * handler will start any queued transactions when it runs after
914 * this transaction finishes
915 */
916 if (!chan->idle) {
917 chan_dbg(chan, "DMA controller still busy\n");
918 return;
919 }
920
921 /*
922 * If there are some link descriptors which have not been
923 * transferred, we need to start the controller
924 */
925
926 /*
927 * Move all elements from the queue of pending transactions
928 * onto the list of running transactions
929 */
930 chan_dbg(chan, "idle, starting controller\n");
931 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
932 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
933
934 /*
935 * The 85xx DMA controller doesn't clear the channel start bit
936 * automatically at the end of a transfer. Therefore we must clear
937 * it in software before starting the transfer.
938 */
939 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
940 u32 mode;
941
942 mode = DMA_IN(chan, &chan->regs->mr, 32);
943 mode &= ~FSL_DMA_MR_CS;
944 DMA_OUT(chan, &chan->regs->mr, mode, 32);
945 }
946
947 /*
948 * Program the descriptor's address into the DMA controller,
949 * then start the DMA transaction
950 */
951 set_cdar(chan, desc->async_tx.phys);
952 get_cdar(chan);
953
954 dma_start(chan);
955 chan->idle = false;
956 }
957
958 /**
959 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
960 * @chan : Freescale DMA channel
961 */
962 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
963 {
964 struct fsldma_chan *chan = to_fsl_chan(dchan);
965 unsigned long flags;
966
967 spin_lock_irqsave(&chan->desc_lock, flags);
968 fsl_chan_xfer_ld_queue(chan);
969 spin_unlock_irqrestore(&chan->desc_lock, flags);
970 }
971
972 /**
973 * fsl_tx_status - Determine the DMA status
974 * @chan : Freescale DMA channel
975 */
976 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
977 dma_cookie_t cookie,
978 struct dma_tx_state *txstate)
979 {
980 struct fsldma_chan *chan = to_fsl_chan(dchan);
981 enum dma_status ret;
982 unsigned long flags;
983
984 spin_lock_irqsave(&chan->desc_lock, flags);
985 ret = dma_cookie_status(dchan, cookie, txstate);
986 spin_unlock_irqrestore(&chan->desc_lock, flags);
987
988 return ret;
989 }
990
991 /*----------------------------------------------------------------------------*/
992 /* Interrupt Handling */
993 /*----------------------------------------------------------------------------*/
994
995 static irqreturn_t fsldma_chan_irq(int irq, void *data)
996 {
997 struct fsldma_chan *chan = data;
998 u32 stat;
999
1000 /* save and clear the status register */
1001 stat = get_sr(chan);
1002 set_sr(chan, stat);
1003 chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1004
1005 /* check that this was really our device */
1006 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1007 if (!stat)
1008 return IRQ_NONE;
1009
1010 if (stat & FSL_DMA_SR_TE)
1011 chan_err(chan, "Transfer Error!\n");
1012
1013 /*
1014 * Programming Error
1015 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1016 * triger a PE interrupt.
1017 */
1018 if (stat & FSL_DMA_SR_PE) {
1019 chan_dbg(chan, "irq: Programming Error INT\n");
1020 stat &= ~FSL_DMA_SR_PE;
1021 if (get_bcr(chan) != 0)
1022 chan_err(chan, "Programming Error!\n");
1023 }
1024
1025 /*
1026 * For MPC8349, EOCDI event need to update cookie
1027 * and start the next transfer if it exist.
1028 */
1029 if (stat & FSL_DMA_SR_EOCDI) {
1030 chan_dbg(chan, "irq: End-of-Chain link INT\n");
1031 stat &= ~FSL_DMA_SR_EOCDI;
1032 }
1033
1034 /*
1035 * If it current transfer is the end-of-transfer,
1036 * we should clear the Channel Start bit for
1037 * prepare next transfer.
1038 */
1039 if (stat & FSL_DMA_SR_EOLNI) {
1040 chan_dbg(chan, "irq: End-of-link INT\n");
1041 stat &= ~FSL_DMA_SR_EOLNI;
1042 }
1043
1044 /* check that the DMA controller is really idle */
1045 if (!dma_is_idle(chan))
1046 chan_err(chan, "irq: controller not idle!\n");
1047
1048 /* check that we handled all of the bits */
1049 if (stat)
1050 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1051
1052 /*
1053 * Schedule the tasklet to handle all cleanup of the current
1054 * transaction. It will start a new transaction if there is
1055 * one pending.
1056 */
1057 tasklet_schedule(&chan->tasklet);
1058 chan_dbg(chan, "irq: Exit\n");
1059 return IRQ_HANDLED;
1060 }
1061
1062 static void dma_do_tasklet(unsigned long data)
1063 {
1064 struct fsldma_chan *chan = (struct fsldma_chan *)data;
1065 struct fsl_desc_sw *desc, *_desc;
1066 LIST_HEAD(ld_cleanup);
1067 unsigned long flags;
1068
1069 chan_dbg(chan, "tasklet entry\n");
1070
1071 spin_lock_irqsave(&chan->desc_lock, flags);
1072
1073 /* update the cookie if we have some descriptors to cleanup */
1074 if (!list_empty(&chan->ld_running)) {
1075 dma_cookie_t cookie;
1076
1077 desc = to_fsl_desc(chan->ld_running.prev);
1078 cookie = desc->async_tx.cookie;
1079 dma_cookie_complete(&desc->async_tx);
1080
1081 chan_dbg(chan, "completed_cookie=%d\n", cookie);
1082 }
1083
1084 /*
1085 * move the descriptors to a temporary list so we can drop the lock
1086 * during the entire cleanup operation
1087 */
1088 list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1089
1090 /* the hardware is now idle and ready for more */
1091 chan->idle = true;
1092
1093 /*
1094 * Start any pending transactions automatically
1095 *
1096 * In the ideal case, we keep the DMA controller busy while we go
1097 * ahead and free the descriptors below.
1098 */
1099 fsl_chan_xfer_ld_queue(chan);
1100 spin_unlock_irqrestore(&chan->desc_lock, flags);
1101
1102 /* Run the callback for each descriptor, in order */
1103 list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1104
1105 /* Remove from the list of transactions */
1106 list_del(&desc->node);
1107
1108 /* Run all cleanup for this descriptor */
1109 fsldma_cleanup_descriptor(chan, desc);
1110 }
1111
1112 chan_dbg(chan, "tasklet exit\n");
1113 }
1114
1115 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1116 {
1117 struct fsldma_device *fdev = data;
1118 struct fsldma_chan *chan;
1119 unsigned int handled = 0;
1120 u32 gsr, mask;
1121 int i;
1122
1123 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1124 : in_le32(fdev->regs);
1125 mask = 0xff000000;
1126 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1127
1128 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1129 chan = fdev->chan[i];
1130 if (!chan)
1131 continue;
1132
1133 if (gsr & mask) {
1134 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1135 fsldma_chan_irq(irq, chan);
1136 handled++;
1137 }
1138
1139 gsr &= ~mask;
1140 mask >>= 8;
1141 }
1142
1143 return IRQ_RETVAL(handled);
1144 }
1145
1146 static void fsldma_free_irqs(struct fsldma_device *fdev)
1147 {
1148 struct fsldma_chan *chan;
1149 int i;
1150
1151 if (fdev->irq != NO_IRQ) {
1152 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1153 free_irq(fdev->irq, fdev);
1154 return;
1155 }
1156
1157 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1158 chan = fdev->chan[i];
1159 if (chan && chan->irq != NO_IRQ) {
1160 chan_dbg(chan, "free per-channel IRQ\n");
1161 free_irq(chan->irq, chan);
1162 }
1163 }
1164 }
1165
1166 static int fsldma_request_irqs(struct fsldma_device *fdev)
1167 {
1168 struct fsldma_chan *chan;
1169 int ret;
1170 int i;
1171
1172 /* if we have a per-controller IRQ, use that */
1173 if (fdev->irq != NO_IRQ) {
1174 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1175 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1176 "fsldma-controller", fdev);
1177 return ret;
1178 }
1179
1180 /* no per-controller IRQ, use the per-channel IRQs */
1181 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1182 chan = fdev->chan[i];
1183 if (!chan)
1184 continue;
1185
1186 if (chan->irq == NO_IRQ) {
1187 chan_err(chan, "interrupts property missing in device tree\n");
1188 ret = -ENODEV;
1189 goto out_unwind;
1190 }
1191
1192 chan_dbg(chan, "request per-channel IRQ\n");
1193 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1194 "fsldma-chan", chan);
1195 if (ret) {
1196 chan_err(chan, "unable to request per-channel IRQ\n");
1197 goto out_unwind;
1198 }
1199 }
1200
1201 return 0;
1202
1203 out_unwind:
1204 for (/* none */; i >= 0; i--) {
1205 chan = fdev->chan[i];
1206 if (!chan)
1207 continue;
1208
1209 if (chan->irq == NO_IRQ)
1210 continue;
1211
1212 free_irq(chan->irq, chan);
1213 }
1214
1215 return ret;
1216 }
1217
1218 /*----------------------------------------------------------------------------*/
1219 /* OpenFirmware Subsystem */
1220 /*----------------------------------------------------------------------------*/
1221
1222 static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
1223 struct device_node *node, u32 feature, const char *compatible)
1224 {
1225 struct fsldma_chan *chan;
1226 struct resource res;
1227 int err;
1228
1229 /* alloc channel */
1230 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1231 if (!chan) {
1232 dev_err(fdev->dev, "no free memory for DMA channels!\n");
1233 err = -ENOMEM;
1234 goto out_return;
1235 }
1236
1237 /* ioremap registers for use */
1238 chan->regs = of_iomap(node, 0);
1239 if (!chan->regs) {
1240 dev_err(fdev->dev, "unable to ioremap registers\n");
1241 err = -ENOMEM;
1242 goto out_free_chan;
1243 }
1244
1245 err = of_address_to_resource(node, 0, &res);
1246 if (err) {
1247 dev_err(fdev->dev, "unable to find 'reg' property\n");
1248 goto out_iounmap_regs;
1249 }
1250
1251 chan->feature = feature;
1252 if (!fdev->feature)
1253 fdev->feature = chan->feature;
1254
1255 /*
1256 * If the DMA device's feature is different than the feature
1257 * of its channels, report the bug
1258 */
1259 WARN_ON(fdev->feature != chan->feature);
1260
1261 chan->dev = fdev->dev;
1262 chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1263 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1264 dev_err(fdev->dev, "too many channels for device\n");
1265 err = -EINVAL;
1266 goto out_iounmap_regs;
1267 }
1268
1269 fdev->chan[chan->id] = chan;
1270 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1271 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1272
1273 /* Initialize the channel */
1274 dma_init(chan);
1275
1276 /* Clear cdar registers */
1277 set_cdar(chan, 0);
1278
1279 switch (chan->feature & FSL_DMA_IP_MASK) {
1280 case FSL_DMA_IP_85XX:
1281 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1282 case FSL_DMA_IP_83XX:
1283 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1284 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1285 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1286 chan->set_request_count = fsl_chan_set_request_count;
1287 }
1288
1289 spin_lock_init(&chan->desc_lock);
1290 INIT_LIST_HEAD(&chan->ld_pending);
1291 INIT_LIST_HEAD(&chan->ld_running);
1292 chan->idle = true;
1293
1294 chan->common.device = &fdev->common;
1295 dma_cookie_init(&chan->common);
1296
1297 /* find the IRQ line, if it exists in the device tree */
1298 chan->irq = irq_of_parse_and_map(node, 0);
1299
1300 /* Add the channel to DMA device channel list */
1301 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1302 fdev->common.chancnt++;
1303
1304 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1305 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1306
1307 return 0;
1308
1309 out_iounmap_regs:
1310 iounmap(chan->regs);
1311 out_free_chan:
1312 kfree(chan);
1313 out_return:
1314 return err;
1315 }
1316
1317 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1318 {
1319 irq_dispose_mapping(chan->irq);
1320 list_del(&chan->common.device_node);
1321 iounmap(chan->regs);
1322 kfree(chan);
1323 }
1324
1325 static int __devinit fsldma_of_probe(struct platform_device *op)
1326 {
1327 struct fsldma_device *fdev;
1328 struct device_node *child;
1329 int err;
1330
1331 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1332 if (!fdev) {
1333 dev_err(&op->dev, "No enough memory for 'priv'\n");
1334 err = -ENOMEM;
1335 goto out_return;
1336 }
1337
1338 fdev->dev = &op->dev;
1339 INIT_LIST_HEAD(&fdev->common.channels);
1340
1341 /* ioremap the registers for use */
1342 fdev->regs = of_iomap(op->dev.of_node, 0);
1343 if (!fdev->regs) {
1344 dev_err(&op->dev, "unable to ioremap registers\n");
1345 err = -ENOMEM;
1346 goto out_free_fdev;
1347 }
1348
1349 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1350 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1351
1352 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1353 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1354 dma_cap_set(DMA_SG, fdev->common.cap_mask);
1355 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1356 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1357 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1358 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1359 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1360 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1361 fdev->common.device_tx_status = fsl_tx_status;
1362 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1363 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1364 fdev->common.device_control = fsl_dma_device_control;
1365 fdev->common.dev = &op->dev;
1366
1367 dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1368
1369 dev_set_drvdata(&op->dev, fdev);
1370
1371 /*
1372 * We cannot use of_platform_bus_probe() because there is no
1373 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1374 * channel object.
1375 */
1376 for_each_child_of_node(op->dev.of_node, child) {
1377 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1378 fsl_dma_chan_probe(fdev, child,
1379 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1380 "fsl,eloplus-dma-channel");
1381 }
1382
1383 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1384 fsl_dma_chan_probe(fdev, child,
1385 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1386 "fsl,elo-dma-channel");
1387 }
1388 }
1389
1390 /*
1391 * Hookup the IRQ handler(s)
1392 *
1393 * If we have a per-controller interrupt, we prefer that to the
1394 * per-channel interrupts to reduce the number of shared interrupt
1395 * handlers on the same IRQ line
1396 */
1397 err = fsldma_request_irqs(fdev);
1398 if (err) {
1399 dev_err(fdev->dev, "unable to request IRQs\n");
1400 goto out_free_fdev;
1401 }
1402
1403 dma_async_device_register(&fdev->common);
1404 return 0;
1405
1406 out_free_fdev:
1407 irq_dispose_mapping(fdev->irq);
1408 kfree(fdev);
1409 out_return:
1410 return err;
1411 }
1412
1413 static int fsldma_of_remove(struct platform_device *op)
1414 {
1415 struct fsldma_device *fdev;
1416 unsigned int i;
1417
1418 fdev = dev_get_drvdata(&op->dev);
1419 dma_async_device_unregister(&fdev->common);
1420
1421 fsldma_free_irqs(fdev);
1422
1423 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1424 if (fdev->chan[i])
1425 fsl_dma_chan_remove(fdev->chan[i]);
1426 }
1427
1428 iounmap(fdev->regs);
1429 dev_set_drvdata(&op->dev, NULL);
1430 kfree(fdev);
1431
1432 return 0;
1433 }
1434
1435 static const struct of_device_id fsldma_of_ids[] = {
1436 { .compatible = "fsl,eloplus-dma", },
1437 { .compatible = "fsl,elo-dma", },
1438 {}
1439 };
1440
1441 static struct platform_driver fsldma_of_driver = {
1442 .driver = {
1443 .name = "fsl-elo-dma",
1444 .owner = THIS_MODULE,
1445 .of_match_table = fsldma_of_ids,
1446 },
1447 .probe = fsldma_of_probe,
1448 .remove = fsldma_of_remove,
1449 };
1450
1451 /*----------------------------------------------------------------------------*/
1452 /* Module Init / Exit */
1453 /*----------------------------------------------------------------------------*/
1454
1455 static __init int fsldma_init(void)
1456 {
1457 pr_info("Freescale Elo / Elo Plus DMA driver\n");
1458 return platform_driver_register(&fsldma_of_driver);
1459 }
1460
1461 static void __exit fsldma_exit(void)
1462 {
1463 platform_driver_unregister(&fsldma_of_driver);
1464 }
1465
1466 subsys_initcall(fsldma_init);
1467 module_exit(fsldma_exit);
1468
1469 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1470 MODULE_LICENSE("GPL");
This page took 0.070628 seconds and 5 git commands to generate.