ce865f68a8c7335d1856389184733d51b0151085
[deliverable/linux.git] / drivers / dma / imx-sdma.c
1 /*
2 * drivers/dma/imx-sdma.c
3 *
4 * This file contains a driver for the Freescale Smart DMA engine
5 *
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7 *
8 * Based on code from Freescale:
9 *
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11 *
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
15 *
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
18 */
19
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
38 #include <linux/of.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
42
43 #include <asm/irq.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49
50 #include "dmaengine.h"
51
52 /* SDMA registers */
53 #define SDMA_H_C0PTR 0x000
54 #define SDMA_H_INTR 0x004
55 #define SDMA_H_STATSTOP 0x008
56 #define SDMA_H_START 0x00c
57 #define SDMA_H_EVTOVR 0x010
58 #define SDMA_H_DSPOVR 0x014
59 #define SDMA_H_HOSTOVR 0x018
60 #define SDMA_H_EVTPEND 0x01c
61 #define SDMA_H_DSPENBL 0x020
62 #define SDMA_H_RESET 0x024
63 #define SDMA_H_EVTERR 0x028
64 #define SDMA_H_INTRMSK 0x02c
65 #define SDMA_H_PSW 0x030
66 #define SDMA_H_EVTERRDBG 0x034
67 #define SDMA_H_CONFIG 0x038
68 #define SDMA_ONCE_ENB 0x040
69 #define SDMA_ONCE_DATA 0x044
70 #define SDMA_ONCE_INSTR 0x048
71 #define SDMA_ONCE_STAT 0x04c
72 #define SDMA_ONCE_CMD 0x050
73 #define SDMA_EVT_MIRROR 0x054
74 #define SDMA_ILLINSTADDR 0x058
75 #define SDMA_CHN0ADDR 0x05c
76 #define SDMA_ONCE_RTB 0x060
77 #define SDMA_XTRIG_CONF1 0x070
78 #define SDMA_XTRIG_CONF2 0x074
79 #define SDMA_CHNENBL0_IMX35 0x200
80 #define SDMA_CHNENBL0_IMX31 0x080
81 #define SDMA_CHNPRI_0 0x100
82
83 /*
84 * Buffer descriptor status values.
85 */
86 #define BD_DONE 0x01
87 #define BD_WRAP 0x02
88 #define BD_CONT 0x04
89 #define BD_INTR 0x08
90 #define BD_RROR 0x10
91 #define BD_LAST 0x20
92 #define BD_EXTD 0x80
93
94 /*
95 * Data Node descriptor status values.
96 */
97 #define DND_END_OF_FRAME 0x80
98 #define DND_END_OF_XFER 0x40
99 #define DND_DONE 0x20
100 #define DND_UNUSED 0x01
101
102 /*
103 * IPCV2 descriptor status values.
104 */
105 #define BD_IPCV2_END_OF_FRAME 0x40
106
107 #define IPCV2_MAX_NODES 50
108 /*
109 * Error bit set in the CCB status field by the SDMA,
110 * in setbd routine, in case of a transfer error
111 */
112 #define DATA_ERROR 0x10000000
113
114 /*
115 * Buffer descriptor commands.
116 */
117 #define C0_ADDR 0x01
118 #define C0_LOAD 0x02
119 #define C0_DUMP 0x03
120 #define C0_SETCTX 0x07
121 #define C0_GETCTX 0x03
122 #define C0_SETDM 0x01
123 #define C0_SETPM 0x04
124 #define C0_GETDM 0x02
125 #define C0_GETPM 0x08
126 /*
127 * Change endianness indicator in the BD command field
128 */
129 #define CHANGE_ENDIANNESS 0x80
130
131 /*
132 * p_2_p watermark_level description
133 * Bits Name Description
134 * 0-7 Lower WML Lower watermark level
135 * 8 PS 1: Pad Swallowing
136 * 0: No Pad Swallowing
137 * 9 PA 1: Pad Adding
138 * 0: No Pad Adding
139 * 10 SPDIF If this bit is set both source
140 * and destination are on SPBA
141 * 11 Source Bit(SP) 1: Source on SPBA
142 * 0: Source on AIPS
143 * 12 Destination Bit(DP) 1: Destination on SPBA
144 * 0: Destination on AIPS
145 * 13-15 --------- MUST BE 0
146 * 16-23 Higher WML HWML
147 * 24-27 N Total number of samples after
148 * which Pad adding/Swallowing
149 * must be done. It must be odd.
150 * 28 Lower WML Event(LWE) SDMA events reg to check for
151 * LWML event mask
152 * 0: LWE in EVENTS register
153 * 1: LWE in EVENTS2 register
154 * 29 Higher WML Event(HWE) SDMA events reg to check for
155 * HWML event mask
156 * 0: HWE in EVENTS register
157 * 1: HWE in EVENTS2 register
158 * 30 --------- MUST BE 0
159 * 31 CONT 1: Amount of samples to be
160 * transferred is unknown and
161 * script will keep on
162 * transferring samples as long as
163 * both events are detected and
164 * script must be manually stopped
165 * by the application
166 * 0: The amount of samples to be
167 * transferred is equal to the
168 * count field of mode word
169 */
170 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
171 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
180
181 /*
182 * Mode/Count of data node descriptors - IPCv2
183 */
184 struct sdma_mode_count {
185 u32 count : 16; /* size of the buffer pointed by this BD */
186 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
187 u32 command : 8; /* command mostlky used for channel 0 */
188 };
189
190 /*
191 * Buffer descriptor
192 */
193 struct sdma_buffer_descriptor {
194 struct sdma_mode_count mode;
195 u32 buffer_addr; /* address of the buffer described */
196 u32 ext_buffer_addr; /* extended buffer address */
197 } __attribute__ ((packed));
198
199 /**
200 * struct sdma_channel_control - Channel control Block
201 *
202 * @current_bd_ptr current buffer descriptor processed
203 * @base_bd_ptr first element of buffer descriptor array
204 * @unused padding. The SDMA engine expects an array of 128 byte
205 * control blocks
206 */
207 struct sdma_channel_control {
208 u32 current_bd_ptr;
209 u32 base_bd_ptr;
210 u32 unused[2];
211 } __attribute__ ((packed));
212
213 /**
214 * struct sdma_state_registers - SDMA context for a channel
215 *
216 * @pc: program counter
217 * @t: test bit: status of arithmetic & test instruction
218 * @rpc: return program counter
219 * @sf: source fault while loading data
220 * @spc: loop start program counter
221 * @df: destination fault while storing data
222 * @epc: loop end program counter
223 * @lm: loop mode
224 */
225 struct sdma_state_registers {
226 u32 pc :14;
227 u32 unused1: 1;
228 u32 t : 1;
229 u32 rpc :14;
230 u32 unused0: 1;
231 u32 sf : 1;
232 u32 spc :14;
233 u32 unused2: 1;
234 u32 df : 1;
235 u32 epc :14;
236 u32 lm : 2;
237 } __attribute__ ((packed));
238
239 /**
240 * struct sdma_context_data - sdma context specific to a channel
241 *
242 * @channel_state: channel state bits
243 * @gReg: general registers
244 * @mda: burst dma destination address register
245 * @msa: burst dma source address register
246 * @ms: burst dma status register
247 * @md: burst dma data register
248 * @pda: peripheral dma destination address register
249 * @psa: peripheral dma source address register
250 * @ps: peripheral dma status register
251 * @pd: peripheral dma data register
252 * @ca: CRC polynomial register
253 * @cs: CRC accumulator register
254 * @dda: dedicated core destination address register
255 * @dsa: dedicated core source address register
256 * @ds: dedicated core status register
257 * @dd: dedicated core data register
258 */
259 struct sdma_context_data {
260 struct sdma_state_registers channel_state;
261 u32 gReg[8];
262 u32 mda;
263 u32 msa;
264 u32 ms;
265 u32 md;
266 u32 pda;
267 u32 psa;
268 u32 ps;
269 u32 pd;
270 u32 ca;
271 u32 cs;
272 u32 dda;
273 u32 dsa;
274 u32 ds;
275 u32 dd;
276 u32 scratch0;
277 u32 scratch1;
278 u32 scratch2;
279 u32 scratch3;
280 u32 scratch4;
281 u32 scratch5;
282 u32 scratch6;
283 u32 scratch7;
284 } __attribute__ ((packed));
285
286 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
287
288 struct sdma_engine;
289
290 /**
291 * struct sdma_channel - housekeeping for a SDMA channel
292 *
293 * @sdma pointer to the SDMA engine for this channel
294 * @channel the channel number, matches dmaengine chan_id + 1
295 * @direction transfer type. Needed for setting SDMA script
296 * @peripheral_type Peripheral type. Needed for setting SDMA script
297 * @event_id0 aka dma request line
298 * @event_id1 for channels that use 2 events
299 * @word_size peripheral access size
300 * @buf_tail ID of the buffer that was processed
301 * @num_bd max NUM_BD. number of descriptors currently handling
302 */
303 struct sdma_channel {
304 struct sdma_engine *sdma;
305 unsigned int channel;
306 enum dma_transfer_direction direction;
307 enum sdma_peripheral_type peripheral_type;
308 unsigned int event_id0;
309 unsigned int event_id1;
310 enum dma_slave_buswidth word_size;
311 unsigned int buf_tail;
312 unsigned int num_bd;
313 unsigned int period_len;
314 struct sdma_buffer_descriptor *bd;
315 dma_addr_t bd_phys;
316 unsigned int pc_from_device, pc_to_device;
317 unsigned int device_to_device;
318 unsigned long flags;
319 dma_addr_t per_address, per_address2;
320 unsigned long event_mask[2];
321 unsigned long watermark_level;
322 u32 shp_addr, per_addr;
323 struct dma_chan chan;
324 spinlock_t lock;
325 struct dma_async_tx_descriptor desc;
326 enum dma_status status;
327 unsigned int chn_count;
328 unsigned int chn_real_count;
329 struct tasklet_struct tasklet;
330 struct imx_dma_data data;
331 };
332
333 #define IMX_DMA_SG_LOOP BIT(0)
334
335 #define MAX_DMA_CHANNELS 32
336 #define MXC_SDMA_DEFAULT_PRIORITY 1
337 #define MXC_SDMA_MIN_PRIORITY 1
338 #define MXC_SDMA_MAX_PRIORITY 7
339
340 #define SDMA_FIRMWARE_MAGIC 0x414d4453
341
342 /**
343 * struct sdma_firmware_header - Layout of the firmware image
344 *
345 * @magic "SDMA"
346 * @version_major increased whenever layout of struct sdma_script_start_addrs
347 * changes.
348 * @version_minor firmware minor version (for binary compatible changes)
349 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
350 * @num_script_addrs Number of script addresses in this image
351 * @ram_code_start offset of SDMA ram image in this firmware image
352 * @ram_code_size size of SDMA ram image
353 * @script_addrs Stores the start address of the SDMA scripts
354 * (in SDMA memory space)
355 */
356 struct sdma_firmware_header {
357 u32 magic;
358 u32 version_major;
359 u32 version_minor;
360 u32 script_addrs_start;
361 u32 num_script_addrs;
362 u32 ram_code_start;
363 u32 ram_code_size;
364 };
365
366 struct sdma_driver_data {
367 int chnenbl0;
368 int num_events;
369 struct sdma_script_start_addrs *script_addrs;
370 };
371
372 struct sdma_engine {
373 struct device *dev;
374 struct device_dma_parameters dma_parms;
375 struct sdma_channel channel[MAX_DMA_CHANNELS];
376 struct sdma_channel_control *channel_control;
377 void __iomem *regs;
378 struct sdma_context_data *context;
379 dma_addr_t context_phys;
380 struct dma_device dma_device;
381 struct clk *clk_ipg;
382 struct clk *clk_ahb;
383 spinlock_t channel_0_lock;
384 u32 script_number;
385 struct sdma_script_start_addrs *script_addrs;
386 const struct sdma_driver_data *drvdata;
387 u32 spba_start_addr;
388 u32 spba_end_addr;
389 };
390
391 static struct sdma_driver_data sdma_imx31 = {
392 .chnenbl0 = SDMA_CHNENBL0_IMX31,
393 .num_events = 32,
394 };
395
396 static struct sdma_script_start_addrs sdma_script_imx25 = {
397 .ap_2_ap_addr = 729,
398 .uart_2_mcu_addr = 904,
399 .per_2_app_addr = 1255,
400 .mcu_2_app_addr = 834,
401 .uartsh_2_mcu_addr = 1120,
402 .per_2_shp_addr = 1329,
403 .mcu_2_shp_addr = 1048,
404 .ata_2_mcu_addr = 1560,
405 .mcu_2_ata_addr = 1479,
406 .app_2_per_addr = 1189,
407 .app_2_mcu_addr = 770,
408 .shp_2_per_addr = 1407,
409 .shp_2_mcu_addr = 979,
410 };
411
412 static struct sdma_driver_data sdma_imx25 = {
413 .chnenbl0 = SDMA_CHNENBL0_IMX35,
414 .num_events = 48,
415 .script_addrs = &sdma_script_imx25,
416 };
417
418 static struct sdma_driver_data sdma_imx35 = {
419 .chnenbl0 = SDMA_CHNENBL0_IMX35,
420 .num_events = 48,
421 };
422
423 static struct sdma_script_start_addrs sdma_script_imx51 = {
424 .ap_2_ap_addr = 642,
425 .uart_2_mcu_addr = 817,
426 .mcu_2_app_addr = 747,
427 .mcu_2_shp_addr = 961,
428 .ata_2_mcu_addr = 1473,
429 .mcu_2_ata_addr = 1392,
430 .app_2_per_addr = 1033,
431 .app_2_mcu_addr = 683,
432 .shp_2_per_addr = 1251,
433 .shp_2_mcu_addr = 892,
434 };
435
436 static struct sdma_driver_data sdma_imx51 = {
437 .chnenbl0 = SDMA_CHNENBL0_IMX35,
438 .num_events = 48,
439 .script_addrs = &sdma_script_imx51,
440 };
441
442 static struct sdma_script_start_addrs sdma_script_imx53 = {
443 .ap_2_ap_addr = 642,
444 .app_2_mcu_addr = 683,
445 .mcu_2_app_addr = 747,
446 .uart_2_mcu_addr = 817,
447 .shp_2_mcu_addr = 891,
448 .mcu_2_shp_addr = 960,
449 .uartsh_2_mcu_addr = 1032,
450 .spdif_2_mcu_addr = 1100,
451 .mcu_2_spdif_addr = 1134,
452 .firi_2_mcu_addr = 1193,
453 .mcu_2_firi_addr = 1290,
454 };
455
456 static struct sdma_driver_data sdma_imx53 = {
457 .chnenbl0 = SDMA_CHNENBL0_IMX35,
458 .num_events = 48,
459 .script_addrs = &sdma_script_imx53,
460 };
461
462 static struct sdma_script_start_addrs sdma_script_imx6q = {
463 .ap_2_ap_addr = 642,
464 .uart_2_mcu_addr = 817,
465 .mcu_2_app_addr = 747,
466 .per_2_per_addr = 6331,
467 .uartsh_2_mcu_addr = 1032,
468 .mcu_2_shp_addr = 960,
469 .app_2_mcu_addr = 683,
470 .shp_2_mcu_addr = 891,
471 .spdif_2_mcu_addr = 1100,
472 .mcu_2_spdif_addr = 1134,
473 };
474
475 static struct sdma_driver_data sdma_imx6q = {
476 .chnenbl0 = SDMA_CHNENBL0_IMX35,
477 .num_events = 48,
478 .script_addrs = &sdma_script_imx6q,
479 };
480
481 static const struct platform_device_id sdma_devtypes[] = {
482 {
483 .name = "imx25-sdma",
484 .driver_data = (unsigned long)&sdma_imx25,
485 }, {
486 .name = "imx31-sdma",
487 .driver_data = (unsigned long)&sdma_imx31,
488 }, {
489 .name = "imx35-sdma",
490 .driver_data = (unsigned long)&sdma_imx35,
491 }, {
492 .name = "imx51-sdma",
493 .driver_data = (unsigned long)&sdma_imx51,
494 }, {
495 .name = "imx53-sdma",
496 .driver_data = (unsigned long)&sdma_imx53,
497 }, {
498 .name = "imx6q-sdma",
499 .driver_data = (unsigned long)&sdma_imx6q,
500 }, {
501 /* sentinel */
502 }
503 };
504 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
505
506 static const struct of_device_id sdma_dt_ids[] = {
507 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
508 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
509 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
510 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
511 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
512 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
513 { /* sentinel */ }
514 };
515 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
516
517 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
518 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
519 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
520 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
521
522 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
523 {
524 u32 chnenbl0 = sdma->drvdata->chnenbl0;
525 return chnenbl0 + event * 4;
526 }
527
528 static int sdma_config_ownership(struct sdma_channel *sdmac,
529 bool event_override, bool mcu_override, bool dsp_override)
530 {
531 struct sdma_engine *sdma = sdmac->sdma;
532 int channel = sdmac->channel;
533 unsigned long evt, mcu, dsp;
534
535 if (event_override && mcu_override && dsp_override)
536 return -EINVAL;
537
538 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
539 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
540 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
541
542 if (dsp_override)
543 __clear_bit(channel, &dsp);
544 else
545 __set_bit(channel, &dsp);
546
547 if (event_override)
548 __clear_bit(channel, &evt);
549 else
550 __set_bit(channel, &evt);
551
552 if (mcu_override)
553 __clear_bit(channel, &mcu);
554 else
555 __set_bit(channel, &mcu);
556
557 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
558 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
559 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
560
561 return 0;
562 }
563
564 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
565 {
566 writel(BIT(channel), sdma->regs + SDMA_H_START);
567 }
568
569 /*
570 * sdma_run_channel0 - run a channel and wait till it's done
571 */
572 static int sdma_run_channel0(struct sdma_engine *sdma)
573 {
574 int ret;
575 u32 reg;
576
577 sdma_enable_channel(sdma, 0);
578
579 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
580 reg, !(reg & 1), 1, 500);
581 if (ret)
582 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
583
584 /* Set bits of CONFIG register with dynamic context switching */
585 if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
586 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
587
588 return ret;
589 }
590
591 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
592 u32 address)
593 {
594 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
595 void *buf_virt;
596 dma_addr_t buf_phys;
597 int ret;
598 unsigned long flags;
599
600 buf_virt = dma_alloc_coherent(NULL,
601 size,
602 &buf_phys, GFP_KERNEL);
603 if (!buf_virt) {
604 return -ENOMEM;
605 }
606
607 spin_lock_irqsave(&sdma->channel_0_lock, flags);
608
609 bd0->mode.command = C0_SETPM;
610 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
611 bd0->mode.count = size / 2;
612 bd0->buffer_addr = buf_phys;
613 bd0->ext_buffer_addr = address;
614
615 memcpy(buf_virt, buf, size);
616
617 ret = sdma_run_channel0(sdma);
618
619 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
620
621 dma_free_coherent(NULL, size, buf_virt, buf_phys);
622
623 return ret;
624 }
625
626 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
627 {
628 struct sdma_engine *sdma = sdmac->sdma;
629 int channel = sdmac->channel;
630 unsigned long val;
631 u32 chnenbl = chnenbl_ofs(sdma, event);
632
633 val = readl_relaxed(sdma->regs + chnenbl);
634 __set_bit(channel, &val);
635 writel_relaxed(val, sdma->regs + chnenbl);
636 }
637
638 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
639 {
640 struct sdma_engine *sdma = sdmac->sdma;
641 int channel = sdmac->channel;
642 u32 chnenbl = chnenbl_ofs(sdma, event);
643 unsigned long val;
644
645 val = readl_relaxed(sdma->regs + chnenbl);
646 __clear_bit(channel, &val);
647 writel_relaxed(val, sdma->regs + chnenbl);
648 }
649
650 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
651 {
652 if (sdmac->desc.callback)
653 sdmac->desc.callback(sdmac->desc.callback_param);
654 }
655
656 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
657 {
658 struct sdma_buffer_descriptor *bd;
659
660 /*
661 * loop mode. Iterate over descriptors, re-setup them and
662 * call callback function.
663 */
664 while (1) {
665 bd = &sdmac->bd[sdmac->buf_tail];
666
667 if (bd->mode.status & BD_DONE)
668 break;
669
670 if (bd->mode.status & BD_RROR)
671 sdmac->status = DMA_ERROR;
672
673 bd->mode.status |= BD_DONE;
674 sdmac->buf_tail++;
675 sdmac->buf_tail %= sdmac->num_bd;
676 }
677 }
678
679 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
680 {
681 struct sdma_buffer_descriptor *bd;
682 int i, error = 0;
683
684 sdmac->chn_real_count = 0;
685 /*
686 * non loop mode. Iterate over all descriptors, collect
687 * errors and call callback function
688 */
689 for (i = 0; i < sdmac->num_bd; i++) {
690 bd = &sdmac->bd[i];
691
692 if (bd->mode.status & (BD_DONE | BD_RROR))
693 error = -EIO;
694 sdmac->chn_real_count += bd->mode.count;
695 }
696
697 if (error)
698 sdmac->status = DMA_ERROR;
699 else
700 sdmac->status = DMA_COMPLETE;
701
702 dma_cookie_complete(&sdmac->desc);
703 if (sdmac->desc.callback)
704 sdmac->desc.callback(sdmac->desc.callback_param);
705 }
706
707 static void sdma_tasklet(unsigned long data)
708 {
709 struct sdma_channel *sdmac = (struct sdma_channel *) data;
710
711 if (sdmac->flags & IMX_DMA_SG_LOOP)
712 sdma_handle_channel_loop(sdmac);
713 else
714 mxc_sdma_handle_channel_normal(sdmac);
715 }
716
717 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
718 {
719 struct sdma_engine *sdma = dev_id;
720 unsigned long stat;
721
722 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
723 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
724 /* channel 0 is special and not handled here, see run_channel0() */
725 stat &= ~1;
726
727 while (stat) {
728 int channel = fls(stat) - 1;
729 struct sdma_channel *sdmac = &sdma->channel[channel];
730
731 if (sdmac->flags & IMX_DMA_SG_LOOP)
732 sdma_update_channel_loop(sdmac);
733
734 tasklet_schedule(&sdmac->tasklet);
735
736 __clear_bit(channel, &stat);
737 }
738
739 return IRQ_HANDLED;
740 }
741
742 /*
743 * sets the pc of SDMA script according to the peripheral type
744 */
745 static void sdma_get_pc(struct sdma_channel *sdmac,
746 enum sdma_peripheral_type peripheral_type)
747 {
748 struct sdma_engine *sdma = sdmac->sdma;
749 int per_2_emi = 0, emi_2_per = 0;
750 /*
751 * These are needed once we start to support transfers between
752 * two peripherals or memory-to-memory transfers
753 */
754 int per_2_per = 0, emi_2_emi = 0;
755
756 sdmac->pc_from_device = 0;
757 sdmac->pc_to_device = 0;
758 sdmac->device_to_device = 0;
759
760 switch (peripheral_type) {
761 case IMX_DMATYPE_MEMORY:
762 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
763 break;
764 case IMX_DMATYPE_DSP:
765 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
766 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
767 break;
768 case IMX_DMATYPE_FIRI:
769 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
770 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
771 break;
772 case IMX_DMATYPE_UART:
773 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
774 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
775 break;
776 case IMX_DMATYPE_UART_SP:
777 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
778 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
779 break;
780 case IMX_DMATYPE_ATA:
781 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
782 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
783 break;
784 case IMX_DMATYPE_CSPI:
785 case IMX_DMATYPE_EXT:
786 case IMX_DMATYPE_SSI:
787 case IMX_DMATYPE_SAI:
788 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
789 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
790 break;
791 case IMX_DMATYPE_SSI_DUAL:
792 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
793 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
794 break;
795 case IMX_DMATYPE_SSI_SP:
796 case IMX_DMATYPE_MMC:
797 case IMX_DMATYPE_SDHC:
798 case IMX_DMATYPE_CSPI_SP:
799 case IMX_DMATYPE_ESAI:
800 case IMX_DMATYPE_MSHC_SP:
801 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
802 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
803 break;
804 case IMX_DMATYPE_ASRC:
805 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
806 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
807 per_2_per = sdma->script_addrs->per_2_per_addr;
808 break;
809 case IMX_DMATYPE_ASRC_SP:
810 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
811 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
812 per_2_per = sdma->script_addrs->per_2_per_addr;
813 break;
814 case IMX_DMATYPE_MSHC:
815 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
816 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
817 break;
818 case IMX_DMATYPE_CCM:
819 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
820 break;
821 case IMX_DMATYPE_SPDIF:
822 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
823 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
824 break;
825 case IMX_DMATYPE_IPU_MEMORY:
826 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
827 break;
828 default:
829 break;
830 }
831
832 sdmac->pc_from_device = per_2_emi;
833 sdmac->pc_to_device = emi_2_per;
834 sdmac->device_to_device = per_2_per;
835 }
836
837 static int sdma_load_context(struct sdma_channel *sdmac)
838 {
839 struct sdma_engine *sdma = sdmac->sdma;
840 int channel = sdmac->channel;
841 int load_address;
842 struct sdma_context_data *context = sdma->context;
843 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
844 int ret;
845 unsigned long flags;
846
847 if (sdmac->direction == DMA_DEV_TO_MEM)
848 load_address = sdmac->pc_from_device;
849 else if (sdmac->direction == DMA_DEV_TO_DEV)
850 load_address = sdmac->device_to_device;
851 else
852 load_address = sdmac->pc_to_device;
853
854 if (load_address < 0)
855 return load_address;
856
857 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
858 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
859 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
860 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
861 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
862 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
863
864 spin_lock_irqsave(&sdma->channel_0_lock, flags);
865
866 memset(context, 0, sizeof(*context));
867 context->channel_state.pc = load_address;
868
869 /* Send by context the event mask,base address for peripheral
870 * and watermark level
871 */
872 context->gReg[0] = sdmac->event_mask[1];
873 context->gReg[1] = sdmac->event_mask[0];
874 context->gReg[2] = sdmac->per_addr;
875 context->gReg[6] = sdmac->shp_addr;
876 context->gReg[7] = sdmac->watermark_level;
877
878 bd0->mode.command = C0_SETDM;
879 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
880 bd0->mode.count = sizeof(*context) / 4;
881 bd0->buffer_addr = sdma->context_phys;
882 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
883 ret = sdma_run_channel0(sdma);
884
885 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
886
887 return ret;
888 }
889
890 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
891 {
892 return container_of(chan, struct sdma_channel, chan);
893 }
894
895 static int sdma_disable_channel(struct dma_chan *chan)
896 {
897 struct sdma_channel *sdmac = to_sdma_chan(chan);
898 struct sdma_engine *sdma = sdmac->sdma;
899 int channel = sdmac->channel;
900
901 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
902 sdmac->status = DMA_ERROR;
903
904 return 0;
905 }
906
907 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
908 {
909 struct sdma_engine *sdma = sdmac->sdma;
910
911 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
912 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
913
914 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
915 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
916
917 if (sdmac->event_id0 > 31)
918 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
919
920 if (sdmac->event_id1 > 31)
921 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
922
923 /*
924 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
925 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
926 * r0(event_mask[1]) and r1(event_mask[0]).
927 */
928 if (lwml > hwml) {
929 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
930 SDMA_WATERMARK_LEVEL_HWML);
931 sdmac->watermark_level |= hwml;
932 sdmac->watermark_level |= lwml << 16;
933 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
934 }
935
936 if (sdmac->per_address2 >= sdma->spba_start_addr &&
937 sdmac->per_address2 <= sdma->spba_end_addr)
938 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
939
940 if (sdmac->per_address >= sdma->spba_start_addr &&
941 sdmac->per_address <= sdma->spba_end_addr)
942 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
943
944 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
945 }
946
947 static int sdma_config_channel(struct dma_chan *chan)
948 {
949 struct sdma_channel *sdmac = to_sdma_chan(chan);
950 int ret;
951
952 sdma_disable_channel(chan);
953
954 sdmac->event_mask[0] = 0;
955 sdmac->event_mask[1] = 0;
956 sdmac->shp_addr = 0;
957 sdmac->per_addr = 0;
958
959 if (sdmac->event_id0) {
960 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
961 return -EINVAL;
962 sdma_event_enable(sdmac, sdmac->event_id0);
963 }
964
965 if (sdmac->event_id1) {
966 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
967 return -EINVAL;
968 sdma_event_enable(sdmac, sdmac->event_id1);
969 }
970
971 switch (sdmac->peripheral_type) {
972 case IMX_DMATYPE_DSP:
973 sdma_config_ownership(sdmac, false, true, true);
974 break;
975 case IMX_DMATYPE_MEMORY:
976 sdma_config_ownership(sdmac, false, true, false);
977 break;
978 default:
979 sdma_config_ownership(sdmac, true, true, false);
980 break;
981 }
982
983 sdma_get_pc(sdmac, sdmac->peripheral_type);
984
985 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
986 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
987 /* Handle multiple event channels differently */
988 if (sdmac->event_id1) {
989 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
990 sdmac->peripheral_type == IMX_DMATYPE_ASRC)
991 sdma_set_watermarklevel_for_p2p(sdmac);
992 } else
993 __set_bit(sdmac->event_id0, sdmac->event_mask);
994
995 /* Watermark Level */
996 sdmac->watermark_level |= sdmac->watermark_level;
997 /* Address */
998 sdmac->shp_addr = sdmac->per_address;
999 sdmac->per_addr = sdmac->per_address2;
1000 } else {
1001 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1002 }
1003
1004 ret = sdma_load_context(sdmac);
1005
1006 return ret;
1007 }
1008
1009 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1010 unsigned int priority)
1011 {
1012 struct sdma_engine *sdma = sdmac->sdma;
1013 int channel = sdmac->channel;
1014
1015 if (priority < MXC_SDMA_MIN_PRIORITY
1016 || priority > MXC_SDMA_MAX_PRIORITY) {
1017 return -EINVAL;
1018 }
1019
1020 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1021
1022 return 0;
1023 }
1024
1025 static int sdma_request_channel(struct sdma_channel *sdmac)
1026 {
1027 struct sdma_engine *sdma = sdmac->sdma;
1028 int channel = sdmac->channel;
1029 int ret = -EBUSY;
1030
1031 sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1032 GFP_KERNEL);
1033 if (!sdmac->bd) {
1034 ret = -ENOMEM;
1035 goto out;
1036 }
1037
1038 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1039 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1040
1041 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1042 return 0;
1043 out:
1044
1045 return ret;
1046 }
1047
1048 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1049 {
1050 unsigned long flags;
1051 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1052 dma_cookie_t cookie;
1053
1054 spin_lock_irqsave(&sdmac->lock, flags);
1055
1056 cookie = dma_cookie_assign(tx);
1057
1058 spin_unlock_irqrestore(&sdmac->lock, flags);
1059
1060 return cookie;
1061 }
1062
1063 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1064 {
1065 struct sdma_channel *sdmac = to_sdma_chan(chan);
1066 struct imx_dma_data *data = chan->private;
1067 int prio, ret;
1068
1069 if (!data)
1070 return -EINVAL;
1071
1072 switch (data->priority) {
1073 case DMA_PRIO_HIGH:
1074 prio = 3;
1075 break;
1076 case DMA_PRIO_MEDIUM:
1077 prio = 2;
1078 break;
1079 case DMA_PRIO_LOW:
1080 default:
1081 prio = 1;
1082 break;
1083 }
1084
1085 sdmac->peripheral_type = data->peripheral_type;
1086 sdmac->event_id0 = data->dma_request;
1087 sdmac->event_id1 = data->dma_request2;
1088
1089 ret = clk_enable(sdmac->sdma->clk_ipg);
1090 if (ret)
1091 return ret;
1092 ret = clk_enable(sdmac->sdma->clk_ahb);
1093 if (ret)
1094 goto disable_clk_ipg;
1095
1096 ret = sdma_request_channel(sdmac);
1097 if (ret)
1098 goto disable_clk_ahb;
1099
1100 ret = sdma_set_channel_priority(sdmac, prio);
1101 if (ret)
1102 goto disable_clk_ahb;
1103
1104 dma_async_tx_descriptor_init(&sdmac->desc, chan);
1105 sdmac->desc.tx_submit = sdma_tx_submit;
1106 /* txd.flags will be overwritten in prep funcs */
1107 sdmac->desc.flags = DMA_CTRL_ACK;
1108
1109 return 0;
1110
1111 disable_clk_ahb:
1112 clk_disable(sdmac->sdma->clk_ahb);
1113 disable_clk_ipg:
1114 clk_disable(sdmac->sdma->clk_ipg);
1115 return ret;
1116 }
1117
1118 static void sdma_free_chan_resources(struct dma_chan *chan)
1119 {
1120 struct sdma_channel *sdmac = to_sdma_chan(chan);
1121 struct sdma_engine *sdma = sdmac->sdma;
1122
1123 sdma_disable_channel(chan);
1124
1125 if (sdmac->event_id0)
1126 sdma_event_disable(sdmac, sdmac->event_id0);
1127 if (sdmac->event_id1)
1128 sdma_event_disable(sdmac, sdmac->event_id1);
1129
1130 sdmac->event_id0 = 0;
1131 sdmac->event_id1 = 0;
1132
1133 sdma_set_channel_priority(sdmac, 0);
1134
1135 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1136
1137 clk_disable(sdma->clk_ipg);
1138 clk_disable(sdma->clk_ahb);
1139 }
1140
1141 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1142 struct dma_chan *chan, struct scatterlist *sgl,
1143 unsigned int sg_len, enum dma_transfer_direction direction,
1144 unsigned long flags, void *context)
1145 {
1146 struct sdma_channel *sdmac = to_sdma_chan(chan);
1147 struct sdma_engine *sdma = sdmac->sdma;
1148 int ret, i, count;
1149 int channel = sdmac->channel;
1150 struct scatterlist *sg;
1151
1152 if (sdmac->status == DMA_IN_PROGRESS)
1153 return NULL;
1154 sdmac->status = DMA_IN_PROGRESS;
1155
1156 sdmac->flags = 0;
1157
1158 sdmac->buf_tail = 0;
1159
1160 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1161 sg_len, channel);
1162
1163 sdmac->direction = direction;
1164 ret = sdma_load_context(sdmac);
1165 if (ret)
1166 goto err_out;
1167
1168 if (sg_len > NUM_BD) {
1169 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1170 channel, sg_len, NUM_BD);
1171 ret = -EINVAL;
1172 goto err_out;
1173 }
1174
1175 sdmac->chn_count = 0;
1176 for_each_sg(sgl, sg, sg_len, i) {
1177 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1178 int param;
1179
1180 bd->buffer_addr = sg->dma_address;
1181
1182 count = sg_dma_len(sg);
1183
1184 if (count > 0xffff) {
1185 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1186 channel, count, 0xffff);
1187 ret = -EINVAL;
1188 goto err_out;
1189 }
1190
1191 bd->mode.count = count;
1192 sdmac->chn_count += count;
1193
1194 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1195 ret = -EINVAL;
1196 goto err_out;
1197 }
1198
1199 switch (sdmac->word_size) {
1200 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1201 bd->mode.command = 0;
1202 if (count & 3 || sg->dma_address & 3)
1203 return NULL;
1204 break;
1205 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1206 bd->mode.command = 2;
1207 if (count & 1 || sg->dma_address & 1)
1208 return NULL;
1209 break;
1210 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1211 bd->mode.command = 1;
1212 break;
1213 default:
1214 return NULL;
1215 }
1216
1217 param = BD_DONE | BD_EXTD | BD_CONT;
1218
1219 if (i + 1 == sg_len) {
1220 param |= BD_INTR;
1221 param |= BD_LAST;
1222 param &= ~BD_CONT;
1223 }
1224
1225 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1226 i, count, (u64)sg->dma_address,
1227 param & BD_WRAP ? "wrap" : "",
1228 param & BD_INTR ? " intr" : "");
1229
1230 bd->mode.status = param;
1231 }
1232
1233 sdmac->num_bd = sg_len;
1234 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1235
1236 return &sdmac->desc;
1237 err_out:
1238 sdmac->status = DMA_ERROR;
1239 return NULL;
1240 }
1241
1242 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1243 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1244 size_t period_len, enum dma_transfer_direction direction,
1245 unsigned long flags)
1246 {
1247 struct sdma_channel *sdmac = to_sdma_chan(chan);
1248 struct sdma_engine *sdma = sdmac->sdma;
1249 int num_periods = buf_len / period_len;
1250 int channel = sdmac->channel;
1251 int ret, i = 0, buf = 0;
1252
1253 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1254
1255 if (sdmac->status == DMA_IN_PROGRESS)
1256 return NULL;
1257
1258 sdmac->status = DMA_IN_PROGRESS;
1259
1260 sdmac->buf_tail = 0;
1261 sdmac->period_len = period_len;
1262
1263 sdmac->flags |= IMX_DMA_SG_LOOP;
1264 sdmac->direction = direction;
1265 ret = sdma_load_context(sdmac);
1266 if (ret)
1267 goto err_out;
1268
1269 if (num_periods > NUM_BD) {
1270 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1271 channel, num_periods, NUM_BD);
1272 goto err_out;
1273 }
1274
1275 if (period_len > 0xffff) {
1276 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1277 channel, period_len, 0xffff);
1278 goto err_out;
1279 }
1280
1281 while (buf < buf_len) {
1282 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1283 int param;
1284
1285 bd->buffer_addr = dma_addr;
1286
1287 bd->mode.count = period_len;
1288
1289 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1290 goto err_out;
1291 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1292 bd->mode.command = 0;
1293 else
1294 bd->mode.command = sdmac->word_size;
1295
1296 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1297 if (i + 1 == num_periods)
1298 param |= BD_WRAP;
1299
1300 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1301 i, period_len, (u64)dma_addr,
1302 param & BD_WRAP ? "wrap" : "",
1303 param & BD_INTR ? " intr" : "");
1304
1305 bd->mode.status = param;
1306
1307 dma_addr += period_len;
1308 buf += period_len;
1309
1310 i++;
1311 }
1312
1313 sdmac->num_bd = num_periods;
1314 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1315
1316 return &sdmac->desc;
1317 err_out:
1318 sdmac->status = DMA_ERROR;
1319 return NULL;
1320 }
1321
1322 static int sdma_config(struct dma_chan *chan,
1323 struct dma_slave_config *dmaengine_cfg)
1324 {
1325 struct sdma_channel *sdmac = to_sdma_chan(chan);
1326
1327 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1328 sdmac->per_address = dmaengine_cfg->src_addr;
1329 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1330 dmaengine_cfg->src_addr_width;
1331 sdmac->word_size = dmaengine_cfg->src_addr_width;
1332 } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1333 sdmac->per_address2 = dmaengine_cfg->src_addr;
1334 sdmac->per_address = dmaengine_cfg->dst_addr;
1335 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1336 SDMA_WATERMARK_LEVEL_LWML;
1337 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1338 SDMA_WATERMARK_LEVEL_HWML;
1339 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1340 } else {
1341 sdmac->per_address = dmaengine_cfg->dst_addr;
1342 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1343 dmaengine_cfg->dst_addr_width;
1344 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1345 }
1346 sdmac->direction = dmaengine_cfg->direction;
1347 return sdma_config_channel(chan);
1348 }
1349
1350 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1351 dma_cookie_t cookie,
1352 struct dma_tx_state *txstate)
1353 {
1354 struct sdma_channel *sdmac = to_sdma_chan(chan);
1355 u32 residue;
1356
1357 if (sdmac->flags & IMX_DMA_SG_LOOP)
1358 residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len;
1359 else
1360 residue = sdmac->chn_count - sdmac->chn_real_count;
1361
1362 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1363 residue);
1364
1365 return sdmac->status;
1366 }
1367
1368 static void sdma_issue_pending(struct dma_chan *chan)
1369 {
1370 struct sdma_channel *sdmac = to_sdma_chan(chan);
1371 struct sdma_engine *sdma = sdmac->sdma;
1372
1373 if (sdmac->status == DMA_IN_PROGRESS)
1374 sdma_enable_channel(sdma, sdmac->channel);
1375 }
1376
1377 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1378 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1379 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1380
1381 static void sdma_add_scripts(struct sdma_engine *sdma,
1382 const struct sdma_script_start_addrs *addr)
1383 {
1384 s32 *addr_arr = (u32 *)addr;
1385 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1386 int i;
1387
1388 /* use the default firmware in ROM if missing external firmware */
1389 if (!sdma->script_number)
1390 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1391
1392 for (i = 0; i < sdma->script_number; i++)
1393 if (addr_arr[i] > 0)
1394 saddr_arr[i] = addr_arr[i];
1395 }
1396
1397 static void sdma_load_firmware(const struct firmware *fw, void *context)
1398 {
1399 struct sdma_engine *sdma = context;
1400 const struct sdma_firmware_header *header;
1401 const struct sdma_script_start_addrs *addr;
1402 unsigned short *ram_code;
1403
1404 if (!fw) {
1405 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1406 /* In this case we just use the ROM firmware. */
1407 return;
1408 }
1409
1410 if (fw->size < sizeof(*header))
1411 goto err_firmware;
1412
1413 header = (struct sdma_firmware_header *)fw->data;
1414
1415 if (header->magic != SDMA_FIRMWARE_MAGIC)
1416 goto err_firmware;
1417 if (header->ram_code_start + header->ram_code_size > fw->size)
1418 goto err_firmware;
1419 switch (header->version_major) {
1420 case 1:
1421 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1422 break;
1423 case 2:
1424 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1425 break;
1426 case 3:
1427 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1428 break;
1429 default:
1430 dev_err(sdma->dev, "unknown firmware version\n");
1431 goto err_firmware;
1432 }
1433
1434 addr = (void *)header + header->script_addrs_start;
1435 ram_code = (void *)header + header->ram_code_start;
1436
1437 clk_enable(sdma->clk_ipg);
1438 clk_enable(sdma->clk_ahb);
1439 /* download the RAM image for SDMA */
1440 sdma_load_script(sdma, ram_code,
1441 header->ram_code_size,
1442 addr->ram_code_start_addr);
1443 clk_disable(sdma->clk_ipg);
1444 clk_disable(sdma->clk_ahb);
1445
1446 sdma_add_scripts(sdma, addr);
1447
1448 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1449 header->version_major,
1450 header->version_minor);
1451
1452 err_firmware:
1453 release_firmware(fw);
1454 }
1455
1456 #define EVENT_REMAP_CELLS 3
1457
1458 static int sdma_event_remap(struct sdma_engine *sdma)
1459 {
1460 struct device_node *np = sdma->dev->of_node;
1461 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1462 struct property *event_remap;
1463 struct regmap *gpr;
1464 char propname[] = "fsl,sdma-event-remap";
1465 u32 reg, val, shift, num_map, i;
1466 int ret = 0;
1467
1468 if (IS_ERR(np) || IS_ERR(gpr_np))
1469 goto out;
1470
1471 event_remap = of_find_property(np, propname, NULL);
1472 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1473 if (!num_map) {
1474 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1475 goto out;
1476 } else if (num_map % EVENT_REMAP_CELLS) {
1477 dev_err(sdma->dev, "the property %s must modulo %d\n",
1478 propname, EVENT_REMAP_CELLS);
1479 ret = -EINVAL;
1480 goto out;
1481 }
1482
1483 gpr = syscon_node_to_regmap(gpr_np);
1484 if (IS_ERR(gpr)) {
1485 dev_err(sdma->dev, "failed to get gpr regmap\n");
1486 ret = PTR_ERR(gpr);
1487 goto out;
1488 }
1489
1490 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1491 ret = of_property_read_u32_index(np, propname, i, &reg);
1492 if (ret) {
1493 dev_err(sdma->dev, "failed to read property %s index %d\n",
1494 propname, i);
1495 goto out;
1496 }
1497
1498 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1499 if (ret) {
1500 dev_err(sdma->dev, "failed to read property %s index %d\n",
1501 propname, i + 1);
1502 goto out;
1503 }
1504
1505 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1506 if (ret) {
1507 dev_err(sdma->dev, "failed to read property %s index %d\n",
1508 propname, i + 2);
1509 goto out;
1510 }
1511
1512 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1513 }
1514
1515 out:
1516 if (!IS_ERR(gpr_np))
1517 of_node_put(gpr_np);
1518
1519 return ret;
1520 }
1521
1522 static int sdma_get_firmware(struct sdma_engine *sdma,
1523 const char *fw_name)
1524 {
1525 int ret;
1526
1527 ret = request_firmware_nowait(THIS_MODULE,
1528 FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1529 GFP_KERNEL, sdma, sdma_load_firmware);
1530
1531 return ret;
1532 }
1533
1534 static int sdma_init(struct sdma_engine *sdma)
1535 {
1536 int i, ret;
1537 dma_addr_t ccb_phys;
1538
1539 ret = clk_enable(sdma->clk_ipg);
1540 if (ret)
1541 return ret;
1542 ret = clk_enable(sdma->clk_ahb);
1543 if (ret)
1544 goto disable_clk_ipg;
1545
1546 /* Be sure SDMA has not started yet */
1547 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1548
1549 sdma->channel_control = dma_alloc_coherent(NULL,
1550 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1551 sizeof(struct sdma_context_data),
1552 &ccb_phys, GFP_KERNEL);
1553
1554 if (!sdma->channel_control) {
1555 ret = -ENOMEM;
1556 goto err_dma_alloc;
1557 }
1558
1559 sdma->context = (void *)sdma->channel_control +
1560 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1561 sdma->context_phys = ccb_phys +
1562 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1563
1564 /* Zero-out the CCB structures array just allocated */
1565 memset(sdma->channel_control, 0,
1566 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1567
1568 /* disable all channels */
1569 for (i = 0; i < sdma->drvdata->num_events; i++)
1570 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1571
1572 /* All channels have priority 0 */
1573 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1574 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1575
1576 ret = sdma_request_channel(&sdma->channel[0]);
1577 if (ret)
1578 goto err_dma_alloc;
1579
1580 sdma_config_ownership(&sdma->channel[0], false, true, false);
1581
1582 /* Set Command Channel (Channel Zero) */
1583 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1584
1585 /* Set bits of CONFIG register but with static context switching */
1586 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1587 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1588
1589 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1590
1591 /* Initializes channel's priorities */
1592 sdma_set_channel_priority(&sdma->channel[0], 7);
1593
1594 clk_disable(sdma->clk_ipg);
1595 clk_disable(sdma->clk_ahb);
1596
1597 return 0;
1598
1599 err_dma_alloc:
1600 clk_disable(sdma->clk_ahb);
1601 disable_clk_ipg:
1602 clk_disable(sdma->clk_ipg);
1603 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1604 return ret;
1605 }
1606
1607 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1608 {
1609 struct sdma_channel *sdmac = to_sdma_chan(chan);
1610 struct imx_dma_data *data = fn_param;
1611
1612 if (!imx_dma_is_general_purpose(chan))
1613 return false;
1614
1615 sdmac->data = *data;
1616 chan->private = &sdmac->data;
1617
1618 return true;
1619 }
1620
1621 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1622 struct of_dma *ofdma)
1623 {
1624 struct sdma_engine *sdma = ofdma->of_dma_data;
1625 dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1626 struct imx_dma_data data;
1627
1628 if (dma_spec->args_count != 3)
1629 return NULL;
1630
1631 data.dma_request = dma_spec->args[0];
1632 data.peripheral_type = dma_spec->args[1];
1633 data.priority = dma_spec->args[2];
1634 /*
1635 * init dma_request2 to zero, which is not used by the dts.
1636 * For P2P, dma_request2 is init from dma_request_channel(),
1637 * chan->private will point to the imx_dma_data, and in
1638 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1639 * be set to sdmac->event_id1.
1640 */
1641 data.dma_request2 = 0;
1642
1643 return dma_request_channel(mask, sdma_filter_fn, &data);
1644 }
1645
1646 static int sdma_probe(struct platform_device *pdev)
1647 {
1648 const struct of_device_id *of_id =
1649 of_match_device(sdma_dt_ids, &pdev->dev);
1650 struct device_node *np = pdev->dev.of_node;
1651 struct device_node *spba_bus;
1652 const char *fw_name;
1653 int ret;
1654 int irq;
1655 struct resource *iores;
1656 struct resource spba_res;
1657 struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1658 int i;
1659 struct sdma_engine *sdma;
1660 s32 *saddr_arr;
1661 const struct sdma_driver_data *drvdata = NULL;
1662
1663 if (of_id)
1664 drvdata = of_id->data;
1665 else if (pdev->id_entry)
1666 drvdata = (void *)pdev->id_entry->driver_data;
1667
1668 if (!drvdata) {
1669 dev_err(&pdev->dev, "unable to find driver data\n");
1670 return -EINVAL;
1671 }
1672
1673 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1674 if (ret)
1675 return ret;
1676
1677 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1678 if (!sdma)
1679 return -ENOMEM;
1680
1681 spin_lock_init(&sdma->channel_0_lock);
1682
1683 sdma->dev = &pdev->dev;
1684 sdma->drvdata = drvdata;
1685
1686 irq = platform_get_irq(pdev, 0);
1687 if (irq < 0)
1688 return irq;
1689
1690 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1691 sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1692 if (IS_ERR(sdma->regs))
1693 return PTR_ERR(sdma->regs);
1694
1695 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1696 if (IS_ERR(sdma->clk_ipg))
1697 return PTR_ERR(sdma->clk_ipg);
1698
1699 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1700 if (IS_ERR(sdma->clk_ahb))
1701 return PTR_ERR(sdma->clk_ahb);
1702
1703 clk_prepare(sdma->clk_ipg);
1704 clk_prepare(sdma->clk_ahb);
1705
1706 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1707 sdma);
1708 if (ret)
1709 return ret;
1710
1711 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1712 if (!sdma->script_addrs)
1713 return -ENOMEM;
1714
1715 /* initially no scripts available */
1716 saddr_arr = (s32 *)sdma->script_addrs;
1717 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1718 saddr_arr[i] = -EINVAL;
1719
1720 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1721 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1722
1723 INIT_LIST_HEAD(&sdma->dma_device.channels);
1724 /* Initialize channel parameters */
1725 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1726 struct sdma_channel *sdmac = &sdma->channel[i];
1727
1728 sdmac->sdma = sdma;
1729 spin_lock_init(&sdmac->lock);
1730
1731 sdmac->chan.device = &sdma->dma_device;
1732 dma_cookie_init(&sdmac->chan);
1733 sdmac->channel = i;
1734
1735 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1736 (unsigned long) sdmac);
1737 /*
1738 * Add the channel to the DMAC list. Do not add channel 0 though
1739 * because we need it internally in the SDMA driver. This also means
1740 * that channel 0 in dmaengine counting matches sdma channel 1.
1741 */
1742 if (i)
1743 list_add_tail(&sdmac->chan.device_node,
1744 &sdma->dma_device.channels);
1745 }
1746
1747 ret = sdma_init(sdma);
1748 if (ret)
1749 goto err_init;
1750
1751 ret = sdma_event_remap(sdma);
1752 if (ret)
1753 goto err_init;
1754
1755 if (sdma->drvdata->script_addrs)
1756 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1757 if (pdata && pdata->script_addrs)
1758 sdma_add_scripts(sdma, pdata->script_addrs);
1759
1760 if (pdata) {
1761 ret = sdma_get_firmware(sdma, pdata->fw_name);
1762 if (ret)
1763 dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1764 } else {
1765 /*
1766 * Because that device tree does not encode ROM script address,
1767 * the RAM script in firmware is mandatory for device tree
1768 * probe, otherwise it fails.
1769 */
1770 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1771 &fw_name);
1772 if (ret)
1773 dev_warn(&pdev->dev, "failed to get firmware name\n");
1774 else {
1775 ret = sdma_get_firmware(sdma, fw_name);
1776 if (ret)
1777 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1778 }
1779 }
1780
1781 sdma->dma_device.dev = &pdev->dev;
1782
1783 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1784 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1785 sdma->dma_device.device_tx_status = sdma_tx_status;
1786 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1787 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1788 sdma->dma_device.device_config = sdma_config;
1789 sdma->dma_device.device_terminate_all = sdma_disable_channel;
1790 sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1791 sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1792 sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1793 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1794 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1795 sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1796 dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1797
1798 platform_set_drvdata(pdev, sdma);
1799
1800 ret = dma_async_device_register(&sdma->dma_device);
1801 if (ret) {
1802 dev_err(&pdev->dev, "unable to register\n");
1803 goto err_init;
1804 }
1805
1806 if (np) {
1807 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1808 if (ret) {
1809 dev_err(&pdev->dev, "failed to register controller\n");
1810 goto err_register;
1811 }
1812
1813 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1814 ret = of_address_to_resource(spba_bus, 0, &spba_res);
1815 if (!ret) {
1816 sdma->spba_start_addr = spba_res.start;
1817 sdma->spba_end_addr = spba_res.end;
1818 }
1819 of_node_put(spba_bus);
1820 }
1821
1822 return 0;
1823
1824 err_register:
1825 dma_async_device_unregister(&sdma->dma_device);
1826 err_init:
1827 kfree(sdma->script_addrs);
1828 return ret;
1829 }
1830
1831 static int sdma_remove(struct platform_device *pdev)
1832 {
1833 struct sdma_engine *sdma = platform_get_drvdata(pdev);
1834 int i;
1835
1836 dma_async_device_unregister(&sdma->dma_device);
1837 kfree(sdma->script_addrs);
1838 /* Kill the tasklet */
1839 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1840 struct sdma_channel *sdmac = &sdma->channel[i];
1841
1842 tasklet_kill(&sdmac->tasklet);
1843 }
1844
1845 platform_set_drvdata(pdev, NULL);
1846 return 0;
1847 }
1848
1849 static struct platform_driver sdma_driver = {
1850 .driver = {
1851 .name = "imx-sdma",
1852 .of_match_table = sdma_dt_ids,
1853 },
1854 .id_table = sdma_devtypes,
1855 .remove = sdma_remove,
1856 .probe = sdma_probe,
1857 };
1858
1859 module_platform_driver(sdma_driver);
1860
1861 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1862 MODULE_DESCRIPTION("i.MX SDMA driver");
1863 MODULE_LICENSE("GPL");
This page took 0.068567 seconds and 5 git commands to generate.