Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[deliverable/linux.git] / drivers / dma / mv_xor.c
1 /*
2 * offload engine driver for the Marvell XOR engine
3 * Copyright (C) 2007, 2008, Marvell International Ltd.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/spinlock.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/memory.h>
24 #include <linux/clk.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/platform_data/dma-mv_xor.h>
29
30 #include "dmaengine.h"
31 #include "mv_xor.h"
32
33 static void mv_xor_issue_pending(struct dma_chan *chan);
34
35 #define to_mv_xor_chan(chan) \
36 container_of(chan, struct mv_xor_chan, dmachan)
37
38 #define to_mv_xor_slot(tx) \
39 container_of(tx, struct mv_xor_desc_slot, async_tx)
40
41 #define mv_chan_to_devp(chan) \
42 ((chan)->dmadev.dev)
43
44 static void mv_desc_init(struct mv_xor_desc_slot *desc,
45 dma_addr_t addr, u32 byte_count,
46 enum dma_ctrl_flags flags)
47 {
48 struct mv_xor_desc *hw_desc = desc->hw_desc;
49
50 hw_desc->status = XOR_DESC_DMA_OWNED;
51 hw_desc->phy_next_desc = 0;
52 /* Enable end-of-descriptor interrupts only for DMA_PREP_INTERRUPT */
53 hw_desc->desc_command = (flags & DMA_PREP_INTERRUPT) ?
54 XOR_DESC_EOD_INT_EN : 0;
55 hw_desc->phy_dest_addr = addr;
56 hw_desc->byte_count = byte_count;
57 }
58
59 static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
60 u32 next_desc_addr)
61 {
62 struct mv_xor_desc *hw_desc = desc->hw_desc;
63 BUG_ON(hw_desc->phy_next_desc);
64 hw_desc->phy_next_desc = next_desc_addr;
65 }
66
67 static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
68 {
69 struct mv_xor_desc *hw_desc = desc->hw_desc;
70 hw_desc->phy_next_desc = 0;
71 }
72
73 static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
74 int index, dma_addr_t addr)
75 {
76 struct mv_xor_desc *hw_desc = desc->hw_desc;
77 hw_desc->phy_src_addr[mv_phy_src_idx(index)] = addr;
78 if (desc->type == DMA_XOR)
79 hw_desc->desc_command |= (1 << index);
80 }
81
82 static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
83 {
84 return readl_relaxed(XOR_CURR_DESC(chan));
85 }
86
87 static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
88 u32 next_desc_addr)
89 {
90 writel_relaxed(next_desc_addr, XOR_NEXT_DESC(chan));
91 }
92
93 static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
94 {
95 u32 val = readl_relaxed(XOR_INTR_MASK(chan));
96 val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
97 writel_relaxed(val, XOR_INTR_MASK(chan));
98 }
99
100 static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
101 {
102 u32 intr_cause = readl_relaxed(XOR_INTR_CAUSE(chan));
103 intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
104 return intr_cause;
105 }
106
107 static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
108 {
109 u32 val;
110
111 val = XOR_INT_END_OF_DESC | XOR_INT_END_OF_CHAIN | XOR_INT_STOPPED;
112 val = ~(val << (chan->idx * 16));
113 dev_dbg(mv_chan_to_devp(chan), "%s, val 0x%08x\n", __func__, val);
114 writel_relaxed(val, XOR_INTR_CAUSE(chan));
115 }
116
117 static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
118 {
119 u32 val = 0xFFFF0000 >> (chan->idx * 16);
120 writel_relaxed(val, XOR_INTR_CAUSE(chan));
121 }
122
123 static void mv_set_mode(struct mv_xor_chan *chan,
124 enum dma_transaction_type type)
125 {
126 u32 op_mode;
127 u32 config = readl_relaxed(XOR_CONFIG(chan));
128
129 switch (type) {
130 case DMA_XOR:
131 op_mode = XOR_OPERATION_MODE_XOR;
132 break;
133 case DMA_MEMCPY:
134 op_mode = XOR_OPERATION_MODE_MEMCPY;
135 break;
136 default:
137 dev_err(mv_chan_to_devp(chan),
138 "error: unsupported operation %d\n",
139 type);
140 BUG();
141 return;
142 }
143
144 config &= ~0x7;
145 config |= op_mode;
146
147 #if defined(__BIG_ENDIAN)
148 config |= XOR_DESCRIPTOR_SWAP;
149 #else
150 config &= ~XOR_DESCRIPTOR_SWAP;
151 #endif
152
153 writel_relaxed(config, XOR_CONFIG(chan));
154 chan->current_type = type;
155 }
156
157 static void mv_chan_activate(struct mv_xor_chan *chan)
158 {
159 dev_dbg(mv_chan_to_devp(chan), " activate chan.\n");
160
161 /* writel ensures all descriptors are flushed before activation */
162 writel(BIT(0), XOR_ACTIVATION(chan));
163 }
164
165 static char mv_chan_is_busy(struct mv_xor_chan *chan)
166 {
167 u32 state = readl_relaxed(XOR_ACTIVATION(chan));
168
169 state = (state >> 4) & 0x3;
170
171 return (state == 1) ? 1 : 0;
172 }
173
174 /**
175 * mv_xor_free_slots - flags descriptor slots for reuse
176 * @slot: Slot to free
177 * Caller must hold &mv_chan->lock while calling this function
178 */
179 static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
180 struct mv_xor_desc_slot *slot)
181 {
182 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d slot %p\n",
183 __func__, __LINE__, slot);
184
185 slot->slot_used = 0;
186
187 }
188
189 /*
190 * mv_xor_start_new_chain - program the engine to operate on new chain headed by
191 * sw_desc
192 * Caller must hold &mv_chan->lock while calling this function
193 */
194 static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
195 struct mv_xor_desc_slot *sw_desc)
196 {
197 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: sw_desc %p\n",
198 __func__, __LINE__, sw_desc);
199
200 /* set the hardware chain */
201 mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
202
203 mv_chan->pending++;
204 mv_xor_issue_pending(&mv_chan->dmachan);
205 }
206
207 static dma_cookie_t
208 mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
209 struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
210 {
211 BUG_ON(desc->async_tx.cookie < 0);
212
213 if (desc->async_tx.cookie > 0) {
214 cookie = desc->async_tx.cookie;
215
216 /* call the callback (must not sleep or submit new
217 * operations to this channel)
218 */
219 if (desc->async_tx.callback)
220 desc->async_tx.callback(
221 desc->async_tx.callback_param);
222
223 dma_descriptor_unmap(&desc->async_tx);
224 }
225
226 /* run dependent operations */
227 dma_run_dependencies(&desc->async_tx);
228
229 return cookie;
230 }
231
232 static int
233 mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
234 {
235 struct mv_xor_desc_slot *iter, *_iter;
236
237 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
238 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
239 completed_node) {
240
241 if (async_tx_test_ack(&iter->async_tx)) {
242 list_del(&iter->completed_node);
243 mv_xor_free_slots(mv_chan, iter);
244 }
245 }
246 return 0;
247 }
248
249 static int
250 mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
251 struct mv_xor_chan *mv_chan)
252 {
253 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: desc %p flags %d\n",
254 __func__, __LINE__, desc, desc->async_tx.flags);
255 list_del(&desc->chain_node);
256 /* the client is allowed to attach dependent operations
257 * until 'ack' is set
258 */
259 if (!async_tx_test_ack(&desc->async_tx)) {
260 /* move this slot to the completed_slots */
261 list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
262 return 0;
263 }
264
265 mv_xor_free_slots(mv_chan, desc);
266 return 0;
267 }
268
269 /* This function must be called with the mv_xor_chan spinlock held */
270 static void mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
271 {
272 struct mv_xor_desc_slot *iter, *_iter;
273 dma_cookie_t cookie = 0;
274 int busy = mv_chan_is_busy(mv_chan);
275 u32 current_desc = mv_chan_get_current_desc(mv_chan);
276 int seen_current = 0;
277
278 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
279 dev_dbg(mv_chan_to_devp(mv_chan), "current_desc %x\n", current_desc);
280 mv_xor_clean_completed_slots(mv_chan);
281
282 /* free completed slots from the chain starting with
283 * the oldest descriptor
284 */
285
286 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
287 chain_node) {
288 prefetch(_iter);
289 prefetch(&_iter->async_tx);
290
291 /* do not advance past the current descriptor loaded into the
292 * hardware channel, subsequent descriptors are either in
293 * process or have not been submitted
294 */
295 if (seen_current)
296 break;
297
298 /* stop the search if we reach the current descriptor and the
299 * channel is busy
300 */
301 if (iter->async_tx.phys == current_desc) {
302 seen_current = 1;
303 if (busy)
304 break;
305 }
306
307 cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
308
309 if (mv_xor_clean_slot(iter, mv_chan))
310 break;
311 }
312
313 if ((busy == 0) && !list_empty(&mv_chan->chain)) {
314 struct mv_xor_desc_slot *chain_head;
315 chain_head = list_entry(mv_chan->chain.next,
316 struct mv_xor_desc_slot,
317 chain_node);
318
319 mv_xor_start_new_chain(mv_chan, chain_head);
320 }
321
322 if (cookie > 0)
323 mv_chan->dmachan.completed_cookie = cookie;
324 }
325
326 static void mv_xor_tasklet(unsigned long data)
327 {
328 struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
329
330 spin_lock_bh(&chan->lock);
331 mv_xor_slot_cleanup(chan);
332 spin_unlock_bh(&chan->lock);
333 }
334
335 static struct mv_xor_desc_slot *
336 mv_xor_alloc_slot(struct mv_xor_chan *mv_chan)
337 {
338 struct mv_xor_desc_slot *iter, *_iter;
339 int retry = 0;
340
341 /* start search from the last allocated descrtiptor
342 * if a contiguous allocation can not be found start searching
343 * from the beginning of the list
344 */
345 retry:
346 if (retry == 0)
347 iter = mv_chan->last_used;
348 else
349 iter = list_entry(&mv_chan->all_slots,
350 struct mv_xor_desc_slot,
351 slot_node);
352
353 list_for_each_entry_safe_continue(
354 iter, _iter, &mv_chan->all_slots, slot_node) {
355
356 prefetch(_iter);
357 prefetch(&_iter->async_tx);
358 if (iter->slot_used) {
359 /* give up after finding the first busy slot
360 * on the second pass through the list
361 */
362 if (retry)
363 break;
364 continue;
365 }
366
367 /* pre-ack descriptor */
368 async_tx_ack(&iter->async_tx);
369
370 iter->slot_used = 1;
371 INIT_LIST_HEAD(&iter->chain_node);
372 iter->async_tx.cookie = -EBUSY;
373 mv_chan->last_used = iter;
374 mv_desc_clear_next_desc(iter);
375
376 return iter;
377
378 }
379 if (!retry++)
380 goto retry;
381
382 /* try to free some slots if the allocation fails */
383 tasklet_schedule(&mv_chan->irq_tasklet);
384
385 return NULL;
386 }
387
388 /************************ DMA engine API functions ****************************/
389 static dma_cookie_t
390 mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
391 {
392 struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
393 struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
394 struct mv_xor_desc_slot *old_chain_tail;
395 dma_cookie_t cookie;
396 int new_hw_chain = 1;
397
398 dev_dbg(mv_chan_to_devp(mv_chan),
399 "%s sw_desc %p: async_tx %p\n",
400 __func__, sw_desc, &sw_desc->async_tx);
401
402 spin_lock_bh(&mv_chan->lock);
403 cookie = dma_cookie_assign(tx);
404
405 if (list_empty(&mv_chan->chain))
406 list_add_tail(&sw_desc->chain_node, &mv_chan->chain);
407 else {
408 new_hw_chain = 0;
409
410 old_chain_tail = list_entry(mv_chan->chain.prev,
411 struct mv_xor_desc_slot,
412 chain_node);
413 list_add_tail(&sw_desc->chain_node, &mv_chan->chain);
414
415 dev_dbg(mv_chan_to_devp(mv_chan), "Append to last desc %pa\n",
416 &old_chain_tail->async_tx.phys);
417
418 /* fix up the hardware chain */
419 mv_desc_set_next_desc(old_chain_tail, sw_desc->async_tx.phys);
420
421 /* if the channel is not busy */
422 if (!mv_chan_is_busy(mv_chan)) {
423 u32 current_desc = mv_chan_get_current_desc(mv_chan);
424 /*
425 * and the curren desc is the end of the chain before
426 * the append, then we need to start the channel
427 */
428 if (current_desc == old_chain_tail->async_tx.phys)
429 new_hw_chain = 1;
430 }
431 }
432
433 if (new_hw_chain)
434 mv_xor_start_new_chain(mv_chan, sw_desc);
435
436 spin_unlock_bh(&mv_chan->lock);
437
438 return cookie;
439 }
440
441 /* returns the number of allocated descriptors */
442 static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
443 {
444 void *virt_desc;
445 dma_addr_t dma_desc;
446 int idx;
447 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
448 struct mv_xor_desc_slot *slot = NULL;
449 int num_descs_in_pool = MV_XOR_POOL_SIZE/MV_XOR_SLOT_SIZE;
450
451 /* Allocate descriptor slots */
452 idx = mv_chan->slots_allocated;
453 while (idx < num_descs_in_pool) {
454 slot = kzalloc(sizeof(*slot), GFP_KERNEL);
455 if (!slot) {
456 dev_info(mv_chan_to_devp(mv_chan),
457 "channel only initialized %d descriptor slots",
458 idx);
459 break;
460 }
461 virt_desc = mv_chan->dma_desc_pool_virt;
462 slot->hw_desc = virt_desc + idx * MV_XOR_SLOT_SIZE;
463
464 dma_async_tx_descriptor_init(&slot->async_tx, chan);
465 slot->async_tx.tx_submit = mv_xor_tx_submit;
466 INIT_LIST_HEAD(&slot->chain_node);
467 INIT_LIST_HEAD(&slot->slot_node);
468 dma_desc = mv_chan->dma_desc_pool;
469 slot->async_tx.phys = dma_desc + idx * MV_XOR_SLOT_SIZE;
470 slot->idx = idx++;
471
472 spin_lock_bh(&mv_chan->lock);
473 mv_chan->slots_allocated = idx;
474 list_add_tail(&slot->slot_node, &mv_chan->all_slots);
475 spin_unlock_bh(&mv_chan->lock);
476 }
477
478 if (mv_chan->slots_allocated && !mv_chan->last_used)
479 mv_chan->last_used = list_entry(mv_chan->all_slots.next,
480 struct mv_xor_desc_slot,
481 slot_node);
482
483 dev_dbg(mv_chan_to_devp(mv_chan),
484 "allocated %d descriptor slots last_used: %p\n",
485 mv_chan->slots_allocated, mv_chan->last_used);
486
487 return mv_chan->slots_allocated ? : -ENOMEM;
488 }
489
490 static struct dma_async_tx_descriptor *
491 mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
492 unsigned int src_cnt, size_t len, unsigned long flags)
493 {
494 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
495 struct mv_xor_desc_slot *sw_desc;
496
497 if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
498 return NULL;
499
500 BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
501
502 dev_dbg(mv_chan_to_devp(mv_chan),
503 "%s src_cnt: %d len: %u dest %pad flags: %ld\n",
504 __func__, src_cnt, len, &dest, flags);
505
506 spin_lock_bh(&mv_chan->lock);
507 sw_desc = mv_xor_alloc_slot(mv_chan);
508 if (sw_desc) {
509 sw_desc->type = DMA_XOR;
510 sw_desc->async_tx.flags = flags;
511 mv_desc_init(sw_desc, dest, len, flags);
512 while (src_cnt--)
513 mv_desc_set_src_addr(sw_desc, src_cnt, src[src_cnt]);
514 }
515 spin_unlock_bh(&mv_chan->lock);
516 dev_dbg(mv_chan_to_devp(mv_chan),
517 "%s sw_desc %p async_tx %p \n",
518 __func__, sw_desc, &sw_desc->async_tx);
519 return sw_desc ? &sw_desc->async_tx : NULL;
520 }
521
522 static struct dma_async_tx_descriptor *
523 mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
524 size_t len, unsigned long flags)
525 {
526 /*
527 * A MEMCPY operation is identical to an XOR operation with only
528 * a single source address.
529 */
530 return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
531 }
532
533 static struct dma_async_tx_descriptor *
534 mv_xor_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
535 {
536 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
537 dma_addr_t src, dest;
538 size_t len;
539
540 src = mv_chan->dummy_src_addr;
541 dest = mv_chan->dummy_dst_addr;
542 len = MV_XOR_MIN_BYTE_COUNT;
543
544 /*
545 * We implement the DMA_INTERRUPT operation as a minimum sized
546 * XOR operation with a single dummy source address.
547 */
548 return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
549 }
550
551 static void mv_xor_free_chan_resources(struct dma_chan *chan)
552 {
553 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
554 struct mv_xor_desc_slot *iter, *_iter;
555 int in_use_descs = 0;
556
557 spin_lock_bh(&mv_chan->lock);
558
559 mv_xor_slot_cleanup(mv_chan);
560
561 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
562 chain_node) {
563 in_use_descs++;
564 list_del(&iter->chain_node);
565 }
566 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
567 completed_node) {
568 in_use_descs++;
569 list_del(&iter->completed_node);
570 }
571 list_for_each_entry_safe_reverse(
572 iter, _iter, &mv_chan->all_slots, slot_node) {
573 list_del(&iter->slot_node);
574 kfree(iter);
575 mv_chan->slots_allocated--;
576 }
577 mv_chan->last_used = NULL;
578
579 dev_dbg(mv_chan_to_devp(mv_chan), "%s slots_allocated %d\n",
580 __func__, mv_chan->slots_allocated);
581 spin_unlock_bh(&mv_chan->lock);
582
583 if (in_use_descs)
584 dev_err(mv_chan_to_devp(mv_chan),
585 "freeing %d in use descriptors!\n", in_use_descs);
586 }
587
588 /**
589 * mv_xor_status - poll the status of an XOR transaction
590 * @chan: XOR channel handle
591 * @cookie: XOR transaction identifier
592 * @txstate: XOR transactions state holder (or NULL)
593 */
594 static enum dma_status mv_xor_status(struct dma_chan *chan,
595 dma_cookie_t cookie,
596 struct dma_tx_state *txstate)
597 {
598 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
599 enum dma_status ret;
600
601 ret = dma_cookie_status(chan, cookie, txstate);
602 if (ret == DMA_COMPLETE)
603 return ret;
604
605 spin_lock_bh(&mv_chan->lock);
606 mv_xor_slot_cleanup(mv_chan);
607 spin_unlock_bh(&mv_chan->lock);
608
609 return dma_cookie_status(chan, cookie, txstate);
610 }
611
612 static void mv_dump_xor_regs(struct mv_xor_chan *chan)
613 {
614 u32 val;
615
616 val = readl_relaxed(XOR_CONFIG(chan));
617 dev_err(mv_chan_to_devp(chan), "config 0x%08x\n", val);
618
619 val = readl_relaxed(XOR_ACTIVATION(chan));
620 dev_err(mv_chan_to_devp(chan), "activation 0x%08x\n", val);
621
622 val = readl_relaxed(XOR_INTR_CAUSE(chan));
623 dev_err(mv_chan_to_devp(chan), "intr cause 0x%08x\n", val);
624
625 val = readl_relaxed(XOR_INTR_MASK(chan));
626 dev_err(mv_chan_to_devp(chan), "intr mask 0x%08x\n", val);
627
628 val = readl_relaxed(XOR_ERROR_CAUSE(chan));
629 dev_err(mv_chan_to_devp(chan), "error cause 0x%08x\n", val);
630
631 val = readl_relaxed(XOR_ERROR_ADDR(chan));
632 dev_err(mv_chan_to_devp(chan), "error addr 0x%08x\n", val);
633 }
634
635 static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
636 u32 intr_cause)
637 {
638 if (intr_cause & XOR_INT_ERR_DECODE) {
639 dev_dbg(mv_chan_to_devp(chan), "ignoring address decode error\n");
640 return;
641 }
642
643 dev_err(mv_chan_to_devp(chan), "error on chan %d. intr cause 0x%08x\n",
644 chan->idx, intr_cause);
645
646 mv_dump_xor_regs(chan);
647 WARN_ON(1);
648 }
649
650 static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
651 {
652 struct mv_xor_chan *chan = data;
653 u32 intr_cause = mv_chan_get_intr_cause(chan);
654
655 dev_dbg(mv_chan_to_devp(chan), "intr cause %x\n", intr_cause);
656
657 if (intr_cause & XOR_INTR_ERRORS)
658 mv_xor_err_interrupt_handler(chan, intr_cause);
659
660 tasklet_schedule(&chan->irq_tasklet);
661
662 mv_xor_device_clear_eoc_cause(chan);
663
664 return IRQ_HANDLED;
665 }
666
667 static void mv_xor_issue_pending(struct dma_chan *chan)
668 {
669 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
670
671 if (mv_chan->pending >= MV_XOR_THRESHOLD) {
672 mv_chan->pending = 0;
673 mv_chan_activate(mv_chan);
674 }
675 }
676
677 /*
678 * Perform a transaction to verify the HW works.
679 */
680
681 static int mv_xor_memcpy_self_test(struct mv_xor_chan *mv_chan)
682 {
683 int i, ret;
684 void *src, *dest;
685 dma_addr_t src_dma, dest_dma;
686 struct dma_chan *dma_chan;
687 dma_cookie_t cookie;
688 struct dma_async_tx_descriptor *tx;
689 struct dmaengine_unmap_data *unmap;
690 int err = 0;
691
692 src = kmalloc(sizeof(u8) * PAGE_SIZE, GFP_KERNEL);
693 if (!src)
694 return -ENOMEM;
695
696 dest = kzalloc(sizeof(u8) * PAGE_SIZE, GFP_KERNEL);
697 if (!dest) {
698 kfree(src);
699 return -ENOMEM;
700 }
701
702 /* Fill in src buffer */
703 for (i = 0; i < PAGE_SIZE; i++)
704 ((u8 *) src)[i] = (u8)i;
705
706 dma_chan = &mv_chan->dmachan;
707 if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
708 err = -ENODEV;
709 goto out;
710 }
711
712 unmap = dmaengine_get_unmap_data(dma_chan->device->dev, 2, GFP_KERNEL);
713 if (!unmap) {
714 err = -ENOMEM;
715 goto free_resources;
716 }
717
718 src_dma = dma_map_page(dma_chan->device->dev, virt_to_page(src), 0,
719 PAGE_SIZE, DMA_TO_DEVICE);
720 unmap->addr[0] = src_dma;
721
722 ret = dma_mapping_error(dma_chan->device->dev, src_dma);
723 if (ret) {
724 err = -ENOMEM;
725 goto free_resources;
726 }
727 unmap->to_cnt = 1;
728
729 dest_dma = dma_map_page(dma_chan->device->dev, virt_to_page(dest), 0,
730 PAGE_SIZE, DMA_FROM_DEVICE);
731 unmap->addr[1] = dest_dma;
732
733 ret = dma_mapping_error(dma_chan->device->dev, dest_dma);
734 if (ret) {
735 err = -ENOMEM;
736 goto free_resources;
737 }
738 unmap->from_cnt = 1;
739 unmap->len = PAGE_SIZE;
740
741 tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
742 PAGE_SIZE, 0);
743 if (!tx) {
744 dev_err(dma_chan->device->dev,
745 "Self-test cannot prepare operation, disabling\n");
746 err = -ENODEV;
747 goto free_resources;
748 }
749
750 cookie = mv_xor_tx_submit(tx);
751 if (dma_submit_error(cookie)) {
752 dev_err(dma_chan->device->dev,
753 "Self-test submit error, disabling\n");
754 err = -ENODEV;
755 goto free_resources;
756 }
757
758 mv_xor_issue_pending(dma_chan);
759 async_tx_ack(tx);
760 msleep(1);
761
762 if (mv_xor_status(dma_chan, cookie, NULL) !=
763 DMA_COMPLETE) {
764 dev_err(dma_chan->device->dev,
765 "Self-test copy timed out, disabling\n");
766 err = -ENODEV;
767 goto free_resources;
768 }
769
770 dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
771 PAGE_SIZE, DMA_FROM_DEVICE);
772 if (memcmp(src, dest, PAGE_SIZE)) {
773 dev_err(dma_chan->device->dev,
774 "Self-test copy failed compare, disabling\n");
775 err = -ENODEV;
776 goto free_resources;
777 }
778
779 free_resources:
780 dmaengine_unmap_put(unmap);
781 mv_xor_free_chan_resources(dma_chan);
782 out:
783 kfree(src);
784 kfree(dest);
785 return err;
786 }
787
788 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
789 static int
790 mv_xor_xor_self_test(struct mv_xor_chan *mv_chan)
791 {
792 int i, src_idx, ret;
793 struct page *dest;
794 struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
795 dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
796 dma_addr_t dest_dma;
797 struct dma_async_tx_descriptor *tx;
798 struct dmaengine_unmap_data *unmap;
799 struct dma_chan *dma_chan;
800 dma_cookie_t cookie;
801 u8 cmp_byte = 0;
802 u32 cmp_word;
803 int err = 0;
804 int src_count = MV_XOR_NUM_SRC_TEST;
805
806 for (src_idx = 0; src_idx < src_count; src_idx++) {
807 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
808 if (!xor_srcs[src_idx]) {
809 while (src_idx--)
810 __free_page(xor_srcs[src_idx]);
811 return -ENOMEM;
812 }
813 }
814
815 dest = alloc_page(GFP_KERNEL);
816 if (!dest) {
817 while (src_idx--)
818 __free_page(xor_srcs[src_idx]);
819 return -ENOMEM;
820 }
821
822 /* Fill in src buffers */
823 for (src_idx = 0; src_idx < src_count; src_idx++) {
824 u8 *ptr = page_address(xor_srcs[src_idx]);
825 for (i = 0; i < PAGE_SIZE; i++)
826 ptr[i] = (1 << src_idx);
827 }
828
829 for (src_idx = 0; src_idx < src_count; src_idx++)
830 cmp_byte ^= (u8) (1 << src_idx);
831
832 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
833 (cmp_byte << 8) | cmp_byte;
834
835 memset(page_address(dest), 0, PAGE_SIZE);
836
837 dma_chan = &mv_chan->dmachan;
838 if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
839 err = -ENODEV;
840 goto out;
841 }
842
843 unmap = dmaengine_get_unmap_data(dma_chan->device->dev, src_count + 1,
844 GFP_KERNEL);
845 if (!unmap) {
846 err = -ENOMEM;
847 goto free_resources;
848 }
849
850 /* test xor */
851 for (i = 0; i < src_count; i++) {
852 unmap->addr[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
853 0, PAGE_SIZE, DMA_TO_DEVICE);
854 dma_srcs[i] = unmap->addr[i];
855 ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[i]);
856 if (ret) {
857 err = -ENOMEM;
858 goto free_resources;
859 }
860 unmap->to_cnt++;
861 }
862
863 unmap->addr[src_count] = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
864 DMA_FROM_DEVICE);
865 dest_dma = unmap->addr[src_count];
866 ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[src_count]);
867 if (ret) {
868 err = -ENOMEM;
869 goto free_resources;
870 }
871 unmap->from_cnt = 1;
872 unmap->len = PAGE_SIZE;
873
874 tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
875 src_count, PAGE_SIZE, 0);
876 if (!tx) {
877 dev_err(dma_chan->device->dev,
878 "Self-test cannot prepare operation, disabling\n");
879 err = -ENODEV;
880 goto free_resources;
881 }
882
883 cookie = mv_xor_tx_submit(tx);
884 if (dma_submit_error(cookie)) {
885 dev_err(dma_chan->device->dev,
886 "Self-test submit error, disabling\n");
887 err = -ENODEV;
888 goto free_resources;
889 }
890
891 mv_xor_issue_pending(dma_chan);
892 async_tx_ack(tx);
893 msleep(8);
894
895 if (mv_xor_status(dma_chan, cookie, NULL) !=
896 DMA_COMPLETE) {
897 dev_err(dma_chan->device->dev,
898 "Self-test xor timed out, disabling\n");
899 err = -ENODEV;
900 goto free_resources;
901 }
902
903 dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
904 PAGE_SIZE, DMA_FROM_DEVICE);
905 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
906 u32 *ptr = page_address(dest);
907 if (ptr[i] != cmp_word) {
908 dev_err(dma_chan->device->dev,
909 "Self-test xor failed compare, disabling. index %d, data %x, expected %x\n",
910 i, ptr[i], cmp_word);
911 err = -ENODEV;
912 goto free_resources;
913 }
914 }
915
916 free_resources:
917 dmaengine_unmap_put(unmap);
918 mv_xor_free_chan_resources(dma_chan);
919 out:
920 src_idx = src_count;
921 while (src_idx--)
922 __free_page(xor_srcs[src_idx]);
923 __free_page(dest);
924 return err;
925 }
926
927 static int mv_xor_channel_remove(struct mv_xor_chan *mv_chan)
928 {
929 struct dma_chan *chan, *_chan;
930 struct device *dev = mv_chan->dmadev.dev;
931
932 dma_async_device_unregister(&mv_chan->dmadev);
933
934 dma_free_coherent(dev, MV_XOR_POOL_SIZE,
935 mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
936 dma_unmap_single(dev, mv_chan->dummy_src_addr,
937 MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
938 dma_unmap_single(dev, mv_chan->dummy_dst_addr,
939 MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
940
941 list_for_each_entry_safe(chan, _chan, &mv_chan->dmadev.channels,
942 device_node) {
943 list_del(&chan->device_node);
944 }
945
946 free_irq(mv_chan->irq, mv_chan);
947
948 return 0;
949 }
950
951 static struct mv_xor_chan *
952 mv_xor_channel_add(struct mv_xor_device *xordev,
953 struct platform_device *pdev,
954 int idx, dma_cap_mask_t cap_mask, int irq)
955 {
956 int ret = 0;
957 struct mv_xor_chan *mv_chan;
958 struct dma_device *dma_dev;
959
960 mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
961 if (!mv_chan)
962 return ERR_PTR(-ENOMEM);
963
964 mv_chan->idx = idx;
965 mv_chan->irq = irq;
966
967 dma_dev = &mv_chan->dmadev;
968
969 /*
970 * These source and destination dummy buffers are used to implement
971 * a DMA_INTERRUPT operation as a minimum-sized XOR operation.
972 * Hence, we only need to map the buffers at initialization-time.
973 */
974 mv_chan->dummy_src_addr = dma_map_single(dma_dev->dev,
975 mv_chan->dummy_src, MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
976 mv_chan->dummy_dst_addr = dma_map_single(dma_dev->dev,
977 mv_chan->dummy_dst, MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
978
979 /* allocate coherent memory for hardware descriptors
980 * note: writecombine gives slightly better performance, but
981 * requires that we explicitly flush the writes
982 */
983 mv_chan->dma_desc_pool_virt =
984 dma_alloc_writecombine(&pdev->dev, MV_XOR_POOL_SIZE,
985 &mv_chan->dma_desc_pool, GFP_KERNEL);
986 if (!mv_chan->dma_desc_pool_virt)
987 return ERR_PTR(-ENOMEM);
988
989 /* discover transaction capabilites from the platform data */
990 dma_dev->cap_mask = cap_mask;
991
992 INIT_LIST_HEAD(&dma_dev->channels);
993
994 /* set base routines */
995 dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
996 dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
997 dma_dev->device_tx_status = mv_xor_status;
998 dma_dev->device_issue_pending = mv_xor_issue_pending;
999 dma_dev->dev = &pdev->dev;
1000
1001 /* set prep routines based on capability */
1002 if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
1003 dma_dev->device_prep_dma_interrupt = mv_xor_prep_dma_interrupt;
1004 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1005 dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
1006 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1007 dma_dev->max_xor = 8;
1008 dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
1009 }
1010
1011 mv_chan->mmr_base = xordev->xor_base;
1012 mv_chan->mmr_high_base = xordev->xor_high_base;
1013 tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
1014 mv_chan);
1015
1016 /* clear errors before enabling interrupts */
1017 mv_xor_device_clear_err_status(mv_chan);
1018
1019 ret = request_irq(mv_chan->irq, mv_xor_interrupt_handler,
1020 0, dev_name(&pdev->dev), mv_chan);
1021 if (ret)
1022 goto err_free_dma;
1023
1024 mv_chan_unmask_interrupts(mv_chan);
1025
1026 mv_set_mode(mv_chan, DMA_XOR);
1027
1028 spin_lock_init(&mv_chan->lock);
1029 INIT_LIST_HEAD(&mv_chan->chain);
1030 INIT_LIST_HEAD(&mv_chan->completed_slots);
1031 INIT_LIST_HEAD(&mv_chan->all_slots);
1032 mv_chan->dmachan.device = dma_dev;
1033 dma_cookie_init(&mv_chan->dmachan);
1034
1035 list_add_tail(&mv_chan->dmachan.device_node, &dma_dev->channels);
1036
1037 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1038 ret = mv_xor_memcpy_self_test(mv_chan);
1039 dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1040 if (ret)
1041 goto err_free_irq;
1042 }
1043
1044 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1045 ret = mv_xor_xor_self_test(mv_chan);
1046 dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1047 if (ret)
1048 goto err_free_irq;
1049 }
1050
1051 dev_info(&pdev->dev, "Marvell XOR: ( %s%s%s)\n",
1052 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1053 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1054 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1055
1056 dma_async_device_register(dma_dev);
1057 return mv_chan;
1058
1059 err_free_irq:
1060 free_irq(mv_chan->irq, mv_chan);
1061 err_free_dma:
1062 dma_free_coherent(&pdev->dev, MV_XOR_POOL_SIZE,
1063 mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
1064 return ERR_PTR(ret);
1065 }
1066
1067 static void
1068 mv_xor_conf_mbus_windows(struct mv_xor_device *xordev,
1069 const struct mbus_dram_target_info *dram)
1070 {
1071 void __iomem *base = xordev->xor_high_base;
1072 u32 win_enable = 0;
1073 int i;
1074
1075 for (i = 0; i < 8; i++) {
1076 writel(0, base + WINDOW_BASE(i));
1077 writel(0, base + WINDOW_SIZE(i));
1078 if (i < 4)
1079 writel(0, base + WINDOW_REMAP_HIGH(i));
1080 }
1081
1082 for (i = 0; i < dram->num_cs; i++) {
1083 const struct mbus_dram_window *cs = dram->cs + i;
1084
1085 writel((cs->base & 0xffff0000) |
1086 (cs->mbus_attr << 8) |
1087 dram->mbus_dram_target_id, base + WINDOW_BASE(i));
1088 writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
1089
1090 win_enable |= (1 << i);
1091 win_enable |= 3 << (16 + (2 * i));
1092 }
1093
1094 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1095 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1096 writel(0, base + WINDOW_OVERRIDE_CTRL(0));
1097 writel(0, base + WINDOW_OVERRIDE_CTRL(1));
1098 }
1099
1100 static int mv_xor_probe(struct platform_device *pdev)
1101 {
1102 const struct mbus_dram_target_info *dram;
1103 struct mv_xor_device *xordev;
1104 struct mv_xor_platform_data *pdata = dev_get_platdata(&pdev->dev);
1105 struct resource *res;
1106 int i, ret;
1107
1108 dev_notice(&pdev->dev, "Marvell shared XOR driver\n");
1109
1110 xordev = devm_kzalloc(&pdev->dev, sizeof(*xordev), GFP_KERNEL);
1111 if (!xordev)
1112 return -ENOMEM;
1113
1114 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1115 if (!res)
1116 return -ENODEV;
1117
1118 xordev->xor_base = devm_ioremap(&pdev->dev, res->start,
1119 resource_size(res));
1120 if (!xordev->xor_base)
1121 return -EBUSY;
1122
1123 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1124 if (!res)
1125 return -ENODEV;
1126
1127 xordev->xor_high_base = devm_ioremap(&pdev->dev, res->start,
1128 resource_size(res));
1129 if (!xordev->xor_high_base)
1130 return -EBUSY;
1131
1132 platform_set_drvdata(pdev, xordev);
1133
1134 /*
1135 * (Re-)program MBUS remapping windows if we are asked to.
1136 */
1137 dram = mv_mbus_dram_info();
1138 if (dram)
1139 mv_xor_conf_mbus_windows(xordev, dram);
1140
1141 /* Not all platforms can gate the clock, so it is not
1142 * an error if the clock does not exists.
1143 */
1144 xordev->clk = clk_get(&pdev->dev, NULL);
1145 if (!IS_ERR(xordev->clk))
1146 clk_prepare_enable(xordev->clk);
1147
1148 if (pdev->dev.of_node) {
1149 struct device_node *np;
1150 int i = 0;
1151
1152 for_each_child_of_node(pdev->dev.of_node, np) {
1153 struct mv_xor_chan *chan;
1154 dma_cap_mask_t cap_mask;
1155 int irq;
1156
1157 dma_cap_zero(cap_mask);
1158 if (of_property_read_bool(np, "dmacap,memcpy"))
1159 dma_cap_set(DMA_MEMCPY, cap_mask);
1160 if (of_property_read_bool(np, "dmacap,xor"))
1161 dma_cap_set(DMA_XOR, cap_mask);
1162 if (of_property_read_bool(np, "dmacap,interrupt"))
1163 dma_cap_set(DMA_INTERRUPT, cap_mask);
1164
1165 irq = irq_of_parse_and_map(np, 0);
1166 if (!irq) {
1167 ret = -ENODEV;
1168 goto err_channel_add;
1169 }
1170
1171 chan = mv_xor_channel_add(xordev, pdev, i,
1172 cap_mask, irq);
1173 if (IS_ERR(chan)) {
1174 ret = PTR_ERR(chan);
1175 irq_dispose_mapping(irq);
1176 goto err_channel_add;
1177 }
1178
1179 xordev->channels[i] = chan;
1180 i++;
1181 }
1182 } else if (pdata && pdata->channels) {
1183 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1184 struct mv_xor_channel_data *cd;
1185 struct mv_xor_chan *chan;
1186 int irq;
1187
1188 cd = &pdata->channels[i];
1189 if (!cd) {
1190 ret = -ENODEV;
1191 goto err_channel_add;
1192 }
1193
1194 irq = platform_get_irq(pdev, i);
1195 if (irq < 0) {
1196 ret = irq;
1197 goto err_channel_add;
1198 }
1199
1200 chan = mv_xor_channel_add(xordev, pdev, i,
1201 cd->cap_mask, irq);
1202 if (IS_ERR(chan)) {
1203 ret = PTR_ERR(chan);
1204 goto err_channel_add;
1205 }
1206
1207 xordev->channels[i] = chan;
1208 }
1209 }
1210
1211 return 0;
1212
1213 err_channel_add:
1214 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++)
1215 if (xordev->channels[i]) {
1216 mv_xor_channel_remove(xordev->channels[i]);
1217 if (pdev->dev.of_node)
1218 irq_dispose_mapping(xordev->channels[i]->irq);
1219 }
1220
1221 if (!IS_ERR(xordev->clk)) {
1222 clk_disable_unprepare(xordev->clk);
1223 clk_put(xordev->clk);
1224 }
1225
1226 return ret;
1227 }
1228
1229 static int mv_xor_remove(struct platform_device *pdev)
1230 {
1231 struct mv_xor_device *xordev = platform_get_drvdata(pdev);
1232 int i;
1233
1234 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1235 if (xordev->channels[i])
1236 mv_xor_channel_remove(xordev->channels[i]);
1237 }
1238
1239 if (!IS_ERR(xordev->clk)) {
1240 clk_disable_unprepare(xordev->clk);
1241 clk_put(xordev->clk);
1242 }
1243
1244 return 0;
1245 }
1246
1247 #ifdef CONFIG_OF
1248 static const struct of_device_id mv_xor_dt_ids[] = {
1249 { .compatible = "marvell,orion-xor", },
1250 {},
1251 };
1252 MODULE_DEVICE_TABLE(of, mv_xor_dt_ids);
1253 #endif
1254
1255 static struct platform_driver mv_xor_driver = {
1256 .probe = mv_xor_probe,
1257 .remove = mv_xor_remove,
1258 .driver = {
1259 .name = MV_XOR_NAME,
1260 .of_match_table = of_match_ptr(mv_xor_dt_ids),
1261 },
1262 };
1263
1264
1265 static int __init mv_xor_init(void)
1266 {
1267 return platform_driver_register(&mv_xor_driver);
1268 }
1269 module_init(mv_xor_init);
1270
1271 /* it's currently unsafe to unload this module */
1272 #if 0
1273 static void __exit mv_xor_exit(void)
1274 {
1275 platform_driver_unregister(&mv_xor_driver);
1276 return;
1277 }
1278
1279 module_exit(mv_xor_exit);
1280 #endif
1281
1282 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1283 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1284 MODULE_LICENSE("GPL");
This page took 0.058687 seconds and 5 git commands to generate.