igb: Add device support for flashless SKU of i210 device
[deliverable/linux.git] / drivers / dma / ioat / dma_v3.c
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2004 - 2009 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * The full GNU General Public License is included in this distribution in
23 * the file called "COPYING".
24 *
25 * BSD LICENSE
26 *
27 * Copyright(c) 2004-2009 Intel Corporation. All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions are met:
31 *
32 * * Redistributions of source code must retain the above copyright
33 * notice, this list of conditions and the following disclaimer.
34 * * Redistributions in binary form must reproduce the above copyright
35 * notice, this list of conditions and the following disclaimer in
36 * the documentation and/or other materials provided with the
37 * distribution.
38 * * Neither the name of Intel Corporation nor the names of its
39 * contributors may be used to endorse or promote products derived
40 * from this software without specific prior written permission.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
43 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
46 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
47 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
48 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
49 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
50 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
51 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
52 * POSSIBILITY OF SUCH DAMAGE.
53 */
54
55 /*
56 * Support routines for v3+ hardware
57 */
58 #include <linux/module.h>
59 #include <linux/pci.h>
60 #include <linux/gfp.h>
61 #include <linux/dmaengine.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/prefetch.h>
64 #include "../dmaengine.h"
65 #include "registers.h"
66 #include "hw.h"
67 #include "dma.h"
68 #include "dma_v2.h"
69
70 /* ioat hardware assumes at least two sources for raid operations */
71 #define src_cnt_to_sw(x) ((x) + 2)
72 #define src_cnt_to_hw(x) ((x) - 2)
73 #define ndest_to_sw(x) ((x) + 1)
74 #define ndest_to_hw(x) ((x) - 1)
75 #define src16_cnt_to_sw(x) ((x) + 9)
76 #define src16_cnt_to_hw(x) ((x) - 9)
77
78 /* provide a lookup table for setting the source address in the base or
79 * extended descriptor of an xor or pq descriptor
80 */
81 static const u8 xor_idx_to_desc = 0xe0;
82 static const u8 xor_idx_to_field[] = { 1, 4, 5, 6, 7, 0, 1, 2 };
83 static const u8 pq_idx_to_desc = 0xf8;
84 static const u8 pq16_idx_to_desc[] = { 0, 0, 1, 1, 1, 1, 1, 1, 1,
85 2, 2, 2, 2, 2, 2, 2 };
86 static const u8 pq_idx_to_field[] = { 1, 4, 5, 0, 1, 2, 4, 5 };
87 static const u8 pq16_idx_to_field[] = { 1, 4, 1, 2, 3, 4, 5, 6, 7,
88 0, 1, 2, 3, 4, 5, 6 };
89
90 /*
91 * technically sources 1 and 2 do not require SED, but the op will have
92 * at least 9 descriptors so that's irrelevant.
93 */
94 static const u8 pq16_idx_to_sed[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0,
95 1, 1, 1, 1, 1, 1, 1 };
96
97 static void ioat3_eh(struct ioat2_dma_chan *ioat);
98
99 static dma_addr_t xor_get_src(struct ioat_raw_descriptor *descs[2], int idx)
100 {
101 struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
102
103 return raw->field[xor_idx_to_field[idx]];
104 }
105
106 static void xor_set_src(struct ioat_raw_descriptor *descs[2],
107 dma_addr_t addr, u32 offset, int idx)
108 {
109 struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
110
111 raw->field[xor_idx_to_field[idx]] = addr + offset;
112 }
113
114 static dma_addr_t pq_get_src(struct ioat_raw_descriptor *descs[2], int idx)
115 {
116 struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
117
118 return raw->field[pq_idx_to_field[idx]];
119 }
120
121 static dma_addr_t pq16_get_src(struct ioat_raw_descriptor *desc[3], int idx)
122 {
123 struct ioat_raw_descriptor *raw = desc[pq16_idx_to_desc[idx]];
124
125 return raw->field[pq16_idx_to_field[idx]];
126 }
127
128 static void pq_set_src(struct ioat_raw_descriptor *descs[2],
129 dma_addr_t addr, u32 offset, u8 coef, int idx)
130 {
131 struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *) descs[0];
132 struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
133
134 raw->field[pq_idx_to_field[idx]] = addr + offset;
135 pq->coef[idx] = coef;
136 }
137
138 static int sed_get_pq16_pool_idx(int src_cnt)
139 {
140
141 return pq16_idx_to_sed[src_cnt];
142 }
143
144 static bool is_jf_ioat(struct pci_dev *pdev)
145 {
146 switch (pdev->device) {
147 case PCI_DEVICE_ID_INTEL_IOAT_JSF0:
148 case PCI_DEVICE_ID_INTEL_IOAT_JSF1:
149 case PCI_DEVICE_ID_INTEL_IOAT_JSF2:
150 case PCI_DEVICE_ID_INTEL_IOAT_JSF3:
151 case PCI_DEVICE_ID_INTEL_IOAT_JSF4:
152 case PCI_DEVICE_ID_INTEL_IOAT_JSF5:
153 case PCI_DEVICE_ID_INTEL_IOAT_JSF6:
154 case PCI_DEVICE_ID_INTEL_IOAT_JSF7:
155 case PCI_DEVICE_ID_INTEL_IOAT_JSF8:
156 case PCI_DEVICE_ID_INTEL_IOAT_JSF9:
157 return true;
158 default:
159 return false;
160 }
161 }
162
163 static bool is_snb_ioat(struct pci_dev *pdev)
164 {
165 switch (pdev->device) {
166 case PCI_DEVICE_ID_INTEL_IOAT_SNB0:
167 case PCI_DEVICE_ID_INTEL_IOAT_SNB1:
168 case PCI_DEVICE_ID_INTEL_IOAT_SNB2:
169 case PCI_DEVICE_ID_INTEL_IOAT_SNB3:
170 case PCI_DEVICE_ID_INTEL_IOAT_SNB4:
171 case PCI_DEVICE_ID_INTEL_IOAT_SNB5:
172 case PCI_DEVICE_ID_INTEL_IOAT_SNB6:
173 case PCI_DEVICE_ID_INTEL_IOAT_SNB7:
174 case PCI_DEVICE_ID_INTEL_IOAT_SNB8:
175 case PCI_DEVICE_ID_INTEL_IOAT_SNB9:
176 return true;
177 default:
178 return false;
179 }
180 }
181
182 static bool is_ivb_ioat(struct pci_dev *pdev)
183 {
184 switch (pdev->device) {
185 case PCI_DEVICE_ID_INTEL_IOAT_IVB0:
186 case PCI_DEVICE_ID_INTEL_IOAT_IVB1:
187 case PCI_DEVICE_ID_INTEL_IOAT_IVB2:
188 case PCI_DEVICE_ID_INTEL_IOAT_IVB3:
189 case PCI_DEVICE_ID_INTEL_IOAT_IVB4:
190 case PCI_DEVICE_ID_INTEL_IOAT_IVB5:
191 case PCI_DEVICE_ID_INTEL_IOAT_IVB6:
192 case PCI_DEVICE_ID_INTEL_IOAT_IVB7:
193 case PCI_DEVICE_ID_INTEL_IOAT_IVB8:
194 case PCI_DEVICE_ID_INTEL_IOAT_IVB9:
195 return true;
196 default:
197 return false;
198 }
199
200 }
201
202 static bool is_hsw_ioat(struct pci_dev *pdev)
203 {
204 switch (pdev->device) {
205 case PCI_DEVICE_ID_INTEL_IOAT_HSW0:
206 case PCI_DEVICE_ID_INTEL_IOAT_HSW1:
207 case PCI_DEVICE_ID_INTEL_IOAT_HSW2:
208 case PCI_DEVICE_ID_INTEL_IOAT_HSW3:
209 case PCI_DEVICE_ID_INTEL_IOAT_HSW4:
210 case PCI_DEVICE_ID_INTEL_IOAT_HSW5:
211 case PCI_DEVICE_ID_INTEL_IOAT_HSW6:
212 case PCI_DEVICE_ID_INTEL_IOAT_HSW7:
213 case PCI_DEVICE_ID_INTEL_IOAT_HSW8:
214 case PCI_DEVICE_ID_INTEL_IOAT_HSW9:
215 return true;
216 default:
217 return false;
218 }
219
220 }
221
222 static bool is_xeon_cb32(struct pci_dev *pdev)
223 {
224 return is_jf_ioat(pdev) || is_snb_ioat(pdev) || is_ivb_ioat(pdev) ||
225 is_hsw_ioat(pdev);
226 }
227
228 static bool is_bwd_ioat(struct pci_dev *pdev)
229 {
230 switch (pdev->device) {
231 case PCI_DEVICE_ID_INTEL_IOAT_BWD0:
232 case PCI_DEVICE_ID_INTEL_IOAT_BWD1:
233 case PCI_DEVICE_ID_INTEL_IOAT_BWD2:
234 case PCI_DEVICE_ID_INTEL_IOAT_BWD3:
235 return true;
236 default:
237 return false;
238 }
239 }
240
241 static bool is_bwd_noraid(struct pci_dev *pdev)
242 {
243 switch (pdev->device) {
244 case PCI_DEVICE_ID_INTEL_IOAT_BWD2:
245 case PCI_DEVICE_ID_INTEL_IOAT_BWD3:
246 return true;
247 default:
248 return false;
249 }
250
251 }
252
253 static void pq16_set_src(struct ioat_raw_descriptor *desc[3],
254 dma_addr_t addr, u32 offset, u8 coef, int idx)
255 {
256 struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *)desc[0];
257 struct ioat_pq16a_descriptor *pq16 =
258 (struct ioat_pq16a_descriptor *)desc[1];
259 struct ioat_raw_descriptor *raw = desc[pq16_idx_to_desc[idx]];
260
261 raw->field[pq16_idx_to_field[idx]] = addr + offset;
262
263 if (idx < 8)
264 pq->coef[idx] = coef;
265 else
266 pq16->coef[idx - 8] = coef;
267 }
268
269 static struct ioat_sed_ent *
270 ioat3_alloc_sed(struct ioatdma_device *device, unsigned int hw_pool)
271 {
272 struct ioat_sed_ent *sed;
273 gfp_t flags = __GFP_ZERO | GFP_ATOMIC;
274
275 sed = kmem_cache_alloc(device->sed_pool, flags);
276 if (!sed)
277 return NULL;
278
279 sed->hw_pool = hw_pool;
280 sed->hw = dma_pool_alloc(device->sed_hw_pool[hw_pool],
281 flags, &sed->dma);
282 if (!sed->hw) {
283 kmem_cache_free(device->sed_pool, sed);
284 return NULL;
285 }
286
287 return sed;
288 }
289
290 static void ioat3_free_sed(struct ioatdma_device *device, struct ioat_sed_ent *sed)
291 {
292 if (!sed)
293 return;
294
295 dma_pool_free(device->sed_hw_pool[sed->hw_pool], sed->hw, sed->dma);
296 kmem_cache_free(device->sed_pool, sed);
297 }
298
299 static void ioat3_dma_unmap(struct ioat2_dma_chan *ioat,
300 struct ioat_ring_ent *desc, int idx)
301 {
302 struct ioat_chan_common *chan = &ioat->base;
303 struct pci_dev *pdev = chan->device->pdev;
304 size_t len = desc->len;
305 size_t offset = len - desc->hw->size;
306 struct dma_async_tx_descriptor *tx = &desc->txd;
307 enum dma_ctrl_flags flags = tx->flags;
308
309 switch (desc->hw->ctl_f.op) {
310 case IOAT_OP_COPY:
311 if (!desc->hw->ctl_f.null) /* skip 'interrupt' ops */
312 ioat_dma_unmap(chan, flags, len, desc->hw);
313 break;
314 case IOAT_OP_XOR_VAL:
315 case IOAT_OP_XOR: {
316 struct ioat_xor_descriptor *xor = desc->xor;
317 struct ioat_ring_ent *ext;
318 struct ioat_xor_ext_descriptor *xor_ex = NULL;
319 int src_cnt = src_cnt_to_sw(xor->ctl_f.src_cnt);
320 struct ioat_raw_descriptor *descs[2];
321 int i;
322
323 if (src_cnt > 5) {
324 ext = ioat2_get_ring_ent(ioat, idx + 1);
325 xor_ex = ext->xor_ex;
326 }
327
328 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
329 descs[0] = (struct ioat_raw_descriptor *) xor;
330 descs[1] = (struct ioat_raw_descriptor *) xor_ex;
331 for (i = 0; i < src_cnt; i++) {
332 dma_addr_t src = xor_get_src(descs, i);
333
334 ioat_unmap(pdev, src - offset, len,
335 PCI_DMA_TODEVICE, flags, 0);
336 }
337
338 /* dest is a source in xor validate operations */
339 if (xor->ctl_f.op == IOAT_OP_XOR_VAL) {
340 ioat_unmap(pdev, xor->dst_addr - offset, len,
341 PCI_DMA_TODEVICE, flags, 1);
342 break;
343 }
344 }
345
346 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP))
347 ioat_unmap(pdev, xor->dst_addr - offset, len,
348 PCI_DMA_FROMDEVICE, flags, 1);
349 break;
350 }
351 case IOAT_OP_PQ_VAL:
352 case IOAT_OP_PQ: {
353 struct ioat_pq_descriptor *pq = desc->pq;
354 struct ioat_ring_ent *ext;
355 struct ioat_pq_ext_descriptor *pq_ex = NULL;
356 int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
357 struct ioat_raw_descriptor *descs[2];
358 int i;
359
360 if (src_cnt > 3) {
361 ext = ioat2_get_ring_ent(ioat, idx + 1);
362 pq_ex = ext->pq_ex;
363 }
364
365 /* in the 'continue' case don't unmap the dests as sources */
366 if (dmaf_p_disabled_continue(flags))
367 src_cnt--;
368 else if (dmaf_continue(flags))
369 src_cnt -= 3;
370
371 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
372 descs[0] = (struct ioat_raw_descriptor *) pq;
373 descs[1] = (struct ioat_raw_descriptor *) pq_ex;
374 for (i = 0; i < src_cnt; i++) {
375 dma_addr_t src = pq_get_src(descs, i);
376
377 ioat_unmap(pdev, src - offset, len,
378 PCI_DMA_TODEVICE, flags, 0);
379 }
380
381 /* the dests are sources in pq validate operations */
382 if (pq->ctl_f.op == IOAT_OP_XOR_VAL) {
383 if (!(flags & DMA_PREP_PQ_DISABLE_P))
384 ioat_unmap(pdev, pq->p_addr - offset,
385 len, PCI_DMA_TODEVICE, flags, 0);
386 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
387 ioat_unmap(pdev, pq->q_addr - offset,
388 len, PCI_DMA_TODEVICE, flags, 0);
389 break;
390 }
391 }
392
393 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
394 if (!(flags & DMA_PREP_PQ_DISABLE_P))
395 ioat_unmap(pdev, pq->p_addr - offset, len,
396 PCI_DMA_BIDIRECTIONAL, flags, 1);
397 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
398 ioat_unmap(pdev, pq->q_addr - offset, len,
399 PCI_DMA_BIDIRECTIONAL, flags, 1);
400 }
401 break;
402 }
403 case IOAT_OP_PQ_16S:
404 case IOAT_OP_PQ_VAL_16S: {
405 struct ioat_pq_descriptor *pq = desc->pq;
406 int src_cnt = src16_cnt_to_sw(pq->ctl_f.src_cnt);
407 struct ioat_raw_descriptor *descs[4];
408 int i;
409
410 /* in the 'continue' case don't unmap the dests as sources */
411 if (dmaf_p_disabled_continue(flags))
412 src_cnt--;
413 else if (dmaf_continue(flags))
414 src_cnt -= 3;
415
416 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
417 descs[0] = (struct ioat_raw_descriptor *)pq;
418 descs[1] = (struct ioat_raw_descriptor *)(desc->sed->hw);
419 descs[2] = (struct ioat_raw_descriptor *)(&desc->sed->hw->b[0]);
420 for (i = 0; i < src_cnt; i++) {
421 dma_addr_t src = pq16_get_src(descs, i);
422
423 ioat_unmap(pdev, src - offset, len,
424 PCI_DMA_TODEVICE, flags, 0);
425 }
426
427 /* the dests are sources in pq validate operations */
428 if (pq->ctl_f.op == IOAT_OP_XOR_VAL) {
429 if (!(flags & DMA_PREP_PQ_DISABLE_P))
430 ioat_unmap(pdev, pq->p_addr - offset,
431 len, PCI_DMA_TODEVICE,
432 flags, 0);
433 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
434 ioat_unmap(pdev, pq->q_addr - offset,
435 len, PCI_DMA_TODEVICE,
436 flags, 0);
437 break;
438 }
439 }
440
441 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
442 if (!(flags & DMA_PREP_PQ_DISABLE_P))
443 ioat_unmap(pdev, pq->p_addr - offset, len,
444 PCI_DMA_BIDIRECTIONAL, flags, 1);
445 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
446 ioat_unmap(pdev, pq->q_addr - offset, len,
447 PCI_DMA_BIDIRECTIONAL, flags, 1);
448 }
449 break;
450 }
451 default:
452 dev_err(&pdev->dev, "%s: unknown op type: %#x\n",
453 __func__, desc->hw->ctl_f.op);
454 }
455 }
456
457 static bool desc_has_ext(struct ioat_ring_ent *desc)
458 {
459 struct ioat_dma_descriptor *hw = desc->hw;
460
461 if (hw->ctl_f.op == IOAT_OP_XOR ||
462 hw->ctl_f.op == IOAT_OP_XOR_VAL) {
463 struct ioat_xor_descriptor *xor = desc->xor;
464
465 if (src_cnt_to_sw(xor->ctl_f.src_cnt) > 5)
466 return true;
467 } else if (hw->ctl_f.op == IOAT_OP_PQ ||
468 hw->ctl_f.op == IOAT_OP_PQ_VAL) {
469 struct ioat_pq_descriptor *pq = desc->pq;
470
471 if (src_cnt_to_sw(pq->ctl_f.src_cnt) > 3)
472 return true;
473 }
474
475 return false;
476 }
477
478 static u64 ioat3_get_current_completion(struct ioat_chan_common *chan)
479 {
480 u64 phys_complete;
481 u64 completion;
482
483 completion = *chan->completion;
484 phys_complete = ioat_chansts_to_addr(completion);
485
486 dev_dbg(to_dev(chan), "%s: phys_complete: %#llx\n", __func__,
487 (unsigned long long) phys_complete);
488
489 return phys_complete;
490 }
491
492 static bool ioat3_cleanup_preamble(struct ioat_chan_common *chan,
493 u64 *phys_complete)
494 {
495 *phys_complete = ioat3_get_current_completion(chan);
496 if (*phys_complete == chan->last_completion)
497 return false;
498
499 clear_bit(IOAT_COMPLETION_ACK, &chan->state);
500 mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
501
502 return true;
503 }
504
505 static void
506 desc_get_errstat(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc)
507 {
508 struct ioat_dma_descriptor *hw = desc->hw;
509
510 switch (hw->ctl_f.op) {
511 case IOAT_OP_PQ_VAL:
512 case IOAT_OP_PQ_VAL_16S:
513 {
514 struct ioat_pq_descriptor *pq = desc->pq;
515
516 /* check if there's error written */
517 if (!pq->dwbes_f.wbes)
518 return;
519
520 /* need to set a chanerr var for checking to clear later */
521
522 if (pq->dwbes_f.p_val_err)
523 *desc->result |= SUM_CHECK_P_RESULT;
524
525 if (pq->dwbes_f.q_val_err)
526 *desc->result |= SUM_CHECK_Q_RESULT;
527
528 return;
529 }
530 default:
531 return;
532 }
533 }
534
535 /**
536 * __cleanup - reclaim used descriptors
537 * @ioat: channel (ring) to clean
538 *
539 * The difference from the dma_v2.c __cleanup() is that this routine
540 * handles extended descriptors and dma-unmapping raid operations.
541 */
542 static void __cleanup(struct ioat2_dma_chan *ioat, dma_addr_t phys_complete)
543 {
544 struct ioat_chan_common *chan = &ioat->base;
545 struct ioatdma_device *device = chan->device;
546 struct ioat_ring_ent *desc;
547 bool seen_current = false;
548 int idx = ioat->tail, i;
549 u16 active;
550
551 dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n",
552 __func__, ioat->head, ioat->tail, ioat->issued);
553
554 /*
555 * At restart of the channel, the completion address and the
556 * channel status will be 0 due to starting a new chain. Since
557 * it's new chain and the first descriptor "fails", there is
558 * nothing to clean up. We do not want to reap the entire submitted
559 * chain due to this 0 address value and then BUG.
560 */
561 if (!phys_complete)
562 return;
563
564 active = ioat2_ring_active(ioat);
565 for (i = 0; i < active && !seen_current; i++) {
566 struct dma_async_tx_descriptor *tx;
567
568 smp_read_barrier_depends();
569 prefetch(ioat2_get_ring_ent(ioat, idx + i + 1));
570 desc = ioat2_get_ring_ent(ioat, idx + i);
571 dump_desc_dbg(ioat, desc);
572
573 /* set err stat if we are using dwbes */
574 if (device->cap & IOAT_CAP_DWBES)
575 desc_get_errstat(ioat, desc);
576
577 tx = &desc->txd;
578 if (tx->cookie) {
579 dma_cookie_complete(tx);
580 ioat3_dma_unmap(ioat, desc, idx + i);
581 if (tx->callback) {
582 tx->callback(tx->callback_param);
583 tx->callback = NULL;
584 }
585 }
586
587 if (tx->phys == phys_complete)
588 seen_current = true;
589
590 /* skip extended descriptors */
591 if (desc_has_ext(desc)) {
592 BUG_ON(i + 1 >= active);
593 i++;
594 }
595
596 /* cleanup super extended descriptors */
597 if (desc->sed) {
598 ioat3_free_sed(device, desc->sed);
599 desc->sed = NULL;
600 }
601 }
602 smp_mb(); /* finish all descriptor reads before incrementing tail */
603 ioat->tail = idx + i;
604 BUG_ON(active && !seen_current); /* no active descs have written a completion? */
605 chan->last_completion = phys_complete;
606
607 if (active - i == 0) {
608 dev_dbg(to_dev(chan), "%s: cancel completion timeout\n",
609 __func__);
610 clear_bit(IOAT_COMPLETION_PENDING, &chan->state);
611 mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
612 }
613 /* 5 microsecond delay per pending descriptor */
614 writew(min((5 * (active - i)), IOAT_INTRDELAY_MASK),
615 chan->device->reg_base + IOAT_INTRDELAY_OFFSET);
616 }
617
618 static void ioat3_cleanup(struct ioat2_dma_chan *ioat)
619 {
620 struct ioat_chan_common *chan = &ioat->base;
621 u64 phys_complete;
622
623 spin_lock_bh(&chan->cleanup_lock);
624
625 if (ioat3_cleanup_preamble(chan, &phys_complete))
626 __cleanup(ioat, phys_complete);
627
628 if (is_ioat_halted(*chan->completion)) {
629 u32 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
630
631 if (chanerr & IOAT_CHANERR_HANDLE_MASK) {
632 mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
633 ioat3_eh(ioat);
634 }
635 }
636
637 spin_unlock_bh(&chan->cleanup_lock);
638 }
639
640 static void ioat3_cleanup_event(unsigned long data)
641 {
642 struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
643
644 ioat3_cleanup(ioat);
645 writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET);
646 }
647
648 static void ioat3_restart_channel(struct ioat2_dma_chan *ioat)
649 {
650 struct ioat_chan_common *chan = &ioat->base;
651 u64 phys_complete;
652
653 ioat2_quiesce(chan, 0);
654 if (ioat3_cleanup_preamble(chan, &phys_complete))
655 __cleanup(ioat, phys_complete);
656
657 __ioat2_restart_chan(ioat);
658 }
659
660 static void ioat3_eh(struct ioat2_dma_chan *ioat)
661 {
662 struct ioat_chan_common *chan = &ioat->base;
663 struct pci_dev *pdev = to_pdev(chan);
664 struct ioat_dma_descriptor *hw;
665 u64 phys_complete;
666 struct ioat_ring_ent *desc;
667 u32 err_handled = 0;
668 u32 chanerr_int;
669 u32 chanerr;
670
671 /* cleanup so tail points to descriptor that caused the error */
672 if (ioat3_cleanup_preamble(chan, &phys_complete))
673 __cleanup(ioat, phys_complete);
674
675 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
676 pci_read_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, &chanerr_int);
677
678 dev_dbg(to_dev(chan), "%s: error = %x:%x\n",
679 __func__, chanerr, chanerr_int);
680
681 desc = ioat2_get_ring_ent(ioat, ioat->tail);
682 hw = desc->hw;
683 dump_desc_dbg(ioat, desc);
684
685 switch (hw->ctl_f.op) {
686 case IOAT_OP_XOR_VAL:
687 if (chanerr & IOAT_CHANERR_XOR_P_OR_CRC_ERR) {
688 *desc->result |= SUM_CHECK_P_RESULT;
689 err_handled |= IOAT_CHANERR_XOR_P_OR_CRC_ERR;
690 }
691 break;
692 case IOAT_OP_PQ_VAL:
693 case IOAT_OP_PQ_VAL_16S:
694 if (chanerr & IOAT_CHANERR_XOR_P_OR_CRC_ERR) {
695 *desc->result |= SUM_CHECK_P_RESULT;
696 err_handled |= IOAT_CHANERR_XOR_P_OR_CRC_ERR;
697 }
698 if (chanerr & IOAT_CHANERR_XOR_Q_ERR) {
699 *desc->result |= SUM_CHECK_Q_RESULT;
700 err_handled |= IOAT_CHANERR_XOR_Q_ERR;
701 }
702 break;
703 }
704
705 /* fault on unhandled error or spurious halt */
706 if (chanerr ^ err_handled || chanerr == 0) {
707 dev_err(to_dev(chan), "%s: fatal error (%x:%x)\n",
708 __func__, chanerr, err_handled);
709 BUG();
710 }
711
712 writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET);
713 pci_write_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, chanerr_int);
714
715 /* mark faulting descriptor as complete */
716 *chan->completion = desc->txd.phys;
717
718 spin_lock_bh(&ioat->prep_lock);
719 ioat3_restart_channel(ioat);
720 spin_unlock_bh(&ioat->prep_lock);
721 }
722
723 static void check_active(struct ioat2_dma_chan *ioat)
724 {
725 struct ioat_chan_common *chan = &ioat->base;
726
727 if (ioat2_ring_active(ioat)) {
728 mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
729 return;
730 }
731
732 if (test_and_clear_bit(IOAT_CHAN_ACTIVE, &chan->state))
733 mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
734 else if (ioat->alloc_order > ioat_get_alloc_order()) {
735 /* if the ring is idle, empty, and oversized try to step
736 * down the size
737 */
738 reshape_ring(ioat, ioat->alloc_order - 1);
739
740 /* keep shrinking until we get back to our minimum
741 * default size
742 */
743 if (ioat->alloc_order > ioat_get_alloc_order())
744 mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
745 }
746
747 }
748
749 static void ioat3_timer_event(unsigned long data)
750 {
751 struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
752 struct ioat_chan_common *chan = &ioat->base;
753 dma_addr_t phys_complete;
754 u64 status;
755
756 status = ioat_chansts(chan);
757
758 /* when halted due to errors check for channel
759 * programming errors before advancing the completion state
760 */
761 if (is_ioat_halted(status)) {
762 u32 chanerr;
763
764 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
765 dev_err(to_dev(chan), "%s: Channel halted (%x)\n",
766 __func__, chanerr);
767 if (test_bit(IOAT_RUN, &chan->state))
768 BUG_ON(is_ioat_bug(chanerr));
769 else /* we never got off the ground */
770 return;
771 }
772
773 /* if we haven't made progress and we have already
774 * acknowledged a pending completion once, then be more
775 * forceful with a restart
776 */
777 spin_lock_bh(&chan->cleanup_lock);
778 if (ioat_cleanup_preamble(chan, &phys_complete))
779 __cleanup(ioat, phys_complete);
780 else if (test_bit(IOAT_COMPLETION_ACK, &chan->state)) {
781 spin_lock_bh(&ioat->prep_lock);
782 ioat3_restart_channel(ioat);
783 spin_unlock_bh(&ioat->prep_lock);
784 spin_unlock_bh(&chan->cleanup_lock);
785 return;
786 } else {
787 set_bit(IOAT_COMPLETION_ACK, &chan->state);
788 mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
789 }
790
791
792 if (ioat2_ring_active(ioat))
793 mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
794 else {
795 spin_lock_bh(&ioat->prep_lock);
796 check_active(ioat);
797 spin_unlock_bh(&ioat->prep_lock);
798 }
799 spin_unlock_bh(&chan->cleanup_lock);
800 }
801
802 static enum dma_status
803 ioat3_tx_status(struct dma_chan *c, dma_cookie_t cookie,
804 struct dma_tx_state *txstate)
805 {
806 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
807 enum dma_status ret;
808
809 ret = dma_cookie_status(c, cookie, txstate);
810 if (ret == DMA_SUCCESS)
811 return ret;
812
813 ioat3_cleanup(ioat);
814
815 return dma_cookie_status(c, cookie, txstate);
816 }
817
818 static struct dma_async_tx_descriptor *
819 __ioat3_prep_xor_lock(struct dma_chan *c, enum sum_check_flags *result,
820 dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt,
821 size_t len, unsigned long flags)
822 {
823 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
824 struct ioat_ring_ent *compl_desc;
825 struct ioat_ring_ent *desc;
826 struct ioat_ring_ent *ext;
827 size_t total_len = len;
828 struct ioat_xor_descriptor *xor;
829 struct ioat_xor_ext_descriptor *xor_ex = NULL;
830 struct ioat_dma_descriptor *hw;
831 int num_descs, with_ext, idx, i;
832 u32 offset = 0;
833 u8 op = result ? IOAT_OP_XOR_VAL : IOAT_OP_XOR;
834
835 BUG_ON(src_cnt < 2);
836
837 num_descs = ioat2_xferlen_to_descs(ioat, len);
838 /* we need 2x the number of descriptors to cover greater than 5
839 * sources
840 */
841 if (src_cnt > 5) {
842 with_ext = 1;
843 num_descs *= 2;
844 } else
845 with_ext = 0;
846
847 /* completion writes from the raid engine may pass completion
848 * writes from the legacy engine, so we need one extra null
849 * (legacy) descriptor to ensure all completion writes arrive in
850 * order.
851 */
852 if (likely(num_descs) && ioat2_check_space_lock(ioat, num_descs+1) == 0)
853 idx = ioat->head;
854 else
855 return NULL;
856 i = 0;
857 do {
858 struct ioat_raw_descriptor *descs[2];
859 size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
860 int s;
861
862 desc = ioat2_get_ring_ent(ioat, idx + i);
863 xor = desc->xor;
864
865 /* save a branch by unconditionally retrieving the
866 * extended descriptor xor_set_src() knows to not write
867 * to it in the single descriptor case
868 */
869 ext = ioat2_get_ring_ent(ioat, idx + i + 1);
870 xor_ex = ext->xor_ex;
871
872 descs[0] = (struct ioat_raw_descriptor *) xor;
873 descs[1] = (struct ioat_raw_descriptor *) xor_ex;
874 for (s = 0; s < src_cnt; s++)
875 xor_set_src(descs, src[s], offset, s);
876 xor->size = xfer_size;
877 xor->dst_addr = dest + offset;
878 xor->ctl = 0;
879 xor->ctl_f.op = op;
880 xor->ctl_f.src_cnt = src_cnt_to_hw(src_cnt);
881
882 len -= xfer_size;
883 offset += xfer_size;
884 dump_desc_dbg(ioat, desc);
885 } while ((i += 1 + with_ext) < num_descs);
886
887 /* last xor descriptor carries the unmap parameters and fence bit */
888 desc->txd.flags = flags;
889 desc->len = total_len;
890 if (result)
891 desc->result = result;
892 xor->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
893
894 /* completion descriptor carries interrupt bit */
895 compl_desc = ioat2_get_ring_ent(ioat, idx + i);
896 compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
897 hw = compl_desc->hw;
898 hw->ctl = 0;
899 hw->ctl_f.null = 1;
900 hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
901 hw->ctl_f.compl_write = 1;
902 hw->size = NULL_DESC_BUFFER_SIZE;
903 dump_desc_dbg(ioat, compl_desc);
904
905 /* we leave the channel locked to ensure in order submission */
906 return &compl_desc->txd;
907 }
908
909 static struct dma_async_tx_descriptor *
910 ioat3_prep_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
911 unsigned int src_cnt, size_t len, unsigned long flags)
912 {
913 return __ioat3_prep_xor_lock(chan, NULL, dest, src, src_cnt, len, flags);
914 }
915
916 struct dma_async_tx_descriptor *
917 ioat3_prep_xor_val(struct dma_chan *chan, dma_addr_t *src,
918 unsigned int src_cnt, size_t len,
919 enum sum_check_flags *result, unsigned long flags)
920 {
921 /* the cleanup routine only sets bits on validate failure, it
922 * does not clear bits on validate success... so clear it here
923 */
924 *result = 0;
925
926 return __ioat3_prep_xor_lock(chan, result, src[0], &src[1],
927 src_cnt - 1, len, flags);
928 }
929
930 static void
931 dump_pq_desc_dbg(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc, struct ioat_ring_ent *ext)
932 {
933 struct device *dev = to_dev(&ioat->base);
934 struct ioat_pq_descriptor *pq = desc->pq;
935 struct ioat_pq_ext_descriptor *pq_ex = ext ? ext->pq_ex : NULL;
936 struct ioat_raw_descriptor *descs[] = { (void *) pq, (void *) pq_ex };
937 int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
938 int i;
939
940 dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x"
941 " sz: %#10.8x ctl: %#x (op: %#x int: %d compl: %d pq: '%s%s'"
942 " src_cnt: %d)\n",
943 desc_id(desc), (unsigned long long) desc->txd.phys,
944 (unsigned long long) (pq_ex ? pq_ex->next : pq->next),
945 desc->txd.flags, pq->size, pq->ctl, pq->ctl_f.op, pq->ctl_f.int_en,
946 pq->ctl_f.compl_write,
947 pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q",
948 pq->ctl_f.src_cnt);
949 for (i = 0; i < src_cnt; i++)
950 dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i,
951 (unsigned long long) pq_get_src(descs, i), pq->coef[i]);
952 dev_dbg(dev, "\tP: %#llx\n", pq->p_addr);
953 dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr);
954 dev_dbg(dev, "\tNEXT: %#llx\n", pq->next);
955 }
956
957 static void dump_pq16_desc_dbg(struct ioat2_dma_chan *ioat,
958 struct ioat_ring_ent *desc)
959 {
960 struct device *dev = to_dev(&ioat->base);
961 struct ioat_pq_descriptor *pq = desc->pq;
962 struct ioat_raw_descriptor *descs[] = { (void *)pq,
963 (void *)pq,
964 (void *)pq };
965 int src_cnt = src16_cnt_to_sw(pq->ctl_f.src_cnt);
966 int i;
967
968 if (desc->sed) {
969 descs[1] = (void *)desc->sed->hw;
970 descs[2] = (void *)desc->sed->hw + 64;
971 }
972
973 dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x"
974 " sz: %#x ctl: %#x (op: %#x int: %d compl: %d pq: '%s%s'"
975 " src_cnt: %d)\n",
976 desc_id(desc), (unsigned long long) desc->txd.phys,
977 (unsigned long long) pq->next,
978 desc->txd.flags, pq->size, pq->ctl,
979 pq->ctl_f.op, pq->ctl_f.int_en,
980 pq->ctl_f.compl_write,
981 pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q",
982 pq->ctl_f.src_cnt);
983 for (i = 0; i < src_cnt; i++) {
984 dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i,
985 (unsigned long long) pq16_get_src(descs, i),
986 pq->coef[i]);
987 }
988 dev_dbg(dev, "\tP: %#llx\n", pq->p_addr);
989 dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr);
990 }
991
992 static struct dma_async_tx_descriptor *
993 __ioat3_prep_pq_lock(struct dma_chan *c, enum sum_check_flags *result,
994 const dma_addr_t *dst, const dma_addr_t *src,
995 unsigned int src_cnt, const unsigned char *scf,
996 size_t len, unsigned long flags)
997 {
998 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
999 struct ioat_chan_common *chan = &ioat->base;
1000 struct ioatdma_device *device = chan->device;
1001 struct ioat_ring_ent *compl_desc;
1002 struct ioat_ring_ent *desc;
1003 struct ioat_ring_ent *ext;
1004 size_t total_len = len;
1005 struct ioat_pq_descriptor *pq;
1006 struct ioat_pq_ext_descriptor *pq_ex = NULL;
1007 struct ioat_dma_descriptor *hw;
1008 u32 offset = 0;
1009 u8 op = result ? IOAT_OP_PQ_VAL : IOAT_OP_PQ;
1010 int i, s, idx, with_ext, num_descs;
1011 int cb32 = (device->version < IOAT_VER_3_3) ? 1 : 0;
1012
1013 dev_dbg(to_dev(chan), "%s\n", __func__);
1014 /* the engine requires at least two sources (we provide
1015 * at least 1 implied source in the DMA_PREP_CONTINUE case)
1016 */
1017 BUG_ON(src_cnt + dmaf_continue(flags) < 2);
1018
1019 num_descs = ioat2_xferlen_to_descs(ioat, len);
1020 /* we need 2x the number of descriptors to cover greater than 3
1021 * sources (we need 1 extra source in the q-only continuation
1022 * case and 3 extra sources in the p+q continuation case.
1023 */
1024 if (src_cnt + dmaf_p_disabled_continue(flags) > 3 ||
1025 (dmaf_continue(flags) && !dmaf_p_disabled_continue(flags))) {
1026 with_ext = 1;
1027 num_descs *= 2;
1028 } else
1029 with_ext = 0;
1030
1031 /* completion writes from the raid engine may pass completion
1032 * writes from the legacy engine, so we need one extra null
1033 * (legacy) descriptor to ensure all completion writes arrive in
1034 * order.
1035 */
1036 if (likely(num_descs) &&
1037 ioat2_check_space_lock(ioat, num_descs + cb32) == 0)
1038 idx = ioat->head;
1039 else
1040 return NULL;
1041 i = 0;
1042 do {
1043 struct ioat_raw_descriptor *descs[2];
1044 size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
1045
1046 desc = ioat2_get_ring_ent(ioat, idx + i);
1047 pq = desc->pq;
1048
1049 /* save a branch by unconditionally retrieving the
1050 * extended descriptor pq_set_src() knows to not write
1051 * to it in the single descriptor case
1052 */
1053 ext = ioat2_get_ring_ent(ioat, idx + i + with_ext);
1054 pq_ex = ext->pq_ex;
1055
1056 descs[0] = (struct ioat_raw_descriptor *) pq;
1057 descs[1] = (struct ioat_raw_descriptor *) pq_ex;
1058
1059 for (s = 0; s < src_cnt; s++)
1060 pq_set_src(descs, src[s], offset, scf[s], s);
1061
1062 /* see the comment for dma_maxpq in include/linux/dmaengine.h */
1063 if (dmaf_p_disabled_continue(flags))
1064 pq_set_src(descs, dst[1], offset, 1, s++);
1065 else if (dmaf_continue(flags)) {
1066 pq_set_src(descs, dst[0], offset, 0, s++);
1067 pq_set_src(descs, dst[1], offset, 1, s++);
1068 pq_set_src(descs, dst[1], offset, 0, s++);
1069 }
1070 pq->size = xfer_size;
1071 pq->p_addr = dst[0] + offset;
1072 pq->q_addr = dst[1] + offset;
1073 pq->ctl = 0;
1074 pq->ctl_f.op = op;
1075 /* we turn on descriptor write back error status */
1076 if (device->cap & IOAT_CAP_DWBES)
1077 pq->ctl_f.wb_en = result ? 1 : 0;
1078 pq->ctl_f.src_cnt = src_cnt_to_hw(s);
1079 pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P);
1080 pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q);
1081
1082 len -= xfer_size;
1083 offset += xfer_size;
1084 } while ((i += 1 + with_ext) < num_descs);
1085
1086 /* last pq descriptor carries the unmap parameters and fence bit */
1087 desc->txd.flags = flags;
1088 desc->len = total_len;
1089 if (result)
1090 desc->result = result;
1091 pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
1092 dump_pq_desc_dbg(ioat, desc, ext);
1093
1094 if (!cb32) {
1095 pq->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
1096 pq->ctl_f.compl_write = 1;
1097 compl_desc = desc;
1098 } else {
1099 /* completion descriptor carries interrupt bit */
1100 compl_desc = ioat2_get_ring_ent(ioat, idx + i);
1101 compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
1102 hw = compl_desc->hw;
1103 hw->ctl = 0;
1104 hw->ctl_f.null = 1;
1105 hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
1106 hw->ctl_f.compl_write = 1;
1107 hw->size = NULL_DESC_BUFFER_SIZE;
1108 dump_desc_dbg(ioat, compl_desc);
1109 }
1110
1111
1112 /* we leave the channel locked to ensure in order submission */
1113 return &compl_desc->txd;
1114 }
1115
1116 static struct dma_async_tx_descriptor *
1117 __ioat3_prep_pq16_lock(struct dma_chan *c, enum sum_check_flags *result,
1118 const dma_addr_t *dst, const dma_addr_t *src,
1119 unsigned int src_cnt, const unsigned char *scf,
1120 size_t len, unsigned long flags)
1121 {
1122 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
1123 struct ioat_chan_common *chan = &ioat->base;
1124 struct ioatdma_device *device = chan->device;
1125 struct ioat_ring_ent *desc;
1126 size_t total_len = len;
1127 struct ioat_pq_descriptor *pq;
1128 u32 offset = 0;
1129 u8 op;
1130 int i, s, idx, num_descs;
1131
1132 /* this function only handles src_cnt 9 - 16 */
1133 BUG_ON(src_cnt < 9);
1134
1135 /* this function is only called with 9-16 sources */
1136 op = result ? IOAT_OP_PQ_VAL_16S : IOAT_OP_PQ_16S;
1137
1138 dev_dbg(to_dev(chan), "%s\n", __func__);
1139
1140 num_descs = ioat2_xferlen_to_descs(ioat, len);
1141
1142 /*
1143 * 16 source pq is only available on cb3.3 and has no completion
1144 * write hw bug.
1145 */
1146 if (num_descs && ioat2_check_space_lock(ioat, num_descs) == 0)
1147 idx = ioat->head;
1148 else
1149 return NULL;
1150
1151 i = 0;
1152
1153 do {
1154 struct ioat_raw_descriptor *descs[4];
1155 size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
1156
1157 desc = ioat2_get_ring_ent(ioat, idx + i);
1158 pq = desc->pq;
1159
1160 descs[0] = (struct ioat_raw_descriptor *) pq;
1161
1162 desc->sed = ioat3_alloc_sed(device,
1163 sed_get_pq16_pool_idx(src_cnt));
1164 if (!desc->sed) {
1165 dev_err(to_dev(chan),
1166 "%s: no free sed entries\n", __func__);
1167 return NULL;
1168 }
1169
1170 pq->sed_addr = desc->sed->dma;
1171 desc->sed->parent = desc;
1172
1173 descs[1] = (struct ioat_raw_descriptor *)desc->sed->hw;
1174 descs[2] = (void *)descs[1] + 64;
1175
1176 for (s = 0; s < src_cnt; s++)
1177 pq16_set_src(descs, src[s], offset, scf[s], s);
1178
1179 /* see the comment for dma_maxpq in include/linux/dmaengine.h */
1180 if (dmaf_p_disabled_continue(flags))
1181 pq16_set_src(descs, dst[1], offset, 1, s++);
1182 else if (dmaf_continue(flags)) {
1183 pq16_set_src(descs, dst[0], offset, 0, s++);
1184 pq16_set_src(descs, dst[1], offset, 1, s++);
1185 pq16_set_src(descs, dst[1], offset, 0, s++);
1186 }
1187
1188 pq->size = xfer_size;
1189 pq->p_addr = dst[0] + offset;
1190 pq->q_addr = dst[1] + offset;
1191 pq->ctl = 0;
1192 pq->ctl_f.op = op;
1193 pq->ctl_f.src_cnt = src16_cnt_to_hw(s);
1194 /* we turn on descriptor write back error status */
1195 if (device->cap & IOAT_CAP_DWBES)
1196 pq->ctl_f.wb_en = result ? 1 : 0;
1197 pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P);
1198 pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q);
1199
1200 len -= xfer_size;
1201 offset += xfer_size;
1202 } while (++i < num_descs);
1203
1204 /* last pq descriptor carries the unmap parameters and fence bit */
1205 desc->txd.flags = flags;
1206 desc->len = total_len;
1207 if (result)
1208 desc->result = result;
1209 pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
1210
1211 /* with cb3.3 we should be able to do completion w/o a null desc */
1212 pq->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
1213 pq->ctl_f.compl_write = 1;
1214
1215 dump_pq16_desc_dbg(ioat, desc);
1216
1217 /* we leave the channel locked to ensure in order submission */
1218 return &desc->txd;
1219 }
1220
1221 static struct dma_async_tx_descriptor *
1222 ioat3_prep_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
1223 unsigned int src_cnt, const unsigned char *scf, size_t len,
1224 unsigned long flags)
1225 {
1226 struct dma_device *dma = chan->device;
1227
1228 /* specify valid address for disabled result */
1229 if (flags & DMA_PREP_PQ_DISABLE_P)
1230 dst[0] = dst[1];
1231 if (flags & DMA_PREP_PQ_DISABLE_Q)
1232 dst[1] = dst[0];
1233
1234 /* handle the single source multiply case from the raid6
1235 * recovery path
1236 */
1237 if ((flags & DMA_PREP_PQ_DISABLE_P) && src_cnt == 1) {
1238 dma_addr_t single_source[2];
1239 unsigned char single_source_coef[2];
1240
1241 BUG_ON(flags & DMA_PREP_PQ_DISABLE_Q);
1242 single_source[0] = src[0];
1243 single_source[1] = src[0];
1244 single_source_coef[0] = scf[0];
1245 single_source_coef[1] = 0;
1246
1247 return (src_cnt > 8) && (dma->max_pq > 8) ?
1248 __ioat3_prep_pq16_lock(chan, NULL, dst, single_source,
1249 2, single_source_coef, len,
1250 flags) :
1251 __ioat3_prep_pq_lock(chan, NULL, dst, single_source, 2,
1252 single_source_coef, len, flags);
1253
1254 } else {
1255 return (src_cnt > 8) && (dma->max_pq > 8) ?
1256 __ioat3_prep_pq16_lock(chan, NULL, dst, src, src_cnt,
1257 scf, len, flags) :
1258 __ioat3_prep_pq_lock(chan, NULL, dst, src, src_cnt,
1259 scf, len, flags);
1260 }
1261 }
1262
1263 struct dma_async_tx_descriptor *
1264 ioat3_prep_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
1265 unsigned int src_cnt, const unsigned char *scf, size_t len,
1266 enum sum_check_flags *pqres, unsigned long flags)
1267 {
1268 struct dma_device *dma = chan->device;
1269
1270 /* specify valid address for disabled result */
1271 if (flags & DMA_PREP_PQ_DISABLE_P)
1272 pq[0] = pq[1];
1273 if (flags & DMA_PREP_PQ_DISABLE_Q)
1274 pq[1] = pq[0];
1275
1276 /* the cleanup routine only sets bits on validate failure, it
1277 * does not clear bits on validate success... so clear it here
1278 */
1279 *pqres = 0;
1280
1281 return (src_cnt > 8) && (dma->max_pq > 8) ?
1282 __ioat3_prep_pq16_lock(chan, pqres, pq, src, src_cnt, scf, len,
1283 flags) :
1284 __ioat3_prep_pq_lock(chan, pqres, pq, src, src_cnt, scf, len,
1285 flags);
1286 }
1287
1288 static struct dma_async_tx_descriptor *
1289 ioat3_prep_pqxor(struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
1290 unsigned int src_cnt, size_t len, unsigned long flags)
1291 {
1292 struct dma_device *dma = chan->device;
1293 unsigned char scf[src_cnt];
1294 dma_addr_t pq[2];
1295
1296 memset(scf, 0, src_cnt);
1297 pq[0] = dst;
1298 flags |= DMA_PREP_PQ_DISABLE_Q;
1299 pq[1] = dst; /* specify valid address for disabled result */
1300
1301 return (src_cnt > 8) && (dma->max_pq > 8) ?
1302 __ioat3_prep_pq16_lock(chan, NULL, pq, src, src_cnt, scf, len,
1303 flags) :
1304 __ioat3_prep_pq_lock(chan, NULL, pq, src, src_cnt, scf, len,
1305 flags);
1306 }
1307
1308 struct dma_async_tx_descriptor *
1309 ioat3_prep_pqxor_val(struct dma_chan *chan, dma_addr_t *src,
1310 unsigned int src_cnt, size_t len,
1311 enum sum_check_flags *result, unsigned long flags)
1312 {
1313 struct dma_device *dma = chan->device;
1314 unsigned char scf[src_cnt];
1315 dma_addr_t pq[2];
1316
1317 /* the cleanup routine only sets bits on validate failure, it
1318 * does not clear bits on validate success... so clear it here
1319 */
1320 *result = 0;
1321
1322 memset(scf, 0, src_cnt);
1323 pq[0] = src[0];
1324 flags |= DMA_PREP_PQ_DISABLE_Q;
1325 pq[1] = pq[0]; /* specify valid address for disabled result */
1326
1327
1328 return (src_cnt > 8) && (dma->max_pq > 8) ?
1329 __ioat3_prep_pq16_lock(chan, result, pq, &src[1], src_cnt - 1,
1330 scf, len, flags) :
1331 __ioat3_prep_pq_lock(chan, result, pq, &src[1], src_cnt - 1,
1332 scf, len, flags);
1333 }
1334
1335 static struct dma_async_tx_descriptor *
1336 ioat3_prep_interrupt_lock(struct dma_chan *c, unsigned long flags)
1337 {
1338 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
1339 struct ioat_ring_ent *desc;
1340 struct ioat_dma_descriptor *hw;
1341
1342 if (ioat2_check_space_lock(ioat, 1) == 0)
1343 desc = ioat2_get_ring_ent(ioat, ioat->head);
1344 else
1345 return NULL;
1346
1347 hw = desc->hw;
1348 hw->ctl = 0;
1349 hw->ctl_f.null = 1;
1350 hw->ctl_f.int_en = 1;
1351 hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
1352 hw->ctl_f.compl_write = 1;
1353 hw->size = NULL_DESC_BUFFER_SIZE;
1354 hw->src_addr = 0;
1355 hw->dst_addr = 0;
1356
1357 desc->txd.flags = flags;
1358 desc->len = 1;
1359
1360 dump_desc_dbg(ioat, desc);
1361
1362 /* we leave the channel locked to ensure in order submission */
1363 return &desc->txd;
1364 }
1365
1366 static void ioat3_dma_test_callback(void *dma_async_param)
1367 {
1368 struct completion *cmp = dma_async_param;
1369
1370 complete(cmp);
1371 }
1372
1373 #define IOAT_NUM_SRC_TEST 6 /* must be <= 8 */
1374 static int ioat_xor_val_self_test(struct ioatdma_device *device)
1375 {
1376 int i, src_idx;
1377 struct page *dest;
1378 struct page *xor_srcs[IOAT_NUM_SRC_TEST];
1379 struct page *xor_val_srcs[IOAT_NUM_SRC_TEST + 1];
1380 dma_addr_t dma_srcs[IOAT_NUM_SRC_TEST + 1];
1381 dma_addr_t dest_dma;
1382 struct dma_async_tx_descriptor *tx;
1383 struct dma_chan *dma_chan;
1384 dma_cookie_t cookie;
1385 u8 cmp_byte = 0;
1386 u32 cmp_word;
1387 u32 xor_val_result;
1388 int err = 0;
1389 struct completion cmp;
1390 unsigned long tmo;
1391 struct device *dev = &device->pdev->dev;
1392 struct dma_device *dma = &device->common;
1393 u8 op = 0;
1394
1395 dev_dbg(dev, "%s\n", __func__);
1396
1397 if (!dma_has_cap(DMA_XOR, dma->cap_mask))
1398 return 0;
1399
1400 for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
1401 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
1402 if (!xor_srcs[src_idx]) {
1403 while (src_idx--)
1404 __free_page(xor_srcs[src_idx]);
1405 return -ENOMEM;
1406 }
1407 }
1408
1409 dest = alloc_page(GFP_KERNEL);
1410 if (!dest) {
1411 while (src_idx--)
1412 __free_page(xor_srcs[src_idx]);
1413 return -ENOMEM;
1414 }
1415
1416 /* Fill in src buffers */
1417 for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
1418 u8 *ptr = page_address(xor_srcs[src_idx]);
1419 for (i = 0; i < PAGE_SIZE; i++)
1420 ptr[i] = (1 << src_idx);
1421 }
1422
1423 for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++)
1424 cmp_byte ^= (u8) (1 << src_idx);
1425
1426 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
1427 (cmp_byte << 8) | cmp_byte;
1428
1429 memset(page_address(dest), 0, PAGE_SIZE);
1430
1431 dma_chan = container_of(dma->channels.next, struct dma_chan,
1432 device_node);
1433 if (dma->device_alloc_chan_resources(dma_chan) < 1) {
1434 err = -ENODEV;
1435 goto out;
1436 }
1437
1438 /* test xor */
1439 op = IOAT_OP_XOR;
1440
1441 dest_dma = dma_map_page(dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1442 for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
1443 dma_srcs[i] = dma_map_page(dev, xor_srcs[i], 0, PAGE_SIZE,
1444 DMA_TO_DEVICE);
1445 tx = dma->device_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
1446 IOAT_NUM_SRC_TEST, PAGE_SIZE,
1447 DMA_PREP_INTERRUPT |
1448 DMA_COMPL_SKIP_SRC_UNMAP |
1449 DMA_COMPL_SKIP_DEST_UNMAP);
1450
1451 if (!tx) {
1452 dev_err(dev, "Self-test xor prep failed\n");
1453 err = -ENODEV;
1454 goto dma_unmap;
1455 }
1456
1457 async_tx_ack(tx);
1458 init_completion(&cmp);
1459 tx->callback = ioat3_dma_test_callback;
1460 tx->callback_param = &cmp;
1461 cookie = tx->tx_submit(tx);
1462 if (cookie < 0) {
1463 dev_err(dev, "Self-test xor setup failed\n");
1464 err = -ENODEV;
1465 goto dma_unmap;
1466 }
1467 dma->device_issue_pending(dma_chan);
1468
1469 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1470
1471 if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
1472 dev_err(dev, "Self-test xor timed out\n");
1473 err = -ENODEV;
1474 goto dma_unmap;
1475 }
1476
1477 dma_unmap_page(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
1478 for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
1479 dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE, DMA_TO_DEVICE);
1480
1481 dma_sync_single_for_cpu(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
1482 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
1483 u32 *ptr = page_address(dest);
1484 if (ptr[i] != cmp_word) {
1485 dev_err(dev, "Self-test xor failed compare\n");
1486 err = -ENODEV;
1487 goto free_resources;
1488 }
1489 }
1490 dma_sync_single_for_device(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
1491
1492 /* skip validate if the capability is not present */
1493 if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
1494 goto free_resources;
1495
1496 op = IOAT_OP_XOR_VAL;
1497
1498 /* validate the sources with the destintation page */
1499 for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
1500 xor_val_srcs[i] = xor_srcs[i];
1501 xor_val_srcs[i] = dest;
1502
1503 xor_val_result = 1;
1504
1505 for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
1506 dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
1507 DMA_TO_DEVICE);
1508 tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
1509 IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
1510 &xor_val_result, DMA_PREP_INTERRUPT |
1511 DMA_COMPL_SKIP_SRC_UNMAP |
1512 DMA_COMPL_SKIP_DEST_UNMAP);
1513 if (!tx) {
1514 dev_err(dev, "Self-test zero prep failed\n");
1515 err = -ENODEV;
1516 goto dma_unmap;
1517 }
1518
1519 async_tx_ack(tx);
1520 init_completion(&cmp);
1521 tx->callback = ioat3_dma_test_callback;
1522 tx->callback_param = &cmp;
1523 cookie = tx->tx_submit(tx);
1524 if (cookie < 0) {
1525 dev_err(dev, "Self-test zero setup failed\n");
1526 err = -ENODEV;
1527 goto dma_unmap;
1528 }
1529 dma->device_issue_pending(dma_chan);
1530
1531 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1532
1533 if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
1534 dev_err(dev, "Self-test validate timed out\n");
1535 err = -ENODEV;
1536 goto dma_unmap;
1537 }
1538
1539 for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
1540 dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE, DMA_TO_DEVICE);
1541
1542 if (xor_val_result != 0) {
1543 dev_err(dev, "Self-test validate failed compare\n");
1544 err = -ENODEV;
1545 goto free_resources;
1546 }
1547
1548 /* test for non-zero parity sum */
1549 op = IOAT_OP_XOR_VAL;
1550
1551 xor_val_result = 0;
1552 for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
1553 dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
1554 DMA_TO_DEVICE);
1555 tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
1556 IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
1557 &xor_val_result, DMA_PREP_INTERRUPT |
1558 DMA_COMPL_SKIP_SRC_UNMAP |
1559 DMA_COMPL_SKIP_DEST_UNMAP);
1560 if (!tx) {
1561 dev_err(dev, "Self-test 2nd zero prep failed\n");
1562 err = -ENODEV;
1563 goto dma_unmap;
1564 }
1565
1566 async_tx_ack(tx);
1567 init_completion(&cmp);
1568 tx->callback = ioat3_dma_test_callback;
1569 tx->callback_param = &cmp;
1570 cookie = tx->tx_submit(tx);
1571 if (cookie < 0) {
1572 dev_err(dev, "Self-test 2nd zero setup failed\n");
1573 err = -ENODEV;
1574 goto dma_unmap;
1575 }
1576 dma->device_issue_pending(dma_chan);
1577
1578 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1579
1580 if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
1581 dev_err(dev, "Self-test 2nd validate timed out\n");
1582 err = -ENODEV;
1583 goto dma_unmap;
1584 }
1585
1586 if (xor_val_result != SUM_CHECK_P_RESULT) {
1587 dev_err(dev, "Self-test validate failed compare\n");
1588 err = -ENODEV;
1589 goto dma_unmap;
1590 }
1591
1592 for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
1593 dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE, DMA_TO_DEVICE);
1594
1595 goto free_resources;
1596 dma_unmap:
1597 if (op == IOAT_OP_XOR) {
1598 dma_unmap_page(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
1599 for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
1600 dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE,
1601 DMA_TO_DEVICE);
1602 } else if (op == IOAT_OP_XOR_VAL) {
1603 for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
1604 dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE,
1605 DMA_TO_DEVICE);
1606 }
1607 free_resources:
1608 dma->device_free_chan_resources(dma_chan);
1609 out:
1610 src_idx = IOAT_NUM_SRC_TEST;
1611 while (src_idx--)
1612 __free_page(xor_srcs[src_idx]);
1613 __free_page(dest);
1614 return err;
1615 }
1616
1617 static int ioat3_dma_self_test(struct ioatdma_device *device)
1618 {
1619 int rc = ioat_dma_self_test(device);
1620
1621 if (rc)
1622 return rc;
1623
1624 rc = ioat_xor_val_self_test(device);
1625 if (rc)
1626 return rc;
1627
1628 return 0;
1629 }
1630
1631 static int ioat3_irq_reinit(struct ioatdma_device *device)
1632 {
1633 int msixcnt = device->common.chancnt;
1634 struct pci_dev *pdev = device->pdev;
1635 int i;
1636 struct msix_entry *msix;
1637 struct ioat_chan_common *chan;
1638 int err = 0;
1639
1640 switch (device->irq_mode) {
1641 case IOAT_MSIX:
1642
1643 for (i = 0; i < msixcnt; i++) {
1644 msix = &device->msix_entries[i];
1645 chan = ioat_chan_by_index(device, i);
1646 devm_free_irq(&pdev->dev, msix->vector, chan);
1647 }
1648
1649 pci_disable_msix(pdev);
1650 break;
1651
1652 case IOAT_MSIX_SINGLE:
1653 msix = &device->msix_entries[0];
1654 chan = ioat_chan_by_index(device, 0);
1655 devm_free_irq(&pdev->dev, msix->vector, chan);
1656 pci_disable_msix(pdev);
1657 break;
1658
1659 case IOAT_MSI:
1660 chan = ioat_chan_by_index(device, 0);
1661 devm_free_irq(&pdev->dev, pdev->irq, chan);
1662 pci_disable_msi(pdev);
1663 break;
1664
1665 case IOAT_INTX:
1666 chan = ioat_chan_by_index(device, 0);
1667 devm_free_irq(&pdev->dev, pdev->irq, chan);
1668 break;
1669
1670 default:
1671 return 0;
1672 }
1673
1674 device->irq_mode = IOAT_NOIRQ;
1675
1676 err = ioat_dma_setup_interrupts(device);
1677
1678 return err;
1679 }
1680
1681 static int ioat3_reset_hw(struct ioat_chan_common *chan)
1682 {
1683 /* throw away whatever the channel was doing and get it
1684 * initialized, with ioat3 specific workarounds
1685 */
1686 struct ioatdma_device *device = chan->device;
1687 struct pci_dev *pdev = device->pdev;
1688 u32 chanerr;
1689 u16 dev_id;
1690 int err;
1691
1692 ioat2_quiesce(chan, msecs_to_jiffies(100));
1693
1694 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
1695 writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET);
1696
1697 if (device->version < IOAT_VER_3_3) {
1698 /* clear any pending errors */
1699 err = pci_read_config_dword(pdev,
1700 IOAT_PCI_CHANERR_INT_OFFSET, &chanerr);
1701 if (err) {
1702 dev_err(&pdev->dev,
1703 "channel error register unreachable\n");
1704 return err;
1705 }
1706 pci_write_config_dword(pdev,
1707 IOAT_PCI_CHANERR_INT_OFFSET, chanerr);
1708
1709 /* Clear DMAUNCERRSTS Cfg-Reg Parity Error status bit
1710 * (workaround for spurious config parity error after restart)
1711 */
1712 pci_read_config_word(pdev, IOAT_PCI_DEVICE_ID_OFFSET, &dev_id);
1713 if (dev_id == PCI_DEVICE_ID_INTEL_IOAT_TBG0) {
1714 pci_write_config_dword(pdev,
1715 IOAT_PCI_DMAUNCERRSTS_OFFSET,
1716 0x10);
1717 }
1718 }
1719
1720 err = ioat2_reset_sync(chan, msecs_to_jiffies(200));
1721 if (err) {
1722 dev_err(&pdev->dev, "Failed to reset!\n");
1723 return err;
1724 }
1725
1726 if (device->irq_mode != IOAT_NOIRQ && is_bwd_ioat(pdev))
1727 err = ioat3_irq_reinit(device);
1728
1729 return err;
1730 }
1731
1732 static void ioat3_intr_quirk(struct ioatdma_device *device)
1733 {
1734 struct dma_device *dma;
1735 struct dma_chan *c;
1736 struct ioat_chan_common *chan;
1737 u32 errmask;
1738
1739 dma = &device->common;
1740
1741 /*
1742 * if we have descriptor write back error status, we mask the
1743 * error interrupts
1744 */
1745 if (device->cap & IOAT_CAP_DWBES) {
1746 list_for_each_entry(c, &dma->channels, device_node) {
1747 chan = to_chan_common(c);
1748 errmask = readl(chan->reg_base +
1749 IOAT_CHANERR_MASK_OFFSET);
1750 errmask |= IOAT_CHANERR_XOR_P_OR_CRC_ERR |
1751 IOAT_CHANERR_XOR_Q_ERR;
1752 writel(errmask, chan->reg_base +
1753 IOAT_CHANERR_MASK_OFFSET);
1754 }
1755 }
1756 }
1757
1758 int ioat3_dma_probe(struct ioatdma_device *device, int dca)
1759 {
1760 struct pci_dev *pdev = device->pdev;
1761 int dca_en = system_has_dca_enabled(pdev);
1762 struct dma_device *dma;
1763 struct dma_chan *c;
1764 struct ioat_chan_common *chan;
1765 bool is_raid_device = false;
1766 int err;
1767
1768 device->enumerate_channels = ioat2_enumerate_channels;
1769 device->reset_hw = ioat3_reset_hw;
1770 device->self_test = ioat3_dma_self_test;
1771 device->intr_quirk = ioat3_intr_quirk;
1772 dma = &device->common;
1773 dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock;
1774 dma->device_issue_pending = ioat2_issue_pending;
1775 dma->device_alloc_chan_resources = ioat2_alloc_chan_resources;
1776 dma->device_free_chan_resources = ioat2_free_chan_resources;
1777
1778 if (is_xeon_cb32(pdev))
1779 dma->copy_align = 6;
1780
1781 dma_cap_set(DMA_INTERRUPT, dma->cap_mask);
1782 dma->device_prep_dma_interrupt = ioat3_prep_interrupt_lock;
1783
1784 device->cap = readl(device->reg_base + IOAT_DMA_CAP_OFFSET);
1785
1786 if (is_bwd_noraid(pdev))
1787 device->cap &= ~(IOAT_CAP_XOR | IOAT_CAP_PQ | IOAT_CAP_RAID16SS);
1788
1789 /* dca is incompatible with raid operations */
1790 if (dca_en && (device->cap & (IOAT_CAP_XOR|IOAT_CAP_PQ)))
1791 device->cap &= ~(IOAT_CAP_XOR|IOAT_CAP_PQ);
1792
1793 if (device->cap & IOAT_CAP_XOR) {
1794 is_raid_device = true;
1795 dma->max_xor = 8;
1796 dma->xor_align = 6;
1797
1798 dma_cap_set(DMA_XOR, dma->cap_mask);
1799 dma->device_prep_dma_xor = ioat3_prep_xor;
1800
1801 dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
1802 dma->device_prep_dma_xor_val = ioat3_prep_xor_val;
1803 }
1804
1805 if (device->cap & IOAT_CAP_PQ) {
1806 is_raid_device = true;
1807
1808 dma->device_prep_dma_pq = ioat3_prep_pq;
1809 dma->device_prep_dma_pq_val = ioat3_prep_pq_val;
1810 dma_cap_set(DMA_PQ, dma->cap_mask);
1811 dma_cap_set(DMA_PQ_VAL, dma->cap_mask);
1812
1813 if (device->cap & IOAT_CAP_RAID16SS) {
1814 dma_set_maxpq(dma, 16, 0);
1815 dma->pq_align = 0;
1816 } else {
1817 dma_set_maxpq(dma, 8, 0);
1818 if (is_xeon_cb32(pdev))
1819 dma->pq_align = 6;
1820 else
1821 dma->pq_align = 0;
1822 }
1823
1824 if (!(device->cap & IOAT_CAP_XOR)) {
1825 dma->device_prep_dma_xor = ioat3_prep_pqxor;
1826 dma->device_prep_dma_xor_val = ioat3_prep_pqxor_val;
1827 dma_cap_set(DMA_XOR, dma->cap_mask);
1828 dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
1829
1830 if (device->cap & IOAT_CAP_RAID16SS) {
1831 dma->max_xor = 16;
1832 dma->xor_align = 0;
1833 } else {
1834 dma->max_xor = 8;
1835 if (is_xeon_cb32(pdev))
1836 dma->xor_align = 6;
1837 else
1838 dma->xor_align = 0;
1839 }
1840 }
1841 }
1842
1843 dma->device_tx_status = ioat3_tx_status;
1844 device->cleanup_fn = ioat3_cleanup_event;
1845 device->timer_fn = ioat3_timer_event;
1846
1847 if (is_xeon_cb32(pdev)) {
1848 dma_cap_clear(DMA_XOR_VAL, dma->cap_mask);
1849 dma->device_prep_dma_xor_val = NULL;
1850
1851 dma_cap_clear(DMA_PQ_VAL, dma->cap_mask);
1852 dma->device_prep_dma_pq_val = NULL;
1853 }
1854
1855 /* starting with CB3.3 super extended descriptors are supported */
1856 if (device->cap & IOAT_CAP_RAID16SS) {
1857 char pool_name[14];
1858 int i;
1859
1860 /* allocate sw descriptor pool for SED */
1861 device->sed_pool = kmem_cache_create("ioat_sed",
1862 sizeof(struct ioat_sed_ent), 0, 0, NULL);
1863 if (!device->sed_pool)
1864 return -ENOMEM;
1865
1866 for (i = 0; i < MAX_SED_POOLS; i++) {
1867 snprintf(pool_name, 14, "ioat_hw%d_sed", i);
1868
1869 /* allocate SED DMA pool */
1870 device->sed_hw_pool[i] = dma_pool_create(pool_name,
1871 &pdev->dev,
1872 SED_SIZE * (i + 1), 64, 0);
1873 if (!device->sed_hw_pool[i])
1874 goto sed_pool_cleanup;
1875
1876 }
1877 }
1878
1879 err = ioat_probe(device);
1880 if (err)
1881 return err;
1882 ioat_set_tcp_copy_break(262144);
1883
1884 list_for_each_entry(c, &dma->channels, device_node) {
1885 chan = to_chan_common(c);
1886 writel(IOAT_DMA_DCA_ANY_CPU,
1887 chan->reg_base + IOAT_DCACTRL_OFFSET);
1888 }
1889
1890 err = ioat_register(device);
1891 if (err)
1892 return err;
1893
1894 ioat_kobject_add(device, &ioat2_ktype);
1895
1896 if (dca)
1897 device->dca = ioat3_dca_init(pdev, device->reg_base);
1898
1899 return 0;
1900
1901 sed_pool_cleanup:
1902 if (device->sed_pool) {
1903 int i;
1904 kmem_cache_destroy(device->sed_pool);
1905
1906 for (i = 0; i < MAX_SED_POOLS; i++)
1907 if (device->sed_hw_pool[i])
1908 dma_pool_destroy(device->sed_hw_pool[i]);
1909 }
1910
1911 return -ENOMEM;
1912 }
1913
1914 void ioat3_dma_remove(struct ioatdma_device *device)
1915 {
1916 if (device->sed_pool) {
1917 int i;
1918 kmem_cache_destroy(device->sed_pool);
1919
1920 for (i = 0; i < MAX_SED_POOLS; i++)
1921 if (device->sed_hw_pool[i])
1922 dma_pool_destroy(device->sed_hw_pool[i]);
1923 }
1924 }
This page took 0.073473 seconds and 5 git commands to generate.