Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec...
[deliverable/linux.git] / drivers / dma / fsldma.c
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
3 *
4 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
5 *
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9 *
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
14 *
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
19 *
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
24 *
25 */
26
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_platform.h>
37
38 #include "fsldma.h"
39
40 static const char msg_ld_oom[] = "No free memory for link descriptor\n";
41
42 static void dma_init(struct fsldma_chan *chan)
43 {
44 /* Reset the channel */
45 DMA_OUT(chan, &chan->regs->mr, 0, 32);
46
47 switch (chan->feature & FSL_DMA_IP_MASK) {
48 case FSL_DMA_IP_85XX:
49 /* Set the channel to below modes:
50 * EIE - Error interrupt enable
51 * EOSIE - End of segments interrupt enable (basic mode)
52 * EOLNIE - End of links interrupt enable
53 * BWC - Bandwidth sharing among channels
54 */
55 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
56 | FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE
57 | FSL_DMA_MR_EOSIE, 32);
58 break;
59 case FSL_DMA_IP_83XX:
60 /* Set the channel to below modes:
61 * EOTIE - End-of-transfer interrupt enable
62 * PRC_RM - PCI read multiple
63 */
64 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
65 | FSL_DMA_MR_PRC_RM, 32);
66 break;
67 }
68 }
69
70 static void set_sr(struct fsldma_chan *chan, u32 val)
71 {
72 DMA_OUT(chan, &chan->regs->sr, val, 32);
73 }
74
75 static u32 get_sr(struct fsldma_chan *chan)
76 {
77 return DMA_IN(chan, &chan->regs->sr, 32);
78 }
79
80 static void set_desc_cnt(struct fsldma_chan *chan,
81 struct fsl_dma_ld_hw *hw, u32 count)
82 {
83 hw->count = CPU_TO_DMA(chan, count, 32);
84 }
85
86 static void set_desc_src(struct fsldma_chan *chan,
87 struct fsl_dma_ld_hw *hw, dma_addr_t src)
88 {
89 u64 snoop_bits;
90
91 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
92 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
93 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
94 }
95
96 static void set_desc_dst(struct fsldma_chan *chan,
97 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
98 {
99 u64 snoop_bits;
100
101 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
102 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
103 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
104 }
105
106 static void set_desc_next(struct fsldma_chan *chan,
107 struct fsl_dma_ld_hw *hw, dma_addr_t next)
108 {
109 u64 snoop_bits;
110
111 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
112 ? FSL_DMA_SNEN : 0;
113 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
114 }
115
116 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
117 {
118 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
119 }
120
121 static dma_addr_t get_cdar(struct fsldma_chan *chan)
122 {
123 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
124 }
125
126 static dma_addr_t get_ndar(struct fsldma_chan *chan)
127 {
128 return DMA_IN(chan, &chan->regs->ndar, 64);
129 }
130
131 static u32 get_bcr(struct fsldma_chan *chan)
132 {
133 return DMA_IN(chan, &chan->regs->bcr, 32);
134 }
135
136 static int dma_is_idle(struct fsldma_chan *chan)
137 {
138 u32 sr = get_sr(chan);
139 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
140 }
141
142 static void dma_start(struct fsldma_chan *chan)
143 {
144 u32 mode;
145
146 mode = DMA_IN(chan, &chan->regs->mr, 32);
147
148 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
149 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
150 DMA_OUT(chan, &chan->regs->bcr, 0, 32);
151 mode |= FSL_DMA_MR_EMP_EN;
152 } else {
153 mode &= ~FSL_DMA_MR_EMP_EN;
154 }
155 }
156
157 if (chan->feature & FSL_DMA_CHAN_START_EXT)
158 mode |= FSL_DMA_MR_EMS_EN;
159 else
160 mode |= FSL_DMA_MR_CS;
161
162 DMA_OUT(chan, &chan->regs->mr, mode, 32);
163 }
164
165 static void dma_halt(struct fsldma_chan *chan)
166 {
167 u32 mode;
168 int i;
169
170 mode = DMA_IN(chan, &chan->regs->mr, 32);
171 mode |= FSL_DMA_MR_CA;
172 DMA_OUT(chan, &chan->regs->mr, mode, 32);
173
174 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA);
175 DMA_OUT(chan, &chan->regs->mr, mode, 32);
176
177 for (i = 0; i < 100; i++) {
178 if (dma_is_idle(chan))
179 return;
180
181 udelay(10);
182 }
183
184 if (!dma_is_idle(chan))
185 dev_err(chan->dev, "DMA halt timeout!\n");
186 }
187
188 static void set_ld_eol(struct fsldma_chan *chan,
189 struct fsl_desc_sw *desc)
190 {
191 u64 snoop_bits;
192
193 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
194 ? FSL_DMA_SNEN : 0;
195
196 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
197 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
198 | snoop_bits, 64);
199 }
200
201 /**
202 * fsl_chan_set_src_loop_size - Set source address hold transfer size
203 * @chan : Freescale DMA channel
204 * @size : Address loop size, 0 for disable loop
205 *
206 * The set source address hold transfer size. The source
207 * address hold or loop transfer size is when the DMA transfer
208 * data from source address (SA), if the loop size is 4, the DMA will
209 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
210 * SA + 1 ... and so on.
211 */
212 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
213 {
214 u32 mode;
215
216 mode = DMA_IN(chan, &chan->regs->mr, 32);
217
218 switch (size) {
219 case 0:
220 mode &= ~FSL_DMA_MR_SAHE;
221 break;
222 case 1:
223 case 2:
224 case 4:
225 case 8:
226 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
227 break;
228 }
229
230 DMA_OUT(chan, &chan->regs->mr, mode, 32);
231 }
232
233 /**
234 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
235 * @chan : Freescale DMA channel
236 * @size : Address loop size, 0 for disable loop
237 *
238 * The set destination address hold transfer size. The destination
239 * address hold or loop transfer size is when the DMA transfer
240 * data to destination address (TA), if the loop size is 4, the DMA will
241 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
242 * TA + 1 ... and so on.
243 */
244 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
245 {
246 u32 mode;
247
248 mode = DMA_IN(chan, &chan->regs->mr, 32);
249
250 switch (size) {
251 case 0:
252 mode &= ~FSL_DMA_MR_DAHE;
253 break;
254 case 1:
255 case 2:
256 case 4:
257 case 8:
258 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
259 break;
260 }
261
262 DMA_OUT(chan, &chan->regs->mr, mode, 32);
263 }
264
265 /**
266 * fsl_chan_set_request_count - Set DMA Request Count for external control
267 * @chan : Freescale DMA channel
268 * @size : Number of bytes to transfer in a single request
269 *
270 * The Freescale DMA channel can be controlled by the external signal DREQ#.
271 * The DMA request count is how many bytes are allowed to transfer before
272 * pausing the channel, after which a new assertion of DREQ# resumes channel
273 * operation.
274 *
275 * A size of 0 disables external pause control. The maximum size is 1024.
276 */
277 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
278 {
279 u32 mode;
280
281 BUG_ON(size > 1024);
282
283 mode = DMA_IN(chan, &chan->regs->mr, 32);
284 mode |= (__ilog2(size) << 24) & 0x0f000000;
285
286 DMA_OUT(chan, &chan->regs->mr, mode, 32);
287 }
288
289 /**
290 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
291 * @chan : Freescale DMA channel
292 * @enable : 0 is disabled, 1 is enabled.
293 *
294 * The Freescale DMA channel can be controlled by the external signal DREQ#.
295 * The DMA Request Count feature should be used in addition to this feature
296 * to set the number of bytes to transfer before pausing the channel.
297 */
298 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
299 {
300 if (enable)
301 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
302 else
303 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
304 }
305
306 /**
307 * fsl_chan_toggle_ext_start - Toggle channel external start status
308 * @chan : Freescale DMA channel
309 * @enable : 0 is disabled, 1 is enabled.
310 *
311 * If enable the external start, the channel can be started by an
312 * external DMA start pin. So the dma_start() does not start the
313 * transfer immediately. The DMA channel will wait for the
314 * control pin asserted.
315 */
316 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
317 {
318 if (enable)
319 chan->feature |= FSL_DMA_CHAN_START_EXT;
320 else
321 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
322 }
323
324 static void append_ld_queue(struct fsldma_chan *chan,
325 struct fsl_desc_sw *desc)
326 {
327 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
328
329 if (list_empty(&chan->ld_pending))
330 goto out_splice;
331
332 /*
333 * Add the hardware descriptor to the chain of hardware descriptors
334 * that already exists in memory.
335 *
336 * This will un-set the EOL bit of the existing transaction, and the
337 * last link in this transaction will become the EOL descriptor.
338 */
339 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
340
341 /*
342 * Add the software descriptor and all children to the list
343 * of pending transactions
344 */
345 out_splice:
346 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
347 }
348
349 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
350 {
351 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
352 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
353 struct fsl_desc_sw *child;
354 unsigned long flags;
355 dma_cookie_t cookie;
356
357 spin_lock_irqsave(&chan->desc_lock, flags);
358
359 /*
360 * assign cookies to all of the software descriptors
361 * that make up this transaction
362 */
363 cookie = chan->common.cookie;
364 list_for_each_entry(child, &desc->tx_list, node) {
365 cookie++;
366 if (cookie < 0)
367 cookie = 1;
368
369 child->async_tx.cookie = cookie;
370 }
371
372 chan->common.cookie = cookie;
373
374 /* put this transaction onto the tail of the pending queue */
375 append_ld_queue(chan, desc);
376
377 spin_unlock_irqrestore(&chan->desc_lock, flags);
378
379 return cookie;
380 }
381
382 /**
383 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
384 * @chan : Freescale DMA channel
385 *
386 * Return - The descriptor allocated. NULL for failed.
387 */
388 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
389 struct fsldma_chan *chan)
390 {
391 struct fsl_desc_sw *desc;
392 dma_addr_t pdesc;
393
394 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
395 if (!desc) {
396 dev_dbg(chan->dev, "out of memory for link desc\n");
397 return NULL;
398 }
399
400 memset(desc, 0, sizeof(*desc));
401 INIT_LIST_HEAD(&desc->tx_list);
402 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
403 desc->async_tx.tx_submit = fsl_dma_tx_submit;
404 desc->async_tx.phys = pdesc;
405
406 return desc;
407 }
408
409
410 /**
411 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
412 * @chan : Freescale DMA channel
413 *
414 * This function will create a dma pool for descriptor allocation.
415 *
416 * Return - The number of descriptors allocated.
417 */
418 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
419 {
420 struct fsldma_chan *chan = to_fsl_chan(dchan);
421
422 /* Has this channel already been allocated? */
423 if (chan->desc_pool)
424 return 1;
425
426 /*
427 * We need the descriptor to be aligned to 32bytes
428 * for meeting FSL DMA specification requirement.
429 */
430 chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
431 chan->dev,
432 sizeof(struct fsl_desc_sw),
433 __alignof__(struct fsl_desc_sw), 0);
434 if (!chan->desc_pool) {
435 dev_err(chan->dev, "unable to allocate channel %d "
436 "descriptor pool\n", chan->id);
437 return -ENOMEM;
438 }
439
440 /* there is at least one descriptor free to be allocated */
441 return 1;
442 }
443
444 /**
445 * fsldma_free_desc_list - Free all descriptors in a queue
446 * @chan: Freescae DMA channel
447 * @list: the list to free
448 *
449 * LOCKING: must hold chan->desc_lock
450 */
451 static void fsldma_free_desc_list(struct fsldma_chan *chan,
452 struct list_head *list)
453 {
454 struct fsl_desc_sw *desc, *_desc;
455
456 list_for_each_entry_safe(desc, _desc, list, node) {
457 list_del(&desc->node);
458 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
459 }
460 }
461
462 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
463 struct list_head *list)
464 {
465 struct fsl_desc_sw *desc, *_desc;
466
467 list_for_each_entry_safe_reverse(desc, _desc, list, node) {
468 list_del(&desc->node);
469 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
470 }
471 }
472
473 /**
474 * fsl_dma_free_chan_resources - Free all resources of the channel.
475 * @chan : Freescale DMA channel
476 */
477 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
478 {
479 struct fsldma_chan *chan = to_fsl_chan(dchan);
480 unsigned long flags;
481
482 dev_dbg(chan->dev, "Free all channel resources.\n");
483 spin_lock_irqsave(&chan->desc_lock, flags);
484 fsldma_free_desc_list(chan, &chan->ld_pending);
485 fsldma_free_desc_list(chan, &chan->ld_running);
486 spin_unlock_irqrestore(&chan->desc_lock, flags);
487
488 dma_pool_destroy(chan->desc_pool);
489 chan->desc_pool = NULL;
490 }
491
492 static struct dma_async_tx_descriptor *
493 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
494 {
495 struct fsldma_chan *chan;
496 struct fsl_desc_sw *new;
497
498 if (!dchan)
499 return NULL;
500
501 chan = to_fsl_chan(dchan);
502
503 new = fsl_dma_alloc_descriptor(chan);
504 if (!new) {
505 dev_err(chan->dev, msg_ld_oom);
506 return NULL;
507 }
508
509 new->async_tx.cookie = -EBUSY;
510 new->async_tx.flags = flags;
511
512 /* Insert the link descriptor to the LD ring */
513 list_add_tail(&new->node, &new->tx_list);
514
515 /* Set End-of-link to the last link descriptor of new list*/
516 set_ld_eol(chan, new);
517
518 return &new->async_tx;
519 }
520
521 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
522 struct dma_chan *dchan, dma_addr_t dma_dst, dma_addr_t dma_src,
523 size_t len, unsigned long flags)
524 {
525 struct fsldma_chan *chan;
526 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
527 size_t copy;
528
529 if (!dchan)
530 return NULL;
531
532 if (!len)
533 return NULL;
534
535 chan = to_fsl_chan(dchan);
536
537 do {
538
539 /* Allocate the link descriptor from DMA pool */
540 new = fsl_dma_alloc_descriptor(chan);
541 if (!new) {
542 dev_err(chan->dev, msg_ld_oom);
543 goto fail;
544 }
545 #ifdef FSL_DMA_LD_DEBUG
546 dev_dbg(chan->dev, "new link desc alloc %p\n", new);
547 #endif
548
549 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
550
551 set_desc_cnt(chan, &new->hw, copy);
552 set_desc_src(chan, &new->hw, dma_src);
553 set_desc_dst(chan, &new->hw, dma_dst);
554
555 if (!first)
556 first = new;
557 else
558 set_desc_next(chan, &prev->hw, new->async_tx.phys);
559
560 new->async_tx.cookie = 0;
561 async_tx_ack(&new->async_tx);
562
563 prev = new;
564 len -= copy;
565 dma_src += copy;
566 dma_dst += copy;
567
568 /* Insert the link descriptor to the LD ring */
569 list_add_tail(&new->node, &first->tx_list);
570 } while (len);
571
572 new->async_tx.flags = flags; /* client is in control of this ack */
573 new->async_tx.cookie = -EBUSY;
574
575 /* Set End-of-link to the last link descriptor of new list*/
576 set_ld_eol(chan, new);
577
578 return &first->async_tx;
579
580 fail:
581 if (!first)
582 return NULL;
583
584 fsldma_free_desc_list_reverse(chan, &first->tx_list);
585 return NULL;
586 }
587
588 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
589 struct scatterlist *dst_sg, unsigned int dst_nents,
590 struct scatterlist *src_sg, unsigned int src_nents,
591 unsigned long flags)
592 {
593 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
594 struct fsldma_chan *chan = to_fsl_chan(dchan);
595 size_t dst_avail, src_avail;
596 dma_addr_t dst, src;
597 size_t len;
598
599 /* basic sanity checks */
600 if (dst_nents == 0 || src_nents == 0)
601 return NULL;
602
603 if (dst_sg == NULL || src_sg == NULL)
604 return NULL;
605
606 /*
607 * TODO: should we check that both scatterlists have the same
608 * TODO: number of bytes in total? Is that really an error?
609 */
610
611 /* get prepared for the loop */
612 dst_avail = sg_dma_len(dst_sg);
613 src_avail = sg_dma_len(src_sg);
614
615 /* run until we are out of scatterlist entries */
616 while (true) {
617
618 /* create the largest transaction possible */
619 len = min_t(size_t, src_avail, dst_avail);
620 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
621 if (len == 0)
622 goto fetch;
623
624 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
625 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
626
627 /* allocate and populate the descriptor */
628 new = fsl_dma_alloc_descriptor(chan);
629 if (!new) {
630 dev_err(chan->dev, msg_ld_oom);
631 goto fail;
632 }
633 #ifdef FSL_DMA_LD_DEBUG
634 dev_dbg(chan->dev, "new link desc alloc %p\n", new);
635 #endif
636
637 set_desc_cnt(chan, &new->hw, len);
638 set_desc_src(chan, &new->hw, src);
639 set_desc_dst(chan, &new->hw, dst);
640
641 if (!first)
642 first = new;
643 else
644 set_desc_next(chan, &prev->hw, new->async_tx.phys);
645
646 new->async_tx.cookie = 0;
647 async_tx_ack(&new->async_tx);
648 prev = new;
649
650 /* Insert the link descriptor to the LD ring */
651 list_add_tail(&new->node, &first->tx_list);
652
653 /* update metadata */
654 dst_avail -= len;
655 src_avail -= len;
656
657 fetch:
658 /* fetch the next dst scatterlist entry */
659 if (dst_avail == 0) {
660
661 /* no more entries: we're done */
662 if (dst_nents == 0)
663 break;
664
665 /* fetch the next entry: if there are no more: done */
666 dst_sg = sg_next(dst_sg);
667 if (dst_sg == NULL)
668 break;
669
670 dst_nents--;
671 dst_avail = sg_dma_len(dst_sg);
672 }
673
674 /* fetch the next src scatterlist entry */
675 if (src_avail == 0) {
676
677 /* no more entries: we're done */
678 if (src_nents == 0)
679 break;
680
681 /* fetch the next entry: if there are no more: done */
682 src_sg = sg_next(src_sg);
683 if (src_sg == NULL)
684 break;
685
686 src_nents--;
687 src_avail = sg_dma_len(src_sg);
688 }
689 }
690
691 new->async_tx.flags = flags; /* client is in control of this ack */
692 new->async_tx.cookie = -EBUSY;
693
694 /* Set End-of-link to the last link descriptor of new list */
695 set_ld_eol(chan, new);
696
697 return &first->async_tx;
698
699 fail:
700 if (!first)
701 return NULL;
702
703 fsldma_free_desc_list_reverse(chan, &first->tx_list);
704 return NULL;
705 }
706
707 /**
708 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
709 * @chan: DMA channel
710 * @sgl: scatterlist to transfer to/from
711 * @sg_len: number of entries in @scatterlist
712 * @direction: DMA direction
713 * @flags: DMAEngine flags
714 *
715 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
716 * DMA_SLAVE API, this gets the device-specific information from the
717 * chan->private variable.
718 */
719 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
720 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
721 enum dma_data_direction direction, unsigned long flags)
722 {
723 /*
724 * This operation is not supported on the Freescale DMA controller
725 *
726 * However, we need to provide the function pointer to allow the
727 * device_control() method to work.
728 */
729 return NULL;
730 }
731
732 static int fsl_dma_device_control(struct dma_chan *dchan,
733 enum dma_ctrl_cmd cmd, unsigned long arg)
734 {
735 struct dma_slave_config *config;
736 struct fsldma_chan *chan;
737 unsigned long flags;
738 int size;
739
740 if (!dchan)
741 return -EINVAL;
742
743 chan = to_fsl_chan(dchan);
744
745 switch (cmd) {
746 case DMA_TERMINATE_ALL:
747 /* Halt the DMA engine */
748 dma_halt(chan);
749
750 spin_lock_irqsave(&chan->desc_lock, flags);
751
752 /* Remove and free all of the descriptors in the LD queue */
753 fsldma_free_desc_list(chan, &chan->ld_pending);
754 fsldma_free_desc_list(chan, &chan->ld_running);
755
756 spin_unlock_irqrestore(&chan->desc_lock, flags);
757 return 0;
758
759 case DMA_SLAVE_CONFIG:
760 config = (struct dma_slave_config *)arg;
761
762 /* make sure the channel supports setting burst size */
763 if (!chan->set_request_count)
764 return -ENXIO;
765
766 /* we set the controller burst size depending on direction */
767 if (config->direction == DMA_TO_DEVICE)
768 size = config->dst_addr_width * config->dst_maxburst;
769 else
770 size = config->src_addr_width * config->src_maxburst;
771
772 chan->set_request_count(chan, size);
773 return 0;
774
775 case FSLDMA_EXTERNAL_START:
776
777 /* make sure the channel supports external start */
778 if (!chan->toggle_ext_start)
779 return -ENXIO;
780
781 chan->toggle_ext_start(chan, arg);
782 return 0;
783
784 default:
785 return -ENXIO;
786 }
787
788 return 0;
789 }
790
791 /**
792 * fsl_dma_update_completed_cookie - Update the completed cookie.
793 * @chan : Freescale DMA channel
794 *
795 * CONTEXT: hardirq
796 */
797 static void fsl_dma_update_completed_cookie(struct fsldma_chan *chan)
798 {
799 struct fsl_desc_sw *desc;
800 unsigned long flags;
801 dma_cookie_t cookie;
802
803 spin_lock_irqsave(&chan->desc_lock, flags);
804
805 if (list_empty(&chan->ld_running)) {
806 dev_dbg(chan->dev, "no running descriptors\n");
807 goto out_unlock;
808 }
809
810 /* Get the last descriptor, update the cookie to that */
811 desc = to_fsl_desc(chan->ld_running.prev);
812 if (dma_is_idle(chan))
813 cookie = desc->async_tx.cookie;
814 else {
815 cookie = desc->async_tx.cookie - 1;
816 if (unlikely(cookie < DMA_MIN_COOKIE))
817 cookie = DMA_MAX_COOKIE;
818 }
819
820 chan->completed_cookie = cookie;
821
822 out_unlock:
823 spin_unlock_irqrestore(&chan->desc_lock, flags);
824 }
825
826 /**
827 * fsldma_desc_status - Check the status of a descriptor
828 * @chan: Freescale DMA channel
829 * @desc: DMA SW descriptor
830 *
831 * This function will return the status of the given descriptor
832 */
833 static enum dma_status fsldma_desc_status(struct fsldma_chan *chan,
834 struct fsl_desc_sw *desc)
835 {
836 return dma_async_is_complete(desc->async_tx.cookie,
837 chan->completed_cookie,
838 chan->common.cookie);
839 }
840
841 /**
842 * fsl_chan_ld_cleanup - Clean up link descriptors
843 * @chan : Freescale DMA channel
844 *
845 * This function clean up the ld_queue of DMA channel.
846 */
847 static void fsl_chan_ld_cleanup(struct fsldma_chan *chan)
848 {
849 struct fsl_desc_sw *desc, *_desc;
850 unsigned long flags;
851
852 spin_lock_irqsave(&chan->desc_lock, flags);
853
854 dev_dbg(chan->dev, "chan completed_cookie = %d\n", chan->completed_cookie);
855 list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
856 dma_async_tx_callback callback;
857 void *callback_param;
858
859 if (fsldma_desc_status(chan, desc) == DMA_IN_PROGRESS)
860 break;
861
862 /* Remove from the list of running transactions */
863 list_del(&desc->node);
864
865 /* Run the link descriptor callback function */
866 callback = desc->async_tx.callback;
867 callback_param = desc->async_tx.callback_param;
868 if (callback) {
869 spin_unlock_irqrestore(&chan->desc_lock, flags);
870 dev_dbg(chan->dev, "LD %p callback\n", desc);
871 callback(callback_param);
872 spin_lock_irqsave(&chan->desc_lock, flags);
873 }
874
875 /* Run any dependencies, then free the descriptor */
876 dma_run_dependencies(&desc->async_tx);
877 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
878 }
879
880 spin_unlock_irqrestore(&chan->desc_lock, flags);
881 }
882
883 /**
884 * fsl_chan_xfer_ld_queue - transfer any pending transactions
885 * @chan : Freescale DMA channel
886 *
887 * This will make sure that any pending transactions will be run.
888 * If the DMA controller is idle, it will be started. Otherwise,
889 * the DMA controller's interrupt handler will start any pending
890 * transactions when it becomes idle.
891 */
892 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
893 {
894 struct fsl_desc_sw *desc;
895 unsigned long flags;
896
897 spin_lock_irqsave(&chan->desc_lock, flags);
898
899 /*
900 * If the list of pending descriptors is empty, then we
901 * don't need to do any work at all
902 */
903 if (list_empty(&chan->ld_pending)) {
904 dev_dbg(chan->dev, "no pending LDs\n");
905 goto out_unlock;
906 }
907
908 /*
909 * The DMA controller is not idle, which means the interrupt
910 * handler will start any queued transactions when it runs
911 * at the end of the current transaction
912 */
913 if (!dma_is_idle(chan)) {
914 dev_dbg(chan->dev, "DMA controller still busy\n");
915 goto out_unlock;
916 }
917
918 /*
919 * TODO:
920 * make sure the dma_halt() function really un-wedges the
921 * controller as much as possible
922 */
923 dma_halt(chan);
924
925 /*
926 * If there are some link descriptors which have not been
927 * transferred, we need to start the controller
928 */
929
930 /*
931 * Move all elements from the queue of pending transactions
932 * onto the list of running transactions
933 */
934 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
935 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
936
937 /*
938 * Program the descriptor's address into the DMA controller,
939 * then start the DMA transaction
940 */
941 set_cdar(chan, desc->async_tx.phys);
942 dma_start(chan);
943
944 out_unlock:
945 spin_unlock_irqrestore(&chan->desc_lock, flags);
946 }
947
948 /**
949 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
950 * @chan : Freescale DMA channel
951 */
952 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
953 {
954 struct fsldma_chan *chan = to_fsl_chan(dchan);
955 fsl_chan_xfer_ld_queue(chan);
956 }
957
958 /**
959 * fsl_tx_status - Determine the DMA status
960 * @chan : Freescale DMA channel
961 */
962 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
963 dma_cookie_t cookie,
964 struct dma_tx_state *txstate)
965 {
966 struct fsldma_chan *chan = to_fsl_chan(dchan);
967 dma_cookie_t last_used;
968 dma_cookie_t last_complete;
969
970 fsl_chan_ld_cleanup(chan);
971
972 last_used = dchan->cookie;
973 last_complete = chan->completed_cookie;
974
975 dma_set_tx_state(txstate, last_complete, last_used, 0);
976
977 return dma_async_is_complete(cookie, last_complete, last_used);
978 }
979
980 /*----------------------------------------------------------------------------*/
981 /* Interrupt Handling */
982 /*----------------------------------------------------------------------------*/
983
984 static irqreturn_t fsldma_chan_irq(int irq, void *data)
985 {
986 struct fsldma_chan *chan = data;
987 int update_cookie = 0;
988 int xfer_ld_q = 0;
989 u32 stat;
990
991 /* save and clear the status register */
992 stat = get_sr(chan);
993 set_sr(chan, stat);
994 dev_dbg(chan->dev, "irq: channel %d, stat = 0x%x\n", chan->id, stat);
995
996 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
997 if (!stat)
998 return IRQ_NONE;
999
1000 if (stat & FSL_DMA_SR_TE)
1001 dev_err(chan->dev, "Transfer Error!\n");
1002
1003 /*
1004 * Programming Error
1005 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1006 * triger a PE interrupt.
1007 */
1008 if (stat & FSL_DMA_SR_PE) {
1009 dev_dbg(chan->dev, "irq: Programming Error INT\n");
1010 if (get_bcr(chan) == 0) {
1011 /* BCR register is 0, this is a DMA_INTERRUPT async_tx.
1012 * Now, update the completed cookie, and continue the
1013 * next uncompleted transfer.
1014 */
1015 update_cookie = 1;
1016 xfer_ld_q = 1;
1017 }
1018 stat &= ~FSL_DMA_SR_PE;
1019 }
1020
1021 /*
1022 * If the link descriptor segment transfer finishes,
1023 * we will recycle the used descriptor.
1024 */
1025 if (stat & FSL_DMA_SR_EOSI) {
1026 dev_dbg(chan->dev, "irq: End-of-segments INT\n");
1027 dev_dbg(chan->dev, "irq: clndar 0x%llx, nlndar 0x%llx\n",
1028 (unsigned long long)get_cdar(chan),
1029 (unsigned long long)get_ndar(chan));
1030 stat &= ~FSL_DMA_SR_EOSI;
1031 update_cookie = 1;
1032 }
1033
1034 /*
1035 * For MPC8349, EOCDI event need to update cookie
1036 * and start the next transfer if it exist.
1037 */
1038 if (stat & FSL_DMA_SR_EOCDI) {
1039 dev_dbg(chan->dev, "irq: End-of-Chain link INT\n");
1040 stat &= ~FSL_DMA_SR_EOCDI;
1041 update_cookie = 1;
1042 xfer_ld_q = 1;
1043 }
1044
1045 /*
1046 * If it current transfer is the end-of-transfer,
1047 * we should clear the Channel Start bit for
1048 * prepare next transfer.
1049 */
1050 if (stat & FSL_DMA_SR_EOLNI) {
1051 dev_dbg(chan->dev, "irq: End-of-link INT\n");
1052 stat &= ~FSL_DMA_SR_EOLNI;
1053 xfer_ld_q = 1;
1054 }
1055
1056 if (update_cookie)
1057 fsl_dma_update_completed_cookie(chan);
1058 if (xfer_ld_q)
1059 fsl_chan_xfer_ld_queue(chan);
1060 if (stat)
1061 dev_dbg(chan->dev, "irq: unhandled sr 0x%02x\n", stat);
1062
1063 dev_dbg(chan->dev, "irq: Exit\n");
1064 tasklet_schedule(&chan->tasklet);
1065 return IRQ_HANDLED;
1066 }
1067
1068 static void dma_do_tasklet(unsigned long data)
1069 {
1070 struct fsldma_chan *chan = (struct fsldma_chan *)data;
1071 fsl_chan_ld_cleanup(chan);
1072 }
1073
1074 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1075 {
1076 struct fsldma_device *fdev = data;
1077 struct fsldma_chan *chan;
1078 unsigned int handled = 0;
1079 u32 gsr, mask;
1080 int i;
1081
1082 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1083 : in_le32(fdev->regs);
1084 mask = 0xff000000;
1085 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1086
1087 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1088 chan = fdev->chan[i];
1089 if (!chan)
1090 continue;
1091
1092 if (gsr & mask) {
1093 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1094 fsldma_chan_irq(irq, chan);
1095 handled++;
1096 }
1097
1098 gsr &= ~mask;
1099 mask >>= 8;
1100 }
1101
1102 return IRQ_RETVAL(handled);
1103 }
1104
1105 static void fsldma_free_irqs(struct fsldma_device *fdev)
1106 {
1107 struct fsldma_chan *chan;
1108 int i;
1109
1110 if (fdev->irq != NO_IRQ) {
1111 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1112 free_irq(fdev->irq, fdev);
1113 return;
1114 }
1115
1116 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1117 chan = fdev->chan[i];
1118 if (chan && chan->irq != NO_IRQ) {
1119 dev_dbg(fdev->dev, "free channel %d IRQ\n", chan->id);
1120 free_irq(chan->irq, chan);
1121 }
1122 }
1123 }
1124
1125 static int fsldma_request_irqs(struct fsldma_device *fdev)
1126 {
1127 struct fsldma_chan *chan;
1128 int ret;
1129 int i;
1130
1131 /* if we have a per-controller IRQ, use that */
1132 if (fdev->irq != NO_IRQ) {
1133 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1134 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1135 "fsldma-controller", fdev);
1136 return ret;
1137 }
1138
1139 /* no per-controller IRQ, use the per-channel IRQs */
1140 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1141 chan = fdev->chan[i];
1142 if (!chan)
1143 continue;
1144
1145 if (chan->irq == NO_IRQ) {
1146 dev_err(fdev->dev, "no interrupts property defined for "
1147 "DMA channel %d. Please fix your "
1148 "device tree\n", chan->id);
1149 ret = -ENODEV;
1150 goto out_unwind;
1151 }
1152
1153 dev_dbg(fdev->dev, "request channel %d IRQ\n", chan->id);
1154 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1155 "fsldma-chan", chan);
1156 if (ret) {
1157 dev_err(fdev->dev, "unable to request IRQ for DMA "
1158 "channel %d\n", chan->id);
1159 goto out_unwind;
1160 }
1161 }
1162
1163 return 0;
1164
1165 out_unwind:
1166 for (/* none */; i >= 0; i--) {
1167 chan = fdev->chan[i];
1168 if (!chan)
1169 continue;
1170
1171 if (chan->irq == NO_IRQ)
1172 continue;
1173
1174 free_irq(chan->irq, chan);
1175 }
1176
1177 return ret;
1178 }
1179
1180 /*----------------------------------------------------------------------------*/
1181 /* OpenFirmware Subsystem */
1182 /*----------------------------------------------------------------------------*/
1183
1184 static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
1185 struct device_node *node, u32 feature, const char *compatible)
1186 {
1187 struct fsldma_chan *chan;
1188 struct resource res;
1189 int err;
1190
1191 /* alloc channel */
1192 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1193 if (!chan) {
1194 dev_err(fdev->dev, "no free memory for DMA channels!\n");
1195 err = -ENOMEM;
1196 goto out_return;
1197 }
1198
1199 /* ioremap registers for use */
1200 chan->regs = of_iomap(node, 0);
1201 if (!chan->regs) {
1202 dev_err(fdev->dev, "unable to ioremap registers\n");
1203 err = -ENOMEM;
1204 goto out_free_chan;
1205 }
1206
1207 err = of_address_to_resource(node, 0, &res);
1208 if (err) {
1209 dev_err(fdev->dev, "unable to find 'reg' property\n");
1210 goto out_iounmap_regs;
1211 }
1212
1213 chan->feature = feature;
1214 if (!fdev->feature)
1215 fdev->feature = chan->feature;
1216
1217 /*
1218 * If the DMA device's feature is different than the feature
1219 * of its channels, report the bug
1220 */
1221 WARN_ON(fdev->feature != chan->feature);
1222
1223 chan->dev = fdev->dev;
1224 chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1225 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1226 dev_err(fdev->dev, "too many channels for device\n");
1227 err = -EINVAL;
1228 goto out_iounmap_regs;
1229 }
1230
1231 fdev->chan[chan->id] = chan;
1232 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1233
1234 /* Initialize the channel */
1235 dma_init(chan);
1236
1237 /* Clear cdar registers */
1238 set_cdar(chan, 0);
1239
1240 switch (chan->feature & FSL_DMA_IP_MASK) {
1241 case FSL_DMA_IP_85XX:
1242 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1243 case FSL_DMA_IP_83XX:
1244 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1245 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1246 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1247 chan->set_request_count = fsl_chan_set_request_count;
1248 }
1249
1250 spin_lock_init(&chan->desc_lock);
1251 INIT_LIST_HEAD(&chan->ld_pending);
1252 INIT_LIST_HEAD(&chan->ld_running);
1253
1254 chan->common.device = &fdev->common;
1255
1256 /* find the IRQ line, if it exists in the device tree */
1257 chan->irq = irq_of_parse_and_map(node, 0);
1258
1259 /* Add the channel to DMA device channel list */
1260 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1261 fdev->common.chancnt++;
1262
1263 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1264 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1265
1266 return 0;
1267
1268 out_iounmap_regs:
1269 iounmap(chan->regs);
1270 out_free_chan:
1271 kfree(chan);
1272 out_return:
1273 return err;
1274 }
1275
1276 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1277 {
1278 irq_dispose_mapping(chan->irq);
1279 list_del(&chan->common.device_node);
1280 iounmap(chan->regs);
1281 kfree(chan);
1282 }
1283
1284 static int __devinit fsldma_of_probe(struct platform_device *op,
1285 const struct of_device_id *match)
1286 {
1287 struct fsldma_device *fdev;
1288 struct device_node *child;
1289 int err;
1290
1291 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1292 if (!fdev) {
1293 dev_err(&op->dev, "No enough memory for 'priv'\n");
1294 err = -ENOMEM;
1295 goto out_return;
1296 }
1297
1298 fdev->dev = &op->dev;
1299 INIT_LIST_HEAD(&fdev->common.channels);
1300
1301 /* ioremap the registers for use */
1302 fdev->regs = of_iomap(op->dev.of_node, 0);
1303 if (!fdev->regs) {
1304 dev_err(&op->dev, "unable to ioremap registers\n");
1305 err = -ENOMEM;
1306 goto out_free_fdev;
1307 }
1308
1309 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1310 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1311
1312 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1313 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1314 dma_cap_set(DMA_SG, fdev->common.cap_mask);
1315 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1316 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1317 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1318 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1319 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1320 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1321 fdev->common.device_tx_status = fsl_tx_status;
1322 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1323 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1324 fdev->common.device_control = fsl_dma_device_control;
1325 fdev->common.dev = &op->dev;
1326
1327 dev_set_drvdata(&op->dev, fdev);
1328
1329 /*
1330 * We cannot use of_platform_bus_probe() because there is no
1331 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1332 * channel object.
1333 */
1334 for_each_child_of_node(op->dev.of_node, child) {
1335 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1336 fsl_dma_chan_probe(fdev, child,
1337 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1338 "fsl,eloplus-dma-channel");
1339 }
1340
1341 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1342 fsl_dma_chan_probe(fdev, child,
1343 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1344 "fsl,elo-dma-channel");
1345 }
1346 }
1347
1348 /*
1349 * Hookup the IRQ handler(s)
1350 *
1351 * If we have a per-controller interrupt, we prefer that to the
1352 * per-channel interrupts to reduce the number of shared interrupt
1353 * handlers on the same IRQ line
1354 */
1355 err = fsldma_request_irqs(fdev);
1356 if (err) {
1357 dev_err(fdev->dev, "unable to request IRQs\n");
1358 goto out_free_fdev;
1359 }
1360
1361 dma_async_device_register(&fdev->common);
1362 return 0;
1363
1364 out_free_fdev:
1365 irq_dispose_mapping(fdev->irq);
1366 kfree(fdev);
1367 out_return:
1368 return err;
1369 }
1370
1371 static int fsldma_of_remove(struct platform_device *op)
1372 {
1373 struct fsldma_device *fdev;
1374 unsigned int i;
1375
1376 fdev = dev_get_drvdata(&op->dev);
1377 dma_async_device_unregister(&fdev->common);
1378
1379 fsldma_free_irqs(fdev);
1380
1381 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1382 if (fdev->chan[i])
1383 fsl_dma_chan_remove(fdev->chan[i]);
1384 }
1385
1386 iounmap(fdev->regs);
1387 dev_set_drvdata(&op->dev, NULL);
1388 kfree(fdev);
1389
1390 return 0;
1391 }
1392
1393 static const struct of_device_id fsldma_of_ids[] = {
1394 { .compatible = "fsl,eloplus-dma", },
1395 { .compatible = "fsl,elo-dma", },
1396 {}
1397 };
1398
1399 static struct of_platform_driver fsldma_of_driver = {
1400 .driver = {
1401 .name = "fsl-elo-dma",
1402 .owner = THIS_MODULE,
1403 .of_match_table = fsldma_of_ids,
1404 },
1405 .probe = fsldma_of_probe,
1406 .remove = fsldma_of_remove,
1407 };
1408
1409 /*----------------------------------------------------------------------------*/
1410 /* Module Init / Exit */
1411 /*----------------------------------------------------------------------------*/
1412
1413 static __init int fsldma_init(void)
1414 {
1415 int ret;
1416
1417 pr_info("Freescale Elo / Elo Plus DMA driver\n");
1418
1419 ret = of_register_platform_driver(&fsldma_of_driver);
1420 if (ret)
1421 pr_err("fsldma: failed to register platform driver\n");
1422
1423 return ret;
1424 }
1425
1426 static void __exit fsldma_exit(void)
1427 {
1428 of_unregister_platform_driver(&fsldma_of_driver);
1429 }
1430
1431 subsys_initcall(fsldma_init);
1432 module_exit(fsldma_exit);
1433
1434 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1435 MODULE_LICENSE("GPL");
This page took 0.073357 seconds and 5 git commands to generate.