Merge branch 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[deliverable/linux.git] / drivers / dma / mv_xor.c
1 /*
2 * offload engine driver for the Marvell XOR engine
3 * Copyright (C) 2007, 2008, Marvell International Ltd.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/platform_device.h>
27 #include <linux/memory.h>
28 #include <linux/clk.h>
29 #include <linux/of.h>
30 #include <linux/of_irq.h>
31 #include <linux/irqdomain.h>
32 #include <linux/platform_data/dma-mv_xor.h>
33
34 #include "dmaengine.h"
35 #include "mv_xor.h"
36
37 static void mv_xor_issue_pending(struct dma_chan *chan);
38
39 #define to_mv_xor_chan(chan) \
40 container_of(chan, struct mv_xor_chan, dmachan)
41
42 #define to_mv_xor_slot(tx) \
43 container_of(tx, struct mv_xor_desc_slot, async_tx)
44
45 #define mv_chan_to_devp(chan) \
46 ((chan)->dmadev.dev)
47
48 static void mv_desc_init(struct mv_xor_desc_slot *desc,
49 dma_addr_t addr, u32 byte_count,
50 enum dma_ctrl_flags flags)
51 {
52 struct mv_xor_desc *hw_desc = desc->hw_desc;
53
54 hw_desc->status = XOR_DESC_DMA_OWNED;
55 hw_desc->phy_next_desc = 0;
56 /* Enable end-of-descriptor interrupts only for DMA_PREP_INTERRUPT */
57 hw_desc->desc_command = (flags & DMA_PREP_INTERRUPT) ?
58 XOR_DESC_EOD_INT_EN : 0;
59 hw_desc->phy_dest_addr = addr;
60 hw_desc->byte_count = byte_count;
61 }
62
63 static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
64 u32 next_desc_addr)
65 {
66 struct mv_xor_desc *hw_desc = desc->hw_desc;
67 BUG_ON(hw_desc->phy_next_desc);
68 hw_desc->phy_next_desc = next_desc_addr;
69 }
70
71 static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
72 {
73 struct mv_xor_desc *hw_desc = desc->hw_desc;
74 hw_desc->phy_next_desc = 0;
75 }
76
77 static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
78 int index, dma_addr_t addr)
79 {
80 struct mv_xor_desc *hw_desc = desc->hw_desc;
81 hw_desc->phy_src_addr[mv_phy_src_idx(index)] = addr;
82 if (desc->type == DMA_XOR)
83 hw_desc->desc_command |= (1 << index);
84 }
85
86 static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
87 {
88 return readl_relaxed(XOR_CURR_DESC(chan));
89 }
90
91 static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
92 u32 next_desc_addr)
93 {
94 writel_relaxed(next_desc_addr, XOR_NEXT_DESC(chan));
95 }
96
97 static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
98 {
99 u32 val = readl_relaxed(XOR_INTR_MASK(chan));
100 val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
101 writel_relaxed(val, XOR_INTR_MASK(chan));
102 }
103
104 static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
105 {
106 u32 intr_cause = readl_relaxed(XOR_INTR_CAUSE(chan));
107 intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
108 return intr_cause;
109 }
110
111 static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
112 {
113 u32 val;
114
115 val = XOR_INT_END_OF_DESC | XOR_INT_END_OF_CHAIN | XOR_INT_STOPPED;
116 val = ~(val << (chan->idx * 16));
117 dev_dbg(mv_chan_to_devp(chan), "%s, val 0x%08x\n", __func__, val);
118 writel_relaxed(val, XOR_INTR_CAUSE(chan));
119 }
120
121 static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
122 {
123 u32 val = 0xFFFF0000 >> (chan->idx * 16);
124 writel_relaxed(val, XOR_INTR_CAUSE(chan));
125 }
126
127 static void mv_set_mode(struct mv_xor_chan *chan,
128 enum dma_transaction_type type)
129 {
130 u32 op_mode;
131 u32 config = readl_relaxed(XOR_CONFIG(chan));
132
133 switch (type) {
134 case DMA_XOR:
135 op_mode = XOR_OPERATION_MODE_XOR;
136 break;
137 case DMA_MEMCPY:
138 op_mode = XOR_OPERATION_MODE_MEMCPY;
139 break;
140 default:
141 dev_err(mv_chan_to_devp(chan),
142 "error: unsupported operation %d\n",
143 type);
144 BUG();
145 return;
146 }
147
148 config &= ~0x7;
149 config |= op_mode;
150
151 #if defined(__BIG_ENDIAN)
152 config |= XOR_DESCRIPTOR_SWAP;
153 #else
154 config &= ~XOR_DESCRIPTOR_SWAP;
155 #endif
156
157 writel_relaxed(config, XOR_CONFIG(chan));
158 chan->current_type = type;
159 }
160
161 static void mv_chan_activate(struct mv_xor_chan *chan)
162 {
163 dev_dbg(mv_chan_to_devp(chan), " activate chan.\n");
164
165 /* writel ensures all descriptors are flushed before activation */
166 writel(BIT(0), XOR_ACTIVATION(chan));
167 }
168
169 static char mv_chan_is_busy(struct mv_xor_chan *chan)
170 {
171 u32 state = readl_relaxed(XOR_ACTIVATION(chan));
172
173 state = (state >> 4) & 0x3;
174
175 return (state == 1) ? 1 : 0;
176 }
177
178 /**
179 * mv_xor_free_slots - flags descriptor slots for reuse
180 * @slot: Slot to free
181 * Caller must hold &mv_chan->lock while calling this function
182 */
183 static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
184 struct mv_xor_desc_slot *slot)
185 {
186 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d slot %p\n",
187 __func__, __LINE__, slot);
188
189 slot->slot_used = 0;
190
191 }
192
193 /*
194 * mv_xor_start_new_chain - program the engine to operate on new chain headed by
195 * sw_desc
196 * Caller must hold &mv_chan->lock while calling this function
197 */
198 static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
199 struct mv_xor_desc_slot *sw_desc)
200 {
201 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: sw_desc %p\n",
202 __func__, __LINE__, sw_desc);
203
204 /* set the hardware chain */
205 mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
206
207 mv_chan->pending++;
208 mv_xor_issue_pending(&mv_chan->dmachan);
209 }
210
211 static dma_cookie_t
212 mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
213 struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
214 {
215 BUG_ON(desc->async_tx.cookie < 0);
216
217 if (desc->async_tx.cookie > 0) {
218 cookie = desc->async_tx.cookie;
219
220 /* call the callback (must not sleep or submit new
221 * operations to this channel)
222 */
223 if (desc->async_tx.callback)
224 desc->async_tx.callback(
225 desc->async_tx.callback_param);
226
227 dma_descriptor_unmap(&desc->async_tx);
228 }
229
230 /* run dependent operations */
231 dma_run_dependencies(&desc->async_tx);
232
233 return cookie;
234 }
235
236 static int
237 mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
238 {
239 struct mv_xor_desc_slot *iter, *_iter;
240
241 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
242 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
243 completed_node) {
244
245 if (async_tx_test_ack(&iter->async_tx)) {
246 list_del(&iter->completed_node);
247 mv_xor_free_slots(mv_chan, iter);
248 }
249 }
250 return 0;
251 }
252
253 static int
254 mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
255 struct mv_xor_chan *mv_chan)
256 {
257 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: desc %p flags %d\n",
258 __func__, __LINE__, desc, desc->async_tx.flags);
259 list_del(&desc->chain_node);
260 /* the client is allowed to attach dependent operations
261 * until 'ack' is set
262 */
263 if (!async_tx_test_ack(&desc->async_tx)) {
264 /* move this slot to the completed_slots */
265 list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
266 return 0;
267 }
268
269 mv_xor_free_slots(mv_chan, desc);
270 return 0;
271 }
272
273 /* This function must be called with the mv_xor_chan spinlock held */
274 static void mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
275 {
276 struct mv_xor_desc_slot *iter, *_iter;
277 dma_cookie_t cookie = 0;
278 int busy = mv_chan_is_busy(mv_chan);
279 u32 current_desc = mv_chan_get_current_desc(mv_chan);
280 int seen_current = 0;
281
282 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
283 dev_dbg(mv_chan_to_devp(mv_chan), "current_desc %x\n", current_desc);
284 mv_xor_clean_completed_slots(mv_chan);
285
286 /* free completed slots from the chain starting with
287 * the oldest descriptor
288 */
289
290 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
291 chain_node) {
292 prefetch(_iter);
293 prefetch(&_iter->async_tx);
294
295 /* do not advance past the current descriptor loaded into the
296 * hardware channel, subsequent descriptors are either in
297 * process or have not been submitted
298 */
299 if (seen_current)
300 break;
301
302 /* stop the search if we reach the current descriptor and the
303 * channel is busy
304 */
305 if (iter->async_tx.phys == current_desc) {
306 seen_current = 1;
307 if (busy)
308 break;
309 }
310
311 cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
312
313 if (mv_xor_clean_slot(iter, mv_chan))
314 break;
315 }
316
317 if ((busy == 0) && !list_empty(&mv_chan->chain)) {
318 struct mv_xor_desc_slot *chain_head;
319 chain_head = list_entry(mv_chan->chain.next,
320 struct mv_xor_desc_slot,
321 chain_node);
322
323 mv_xor_start_new_chain(mv_chan, chain_head);
324 }
325
326 if (cookie > 0)
327 mv_chan->dmachan.completed_cookie = cookie;
328 }
329
330 static void mv_xor_tasklet(unsigned long data)
331 {
332 struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
333
334 spin_lock_bh(&chan->lock);
335 mv_xor_slot_cleanup(chan);
336 spin_unlock_bh(&chan->lock);
337 }
338
339 static struct mv_xor_desc_slot *
340 mv_xor_alloc_slot(struct mv_xor_chan *mv_chan)
341 {
342 struct mv_xor_desc_slot *iter, *_iter;
343 int retry = 0;
344
345 /* start search from the last allocated descrtiptor
346 * if a contiguous allocation can not be found start searching
347 * from the beginning of the list
348 */
349 retry:
350 if (retry == 0)
351 iter = mv_chan->last_used;
352 else
353 iter = list_entry(&mv_chan->all_slots,
354 struct mv_xor_desc_slot,
355 slot_node);
356
357 list_for_each_entry_safe_continue(
358 iter, _iter, &mv_chan->all_slots, slot_node) {
359
360 prefetch(_iter);
361 prefetch(&_iter->async_tx);
362 if (iter->slot_used) {
363 /* give up after finding the first busy slot
364 * on the second pass through the list
365 */
366 if (retry)
367 break;
368 continue;
369 }
370
371 /* pre-ack descriptor */
372 async_tx_ack(&iter->async_tx);
373
374 iter->slot_used = 1;
375 INIT_LIST_HEAD(&iter->chain_node);
376 iter->async_tx.cookie = -EBUSY;
377 mv_chan->last_used = iter;
378 mv_desc_clear_next_desc(iter);
379
380 return iter;
381
382 }
383 if (!retry++)
384 goto retry;
385
386 /* try to free some slots if the allocation fails */
387 tasklet_schedule(&mv_chan->irq_tasklet);
388
389 return NULL;
390 }
391
392 /************************ DMA engine API functions ****************************/
393 static dma_cookie_t
394 mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
395 {
396 struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
397 struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
398 struct mv_xor_desc_slot *old_chain_tail;
399 dma_cookie_t cookie;
400 int new_hw_chain = 1;
401
402 dev_dbg(mv_chan_to_devp(mv_chan),
403 "%s sw_desc %p: async_tx %p\n",
404 __func__, sw_desc, &sw_desc->async_tx);
405
406 spin_lock_bh(&mv_chan->lock);
407 cookie = dma_cookie_assign(tx);
408
409 if (list_empty(&mv_chan->chain))
410 list_add_tail(&sw_desc->chain_node, &mv_chan->chain);
411 else {
412 new_hw_chain = 0;
413
414 old_chain_tail = list_entry(mv_chan->chain.prev,
415 struct mv_xor_desc_slot,
416 chain_node);
417 list_add_tail(&sw_desc->chain_node, &mv_chan->chain);
418
419 dev_dbg(mv_chan_to_devp(mv_chan), "Append to last desc %pa\n",
420 &old_chain_tail->async_tx.phys);
421
422 /* fix up the hardware chain */
423 mv_desc_set_next_desc(old_chain_tail, sw_desc->async_tx.phys);
424
425 /* if the channel is not busy */
426 if (!mv_chan_is_busy(mv_chan)) {
427 u32 current_desc = mv_chan_get_current_desc(mv_chan);
428 /*
429 * and the curren desc is the end of the chain before
430 * the append, then we need to start the channel
431 */
432 if (current_desc == old_chain_tail->async_tx.phys)
433 new_hw_chain = 1;
434 }
435 }
436
437 if (new_hw_chain)
438 mv_xor_start_new_chain(mv_chan, sw_desc);
439
440 spin_unlock_bh(&mv_chan->lock);
441
442 return cookie;
443 }
444
445 /* returns the number of allocated descriptors */
446 static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
447 {
448 void *virt_desc;
449 dma_addr_t dma_desc;
450 int idx;
451 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
452 struct mv_xor_desc_slot *slot = NULL;
453 int num_descs_in_pool = MV_XOR_POOL_SIZE/MV_XOR_SLOT_SIZE;
454
455 /* Allocate descriptor slots */
456 idx = mv_chan->slots_allocated;
457 while (idx < num_descs_in_pool) {
458 slot = kzalloc(sizeof(*slot), GFP_KERNEL);
459 if (!slot) {
460 dev_info(mv_chan_to_devp(mv_chan),
461 "channel only initialized %d descriptor slots",
462 idx);
463 break;
464 }
465 virt_desc = mv_chan->dma_desc_pool_virt;
466 slot->hw_desc = virt_desc + idx * MV_XOR_SLOT_SIZE;
467
468 dma_async_tx_descriptor_init(&slot->async_tx, chan);
469 slot->async_tx.tx_submit = mv_xor_tx_submit;
470 INIT_LIST_HEAD(&slot->chain_node);
471 INIT_LIST_HEAD(&slot->slot_node);
472 dma_desc = mv_chan->dma_desc_pool;
473 slot->async_tx.phys = dma_desc + idx * MV_XOR_SLOT_SIZE;
474 slot->idx = idx++;
475
476 spin_lock_bh(&mv_chan->lock);
477 mv_chan->slots_allocated = idx;
478 list_add_tail(&slot->slot_node, &mv_chan->all_slots);
479 spin_unlock_bh(&mv_chan->lock);
480 }
481
482 if (mv_chan->slots_allocated && !mv_chan->last_used)
483 mv_chan->last_used = list_entry(mv_chan->all_slots.next,
484 struct mv_xor_desc_slot,
485 slot_node);
486
487 dev_dbg(mv_chan_to_devp(mv_chan),
488 "allocated %d descriptor slots last_used: %p\n",
489 mv_chan->slots_allocated, mv_chan->last_used);
490
491 return mv_chan->slots_allocated ? : -ENOMEM;
492 }
493
494 static struct dma_async_tx_descriptor *
495 mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
496 unsigned int src_cnt, size_t len, unsigned long flags)
497 {
498 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
499 struct mv_xor_desc_slot *sw_desc;
500
501 if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
502 return NULL;
503
504 BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
505
506 dev_dbg(mv_chan_to_devp(mv_chan),
507 "%s src_cnt: %d len: %u dest %pad flags: %ld\n",
508 __func__, src_cnt, len, &dest, flags);
509
510 spin_lock_bh(&mv_chan->lock);
511 sw_desc = mv_xor_alloc_slot(mv_chan);
512 if (sw_desc) {
513 sw_desc->type = DMA_XOR;
514 sw_desc->async_tx.flags = flags;
515 mv_desc_init(sw_desc, dest, len, flags);
516 while (src_cnt--)
517 mv_desc_set_src_addr(sw_desc, src_cnt, src[src_cnt]);
518 }
519 spin_unlock_bh(&mv_chan->lock);
520 dev_dbg(mv_chan_to_devp(mv_chan),
521 "%s sw_desc %p async_tx %p \n",
522 __func__, sw_desc, &sw_desc->async_tx);
523 return sw_desc ? &sw_desc->async_tx : NULL;
524 }
525
526 static struct dma_async_tx_descriptor *
527 mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
528 size_t len, unsigned long flags)
529 {
530 /*
531 * A MEMCPY operation is identical to an XOR operation with only
532 * a single source address.
533 */
534 return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
535 }
536
537 static struct dma_async_tx_descriptor *
538 mv_xor_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
539 {
540 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
541 dma_addr_t src, dest;
542 size_t len;
543
544 src = mv_chan->dummy_src_addr;
545 dest = mv_chan->dummy_dst_addr;
546 len = MV_XOR_MIN_BYTE_COUNT;
547
548 /*
549 * We implement the DMA_INTERRUPT operation as a minimum sized
550 * XOR operation with a single dummy source address.
551 */
552 return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
553 }
554
555 static void mv_xor_free_chan_resources(struct dma_chan *chan)
556 {
557 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
558 struct mv_xor_desc_slot *iter, *_iter;
559 int in_use_descs = 0;
560
561 spin_lock_bh(&mv_chan->lock);
562
563 mv_xor_slot_cleanup(mv_chan);
564
565 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
566 chain_node) {
567 in_use_descs++;
568 list_del(&iter->chain_node);
569 }
570 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
571 completed_node) {
572 in_use_descs++;
573 list_del(&iter->completed_node);
574 }
575 list_for_each_entry_safe_reverse(
576 iter, _iter, &mv_chan->all_slots, slot_node) {
577 list_del(&iter->slot_node);
578 kfree(iter);
579 mv_chan->slots_allocated--;
580 }
581 mv_chan->last_used = NULL;
582
583 dev_dbg(mv_chan_to_devp(mv_chan), "%s slots_allocated %d\n",
584 __func__, mv_chan->slots_allocated);
585 spin_unlock_bh(&mv_chan->lock);
586
587 if (in_use_descs)
588 dev_err(mv_chan_to_devp(mv_chan),
589 "freeing %d in use descriptors!\n", in_use_descs);
590 }
591
592 /**
593 * mv_xor_status - poll the status of an XOR transaction
594 * @chan: XOR channel handle
595 * @cookie: XOR transaction identifier
596 * @txstate: XOR transactions state holder (or NULL)
597 */
598 static enum dma_status mv_xor_status(struct dma_chan *chan,
599 dma_cookie_t cookie,
600 struct dma_tx_state *txstate)
601 {
602 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
603 enum dma_status ret;
604
605 ret = dma_cookie_status(chan, cookie, txstate);
606 if (ret == DMA_COMPLETE)
607 return ret;
608
609 spin_lock_bh(&mv_chan->lock);
610 mv_xor_slot_cleanup(mv_chan);
611 spin_unlock_bh(&mv_chan->lock);
612
613 return dma_cookie_status(chan, cookie, txstate);
614 }
615
616 static void mv_dump_xor_regs(struct mv_xor_chan *chan)
617 {
618 u32 val;
619
620 val = readl_relaxed(XOR_CONFIG(chan));
621 dev_err(mv_chan_to_devp(chan), "config 0x%08x\n", val);
622
623 val = readl_relaxed(XOR_ACTIVATION(chan));
624 dev_err(mv_chan_to_devp(chan), "activation 0x%08x\n", val);
625
626 val = readl_relaxed(XOR_INTR_CAUSE(chan));
627 dev_err(mv_chan_to_devp(chan), "intr cause 0x%08x\n", val);
628
629 val = readl_relaxed(XOR_INTR_MASK(chan));
630 dev_err(mv_chan_to_devp(chan), "intr mask 0x%08x\n", val);
631
632 val = readl_relaxed(XOR_ERROR_CAUSE(chan));
633 dev_err(mv_chan_to_devp(chan), "error cause 0x%08x\n", val);
634
635 val = readl_relaxed(XOR_ERROR_ADDR(chan));
636 dev_err(mv_chan_to_devp(chan), "error addr 0x%08x\n", val);
637 }
638
639 static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
640 u32 intr_cause)
641 {
642 if (intr_cause & XOR_INT_ERR_DECODE) {
643 dev_dbg(mv_chan_to_devp(chan), "ignoring address decode error\n");
644 return;
645 }
646
647 dev_err(mv_chan_to_devp(chan), "error on chan %d. intr cause 0x%08x\n",
648 chan->idx, intr_cause);
649
650 mv_dump_xor_regs(chan);
651 WARN_ON(1);
652 }
653
654 static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
655 {
656 struct mv_xor_chan *chan = data;
657 u32 intr_cause = mv_chan_get_intr_cause(chan);
658
659 dev_dbg(mv_chan_to_devp(chan), "intr cause %x\n", intr_cause);
660
661 if (intr_cause & XOR_INTR_ERRORS)
662 mv_xor_err_interrupt_handler(chan, intr_cause);
663
664 tasklet_schedule(&chan->irq_tasklet);
665
666 mv_xor_device_clear_eoc_cause(chan);
667
668 return IRQ_HANDLED;
669 }
670
671 static void mv_xor_issue_pending(struct dma_chan *chan)
672 {
673 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
674
675 if (mv_chan->pending >= MV_XOR_THRESHOLD) {
676 mv_chan->pending = 0;
677 mv_chan_activate(mv_chan);
678 }
679 }
680
681 /*
682 * Perform a transaction to verify the HW works.
683 */
684
685 static int mv_xor_memcpy_self_test(struct mv_xor_chan *mv_chan)
686 {
687 int i, ret;
688 void *src, *dest;
689 dma_addr_t src_dma, dest_dma;
690 struct dma_chan *dma_chan;
691 dma_cookie_t cookie;
692 struct dma_async_tx_descriptor *tx;
693 struct dmaengine_unmap_data *unmap;
694 int err = 0;
695
696 src = kmalloc(sizeof(u8) * PAGE_SIZE, GFP_KERNEL);
697 if (!src)
698 return -ENOMEM;
699
700 dest = kzalloc(sizeof(u8) * PAGE_SIZE, GFP_KERNEL);
701 if (!dest) {
702 kfree(src);
703 return -ENOMEM;
704 }
705
706 /* Fill in src buffer */
707 for (i = 0; i < PAGE_SIZE; i++)
708 ((u8 *) src)[i] = (u8)i;
709
710 dma_chan = &mv_chan->dmachan;
711 if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
712 err = -ENODEV;
713 goto out;
714 }
715
716 unmap = dmaengine_get_unmap_data(dma_chan->device->dev, 2, GFP_KERNEL);
717 if (!unmap) {
718 err = -ENOMEM;
719 goto free_resources;
720 }
721
722 src_dma = dma_map_page(dma_chan->device->dev, virt_to_page(src), 0,
723 PAGE_SIZE, DMA_TO_DEVICE);
724 unmap->addr[0] = src_dma;
725
726 ret = dma_mapping_error(dma_chan->device->dev, src_dma);
727 if (ret) {
728 err = -ENOMEM;
729 goto free_resources;
730 }
731 unmap->to_cnt = 1;
732
733 dest_dma = dma_map_page(dma_chan->device->dev, virt_to_page(dest), 0,
734 PAGE_SIZE, DMA_FROM_DEVICE);
735 unmap->addr[1] = dest_dma;
736
737 ret = dma_mapping_error(dma_chan->device->dev, dest_dma);
738 if (ret) {
739 err = -ENOMEM;
740 goto free_resources;
741 }
742 unmap->from_cnt = 1;
743 unmap->len = PAGE_SIZE;
744
745 tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
746 PAGE_SIZE, 0);
747 if (!tx) {
748 dev_err(dma_chan->device->dev,
749 "Self-test cannot prepare operation, disabling\n");
750 err = -ENODEV;
751 goto free_resources;
752 }
753
754 cookie = mv_xor_tx_submit(tx);
755 if (dma_submit_error(cookie)) {
756 dev_err(dma_chan->device->dev,
757 "Self-test submit error, disabling\n");
758 err = -ENODEV;
759 goto free_resources;
760 }
761
762 mv_xor_issue_pending(dma_chan);
763 async_tx_ack(tx);
764 msleep(1);
765
766 if (mv_xor_status(dma_chan, cookie, NULL) !=
767 DMA_COMPLETE) {
768 dev_err(dma_chan->device->dev,
769 "Self-test copy timed out, disabling\n");
770 err = -ENODEV;
771 goto free_resources;
772 }
773
774 dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
775 PAGE_SIZE, DMA_FROM_DEVICE);
776 if (memcmp(src, dest, PAGE_SIZE)) {
777 dev_err(dma_chan->device->dev,
778 "Self-test copy failed compare, disabling\n");
779 err = -ENODEV;
780 goto free_resources;
781 }
782
783 free_resources:
784 dmaengine_unmap_put(unmap);
785 mv_xor_free_chan_resources(dma_chan);
786 out:
787 kfree(src);
788 kfree(dest);
789 return err;
790 }
791
792 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
793 static int
794 mv_xor_xor_self_test(struct mv_xor_chan *mv_chan)
795 {
796 int i, src_idx, ret;
797 struct page *dest;
798 struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
799 dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
800 dma_addr_t dest_dma;
801 struct dma_async_tx_descriptor *tx;
802 struct dmaengine_unmap_data *unmap;
803 struct dma_chan *dma_chan;
804 dma_cookie_t cookie;
805 u8 cmp_byte = 0;
806 u32 cmp_word;
807 int err = 0;
808 int src_count = MV_XOR_NUM_SRC_TEST;
809
810 for (src_idx = 0; src_idx < src_count; src_idx++) {
811 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
812 if (!xor_srcs[src_idx]) {
813 while (src_idx--)
814 __free_page(xor_srcs[src_idx]);
815 return -ENOMEM;
816 }
817 }
818
819 dest = alloc_page(GFP_KERNEL);
820 if (!dest) {
821 while (src_idx--)
822 __free_page(xor_srcs[src_idx]);
823 return -ENOMEM;
824 }
825
826 /* Fill in src buffers */
827 for (src_idx = 0; src_idx < src_count; src_idx++) {
828 u8 *ptr = page_address(xor_srcs[src_idx]);
829 for (i = 0; i < PAGE_SIZE; i++)
830 ptr[i] = (1 << src_idx);
831 }
832
833 for (src_idx = 0; src_idx < src_count; src_idx++)
834 cmp_byte ^= (u8) (1 << src_idx);
835
836 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
837 (cmp_byte << 8) | cmp_byte;
838
839 memset(page_address(dest), 0, PAGE_SIZE);
840
841 dma_chan = &mv_chan->dmachan;
842 if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
843 err = -ENODEV;
844 goto out;
845 }
846
847 unmap = dmaengine_get_unmap_data(dma_chan->device->dev, src_count + 1,
848 GFP_KERNEL);
849 if (!unmap) {
850 err = -ENOMEM;
851 goto free_resources;
852 }
853
854 /* test xor */
855 for (i = 0; i < src_count; i++) {
856 unmap->addr[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
857 0, PAGE_SIZE, DMA_TO_DEVICE);
858 dma_srcs[i] = unmap->addr[i];
859 ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[i]);
860 if (ret) {
861 err = -ENOMEM;
862 goto free_resources;
863 }
864 unmap->to_cnt++;
865 }
866
867 unmap->addr[src_count] = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
868 DMA_FROM_DEVICE);
869 dest_dma = unmap->addr[src_count];
870 ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[src_count]);
871 if (ret) {
872 err = -ENOMEM;
873 goto free_resources;
874 }
875 unmap->from_cnt = 1;
876 unmap->len = PAGE_SIZE;
877
878 tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
879 src_count, PAGE_SIZE, 0);
880 if (!tx) {
881 dev_err(dma_chan->device->dev,
882 "Self-test cannot prepare operation, disabling\n");
883 err = -ENODEV;
884 goto free_resources;
885 }
886
887 cookie = mv_xor_tx_submit(tx);
888 if (dma_submit_error(cookie)) {
889 dev_err(dma_chan->device->dev,
890 "Self-test submit error, disabling\n");
891 err = -ENODEV;
892 goto free_resources;
893 }
894
895 mv_xor_issue_pending(dma_chan);
896 async_tx_ack(tx);
897 msleep(8);
898
899 if (mv_xor_status(dma_chan, cookie, NULL) !=
900 DMA_COMPLETE) {
901 dev_err(dma_chan->device->dev,
902 "Self-test xor timed out, disabling\n");
903 err = -ENODEV;
904 goto free_resources;
905 }
906
907 dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
908 PAGE_SIZE, DMA_FROM_DEVICE);
909 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
910 u32 *ptr = page_address(dest);
911 if (ptr[i] != cmp_word) {
912 dev_err(dma_chan->device->dev,
913 "Self-test xor failed compare, disabling. index %d, data %x, expected %x\n",
914 i, ptr[i], cmp_word);
915 err = -ENODEV;
916 goto free_resources;
917 }
918 }
919
920 free_resources:
921 dmaengine_unmap_put(unmap);
922 mv_xor_free_chan_resources(dma_chan);
923 out:
924 src_idx = src_count;
925 while (src_idx--)
926 __free_page(xor_srcs[src_idx]);
927 __free_page(dest);
928 return err;
929 }
930
931 static int mv_xor_channel_remove(struct mv_xor_chan *mv_chan)
932 {
933 struct dma_chan *chan, *_chan;
934 struct device *dev = mv_chan->dmadev.dev;
935
936 dma_async_device_unregister(&mv_chan->dmadev);
937
938 dma_free_coherent(dev, MV_XOR_POOL_SIZE,
939 mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
940 dma_unmap_single(dev, mv_chan->dummy_src_addr,
941 MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
942 dma_unmap_single(dev, mv_chan->dummy_dst_addr,
943 MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
944
945 list_for_each_entry_safe(chan, _chan, &mv_chan->dmadev.channels,
946 device_node) {
947 list_del(&chan->device_node);
948 }
949
950 free_irq(mv_chan->irq, mv_chan);
951
952 return 0;
953 }
954
955 static struct mv_xor_chan *
956 mv_xor_channel_add(struct mv_xor_device *xordev,
957 struct platform_device *pdev,
958 int idx, dma_cap_mask_t cap_mask, int irq)
959 {
960 int ret = 0;
961 struct mv_xor_chan *mv_chan;
962 struct dma_device *dma_dev;
963
964 mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
965 if (!mv_chan)
966 return ERR_PTR(-ENOMEM);
967
968 mv_chan->idx = idx;
969 mv_chan->irq = irq;
970
971 dma_dev = &mv_chan->dmadev;
972
973 /*
974 * These source and destination dummy buffers are used to implement
975 * a DMA_INTERRUPT operation as a minimum-sized XOR operation.
976 * Hence, we only need to map the buffers at initialization-time.
977 */
978 mv_chan->dummy_src_addr = dma_map_single(dma_dev->dev,
979 mv_chan->dummy_src, MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
980 mv_chan->dummy_dst_addr = dma_map_single(dma_dev->dev,
981 mv_chan->dummy_dst, MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
982
983 /* allocate coherent memory for hardware descriptors
984 * note: writecombine gives slightly better performance, but
985 * requires that we explicitly flush the writes
986 */
987 mv_chan->dma_desc_pool_virt =
988 dma_alloc_writecombine(&pdev->dev, MV_XOR_POOL_SIZE,
989 &mv_chan->dma_desc_pool, GFP_KERNEL);
990 if (!mv_chan->dma_desc_pool_virt)
991 return ERR_PTR(-ENOMEM);
992
993 /* discover transaction capabilites from the platform data */
994 dma_dev->cap_mask = cap_mask;
995
996 INIT_LIST_HEAD(&dma_dev->channels);
997
998 /* set base routines */
999 dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
1000 dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
1001 dma_dev->device_tx_status = mv_xor_status;
1002 dma_dev->device_issue_pending = mv_xor_issue_pending;
1003 dma_dev->dev = &pdev->dev;
1004
1005 /* set prep routines based on capability */
1006 if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
1007 dma_dev->device_prep_dma_interrupt = mv_xor_prep_dma_interrupt;
1008 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1009 dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
1010 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1011 dma_dev->max_xor = 8;
1012 dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
1013 }
1014
1015 mv_chan->mmr_base = xordev->xor_base;
1016 mv_chan->mmr_high_base = xordev->xor_high_base;
1017 tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
1018 mv_chan);
1019
1020 /* clear errors before enabling interrupts */
1021 mv_xor_device_clear_err_status(mv_chan);
1022
1023 ret = request_irq(mv_chan->irq, mv_xor_interrupt_handler,
1024 0, dev_name(&pdev->dev), mv_chan);
1025 if (ret)
1026 goto err_free_dma;
1027
1028 mv_chan_unmask_interrupts(mv_chan);
1029
1030 mv_set_mode(mv_chan, DMA_XOR);
1031
1032 spin_lock_init(&mv_chan->lock);
1033 INIT_LIST_HEAD(&mv_chan->chain);
1034 INIT_LIST_HEAD(&mv_chan->completed_slots);
1035 INIT_LIST_HEAD(&mv_chan->all_slots);
1036 mv_chan->dmachan.device = dma_dev;
1037 dma_cookie_init(&mv_chan->dmachan);
1038
1039 list_add_tail(&mv_chan->dmachan.device_node, &dma_dev->channels);
1040
1041 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1042 ret = mv_xor_memcpy_self_test(mv_chan);
1043 dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1044 if (ret)
1045 goto err_free_irq;
1046 }
1047
1048 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1049 ret = mv_xor_xor_self_test(mv_chan);
1050 dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1051 if (ret)
1052 goto err_free_irq;
1053 }
1054
1055 dev_info(&pdev->dev, "Marvell XOR: ( %s%s%s)\n",
1056 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1057 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1058 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1059
1060 dma_async_device_register(dma_dev);
1061 return mv_chan;
1062
1063 err_free_irq:
1064 free_irq(mv_chan->irq, mv_chan);
1065 err_free_dma:
1066 dma_free_coherent(&pdev->dev, MV_XOR_POOL_SIZE,
1067 mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
1068 return ERR_PTR(ret);
1069 }
1070
1071 static void
1072 mv_xor_conf_mbus_windows(struct mv_xor_device *xordev,
1073 const struct mbus_dram_target_info *dram)
1074 {
1075 void __iomem *base = xordev->xor_high_base;
1076 u32 win_enable = 0;
1077 int i;
1078
1079 for (i = 0; i < 8; i++) {
1080 writel(0, base + WINDOW_BASE(i));
1081 writel(0, base + WINDOW_SIZE(i));
1082 if (i < 4)
1083 writel(0, base + WINDOW_REMAP_HIGH(i));
1084 }
1085
1086 for (i = 0; i < dram->num_cs; i++) {
1087 const struct mbus_dram_window *cs = dram->cs + i;
1088
1089 writel((cs->base & 0xffff0000) |
1090 (cs->mbus_attr << 8) |
1091 dram->mbus_dram_target_id, base + WINDOW_BASE(i));
1092 writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
1093
1094 win_enable |= (1 << i);
1095 win_enable |= 3 << (16 + (2 * i));
1096 }
1097
1098 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1099 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1100 writel(0, base + WINDOW_OVERRIDE_CTRL(0));
1101 writel(0, base + WINDOW_OVERRIDE_CTRL(1));
1102 }
1103
1104 static int mv_xor_probe(struct platform_device *pdev)
1105 {
1106 const struct mbus_dram_target_info *dram;
1107 struct mv_xor_device *xordev;
1108 struct mv_xor_platform_data *pdata = dev_get_platdata(&pdev->dev);
1109 struct resource *res;
1110 int i, ret;
1111
1112 dev_notice(&pdev->dev, "Marvell shared XOR driver\n");
1113
1114 xordev = devm_kzalloc(&pdev->dev, sizeof(*xordev), GFP_KERNEL);
1115 if (!xordev)
1116 return -ENOMEM;
1117
1118 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1119 if (!res)
1120 return -ENODEV;
1121
1122 xordev->xor_base = devm_ioremap(&pdev->dev, res->start,
1123 resource_size(res));
1124 if (!xordev->xor_base)
1125 return -EBUSY;
1126
1127 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1128 if (!res)
1129 return -ENODEV;
1130
1131 xordev->xor_high_base = devm_ioremap(&pdev->dev, res->start,
1132 resource_size(res));
1133 if (!xordev->xor_high_base)
1134 return -EBUSY;
1135
1136 platform_set_drvdata(pdev, xordev);
1137
1138 /*
1139 * (Re-)program MBUS remapping windows if we are asked to.
1140 */
1141 dram = mv_mbus_dram_info();
1142 if (dram)
1143 mv_xor_conf_mbus_windows(xordev, dram);
1144
1145 /* Not all platforms can gate the clock, so it is not
1146 * an error if the clock does not exists.
1147 */
1148 xordev->clk = clk_get(&pdev->dev, NULL);
1149 if (!IS_ERR(xordev->clk))
1150 clk_prepare_enable(xordev->clk);
1151
1152 if (pdev->dev.of_node) {
1153 struct device_node *np;
1154 int i = 0;
1155
1156 for_each_child_of_node(pdev->dev.of_node, np) {
1157 struct mv_xor_chan *chan;
1158 dma_cap_mask_t cap_mask;
1159 int irq;
1160
1161 dma_cap_zero(cap_mask);
1162 if (of_property_read_bool(np, "dmacap,memcpy"))
1163 dma_cap_set(DMA_MEMCPY, cap_mask);
1164 if (of_property_read_bool(np, "dmacap,xor"))
1165 dma_cap_set(DMA_XOR, cap_mask);
1166 if (of_property_read_bool(np, "dmacap,interrupt"))
1167 dma_cap_set(DMA_INTERRUPT, cap_mask);
1168
1169 irq = irq_of_parse_and_map(np, 0);
1170 if (!irq) {
1171 ret = -ENODEV;
1172 goto err_channel_add;
1173 }
1174
1175 chan = mv_xor_channel_add(xordev, pdev, i,
1176 cap_mask, irq);
1177 if (IS_ERR(chan)) {
1178 ret = PTR_ERR(chan);
1179 irq_dispose_mapping(irq);
1180 goto err_channel_add;
1181 }
1182
1183 xordev->channels[i] = chan;
1184 i++;
1185 }
1186 } else if (pdata && pdata->channels) {
1187 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1188 struct mv_xor_channel_data *cd;
1189 struct mv_xor_chan *chan;
1190 int irq;
1191
1192 cd = &pdata->channels[i];
1193 if (!cd) {
1194 ret = -ENODEV;
1195 goto err_channel_add;
1196 }
1197
1198 irq = platform_get_irq(pdev, i);
1199 if (irq < 0) {
1200 ret = irq;
1201 goto err_channel_add;
1202 }
1203
1204 chan = mv_xor_channel_add(xordev, pdev, i,
1205 cd->cap_mask, irq);
1206 if (IS_ERR(chan)) {
1207 ret = PTR_ERR(chan);
1208 goto err_channel_add;
1209 }
1210
1211 xordev->channels[i] = chan;
1212 }
1213 }
1214
1215 return 0;
1216
1217 err_channel_add:
1218 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++)
1219 if (xordev->channels[i]) {
1220 mv_xor_channel_remove(xordev->channels[i]);
1221 if (pdev->dev.of_node)
1222 irq_dispose_mapping(xordev->channels[i]->irq);
1223 }
1224
1225 if (!IS_ERR(xordev->clk)) {
1226 clk_disable_unprepare(xordev->clk);
1227 clk_put(xordev->clk);
1228 }
1229
1230 return ret;
1231 }
1232
1233 static int mv_xor_remove(struct platform_device *pdev)
1234 {
1235 struct mv_xor_device *xordev = platform_get_drvdata(pdev);
1236 int i;
1237
1238 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1239 if (xordev->channels[i])
1240 mv_xor_channel_remove(xordev->channels[i]);
1241 }
1242
1243 if (!IS_ERR(xordev->clk)) {
1244 clk_disable_unprepare(xordev->clk);
1245 clk_put(xordev->clk);
1246 }
1247
1248 return 0;
1249 }
1250
1251 #ifdef CONFIG_OF
1252 static struct of_device_id mv_xor_dt_ids[] = {
1253 { .compatible = "marvell,orion-xor", },
1254 {},
1255 };
1256 MODULE_DEVICE_TABLE(of, mv_xor_dt_ids);
1257 #endif
1258
1259 static struct platform_driver mv_xor_driver = {
1260 .probe = mv_xor_probe,
1261 .remove = mv_xor_remove,
1262 .driver = {
1263 .name = MV_XOR_NAME,
1264 .of_match_table = of_match_ptr(mv_xor_dt_ids),
1265 },
1266 };
1267
1268
1269 static int __init mv_xor_init(void)
1270 {
1271 return platform_driver_register(&mv_xor_driver);
1272 }
1273 module_init(mv_xor_init);
1274
1275 /* it's currently unsafe to unload this module */
1276 #if 0
1277 static void __exit mv_xor_exit(void)
1278 {
1279 platform_driver_unregister(&mv_xor_driver);
1280 return;
1281 }
1282
1283 module_exit(mv_xor_exit);
1284 #endif
1285
1286 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1287 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1288 MODULE_LICENSE("GPL");
This page took 0.097751 seconds and 5 git commands to generate.