drm/i915: report Gen5+ CPU and PCH FIFO underruns
[deliverable/linux.git] / drivers / dma / pl330.c
1 /*
2 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6 * Jaswinder Singh <jassi.brar@samsung.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/amba/pl330.h>
26 #include <linux/scatterlist.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29
30 #include "dmaengine.h"
31 #define PL330_MAX_CHAN 8
32 #define PL330_MAX_IRQS 32
33 #define PL330_MAX_PERI 32
34
35 enum pl330_srccachectrl {
36 SCCTRL0, /* Noncacheable and nonbufferable */
37 SCCTRL1, /* Bufferable only */
38 SCCTRL2, /* Cacheable, but do not allocate */
39 SCCTRL3, /* Cacheable and bufferable, but do not allocate */
40 SINVALID1,
41 SINVALID2,
42 SCCTRL6, /* Cacheable write-through, allocate on reads only */
43 SCCTRL7, /* Cacheable write-back, allocate on reads only */
44 };
45
46 enum pl330_dstcachectrl {
47 DCCTRL0, /* Noncacheable and nonbufferable */
48 DCCTRL1, /* Bufferable only */
49 DCCTRL2, /* Cacheable, but do not allocate */
50 DCCTRL3, /* Cacheable and bufferable, but do not allocate */
51 DINVALID1, /* AWCACHE = 0x1000 */
52 DINVALID2,
53 DCCTRL6, /* Cacheable write-through, allocate on writes only */
54 DCCTRL7, /* Cacheable write-back, allocate on writes only */
55 };
56
57 enum pl330_byteswap {
58 SWAP_NO,
59 SWAP_2,
60 SWAP_4,
61 SWAP_8,
62 SWAP_16,
63 };
64
65 enum pl330_reqtype {
66 MEMTOMEM,
67 MEMTODEV,
68 DEVTOMEM,
69 DEVTODEV,
70 };
71
72 /* Register and Bit field Definitions */
73 #define DS 0x0
74 #define DS_ST_STOP 0x0
75 #define DS_ST_EXEC 0x1
76 #define DS_ST_CMISS 0x2
77 #define DS_ST_UPDTPC 0x3
78 #define DS_ST_WFE 0x4
79 #define DS_ST_ATBRR 0x5
80 #define DS_ST_QBUSY 0x6
81 #define DS_ST_WFP 0x7
82 #define DS_ST_KILL 0x8
83 #define DS_ST_CMPLT 0x9
84 #define DS_ST_FLTCMP 0xe
85 #define DS_ST_FAULT 0xf
86
87 #define DPC 0x4
88 #define INTEN 0x20
89 #define ES 0x24
90 #define INTSTATUS 0x28
91 #define INTCLR 0x2c
92 #define FSM 0x30
93 #define FSC 0x34
94 #define FTM 0x38
95
96 #define _FTC 0x40
97 #define FTC(n) (_FTC + (n)*0x4)
98
99 #define _CS 0x100
100 #define CS(n) (_CS + (n)*0x8)
101 #define CS_CNS (1 << 21)
102
103 #define _CPC 0x104
104 #define CPC(n) (_CPC + (n)*0x8)
105
106 #define _SA 0x400
107 #define SA(n) (_SA + (n)*0x20)
108
109 #define _DA 0x404
110 #define DA(n) (_DA + (n)*0x20)
111
112 #define _CC 0x408
113 #define CC(n) (_CC + (n)*0x20)
114
115 #define CC_SRCINC (1 << 0)
116 #define CC_DSTINC (1 << 14)
117 #define CC_SRCPRI (1 << 8)
118 #define CC_DSTPRI (1 << 22)
119 #define CC_SRCNS (1 << 9)
120 #define CC_DSTNS (1 << 23)
121 #define CC_SRCIA (1 << 10)
122 #define CC_DSTIA (1 << 24)
123 #define CC_SRCBRSTLEN_SHFT 4
124 #define CC_DSTBRSTLEN_SHFT 18
125 #define CC_SRCBRSTSIZE_SHFT 1
126 #define CC_DSTBRSTSIZE_SHFT 15
127 #define CC_SRCCCTRL_SHFT 11
128 #define CC_SRCCCTRL_MASK 0x7
129 #define CC_DSTCCTRL_SHFT 25
130 #define CC_DRCCCTRL_MASK 0x7
131 #define CC_SWAP_SHFT 28
132
133 #define _LC0 0x40c
134 #define LC0(n) (_LC0 + (n)*0x20)
135
136 #define _LC1 0x410
137 #define LC1(n) (_LC1 + (n)*0x20)
138
139 #define DBGSTATUS 0xd00
140 #define DBG_BUSY (1 << 0)
141
142 #define DBGCMD 0xd04
143 #define DBGINST0 0xd08
144 #define DBGINST1 0xd0c
145
146 #define CR0 0xe00
147 #define CR1 0xe04
148 #define CR2 0xe08
149 #define CR3 0xe0c
150 #define CR4 0xe10
151 #define CRD 0xe14
152
153 #define PERIPH_ID 0xfe0
154 #define PERIPH_REV_SHIFT 20
155 #define PERIPH_REV_MASK 0xf
156 #define PERIPH_REV_R0P0 0
157 #define PERIPH_REV_R1P0 1
158 #define PERIPH_REV_R1P1 2
159 #define PCELL_ID 0xff0
160
161 #define CR0_PERIPH_REQ_SET (1 << 0)
162 #define CR0_BOOT_EN_SET (1 << 1)
163 #define CR0_BOOT_MAN_NS (1 << 2)
164 #define CR0_NUM_CHANS_SHIFT 4
165 #define CR0_NUM_CHANS_MASK 0x7
166 #define CR0_NUM_PERIPH_SHIFT 12
167 #define CR0_NUM_PERIPH_MASK 0x1f
168 #define CR0_NUM_EVENTS_SHIFT 17
169 #define CR0_NUM_EVENTS_MASK 0x1f
170
171 #define CR1_ICACHE_LEN_SHIFT 0
172 #define CR1_ICACHE_LEN_MASK 0x7
173 #define CR1_NUM_ICACHELINES_SHIFT 4
174 #define CR1_NUM_ICACHELINES_MASK 0xf
175
176 #define CRD_DATA_WIDTH_SHIFT 0
177 #define CRD_DATA_WIDTH_MASK 0x7
178 #define CRD_WR_CAP_SHIFT 4
179 #define CRD_WR_CAP_MASK 0x7
180 #define CRD_WR_Q_DEP_SHIFT 8
181 #define CRD_WR_Q_DEP_MASK 0xf
182 #define CRD_RD_CAP_SHIFT 12
183 #define CRD_RD_CAP_MASK 0x7
184 #define CRD_RD_Q_DEP_SHIFT 16
185 #define CRD_RD_Q_DEP_MASK 0xf
186 #define CRD_DATA_BUFF_SHIFT 20
187 #define CRD_DATA_BUFF_MASK 0x3ff
188
189 #define PART 0x330
190 #define DESIGNER 0x41
191 #define REVISION 0x0
192 #define INTEG_CFG 0x0
193 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12))
194
195 #define PCELL_ID_VAL 0xb105f00d
196
197 #define PL330_STATE_STOPPED (1 << 0)
198 #define PL330_STATE_EXECUTING (1 << 1)
199 #define PL330_STATE_WFE (1 << 2)
200 #define PL330_STATE_FAULTING (1 << 3)
201 #define PL330_STATE_COMPLETING (1 << 4)
202 #define PL330_STATE_WFP (1 << 5)
203 #define PL330_STATE_KILLING (1 << 6)
204 #define PL330_STATE_FAULT_COMPLETING (1 << 7)
205 #define PL330_STATE_CACHEMISS (1 << 8)
206 #define PL330_STATE_UPDTPC (1 << 9)
207 #define PL330_STATE_ATBARRIER (1 << 10)
208 #define PL330_STATE_QUEUEBUSY (1 << 11)
209 #define PL330_STATE_INVALID (1 << 15)
210
211 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
212 | PL330_STATE_WFE | PL330_STATE_FAULTING)
213
214 #define CMD_DMAADDH 0x54
215 #define CMD_DMAEND 0x00
216 #define CMD_DMAFLUSHP 0x35
217 #define CMD_DMAGO 0xa0
218 #define CMD_DMALD 0x04
219 #define CMD_DMALDP 0x25
220 #define CMD_DMALP 0x20
221 #define CMD_DMALPEND 0x28
222 #define CMD_DMAKILL 0x01
223 #define CMD_DMAMOV 0xbc
224 #define CMD_DMANOP 0x18
225 #define CMD_DMARMB 0x12
226 #define CMD_DMASEV 0x34
227 #define CMD_DMAST 0x08
228 #define CMD_DMASTP 0x29
229 #define CMD_DMASTZ 0x0c
230 #define CMD_DMAWFE 0x36
231 #define CMD_DMAWFP 0x30
232 #define CMD_DMAWMB 0x13
233
234 #define SZ_DMAADDH 3
235 #define SZ_DMAEND 1
236 #define SZ_DMAFLUSHP 2
237 #define SZ_DMALD 1
238 #define SZ_DMALDP 2
239 #define SZ_DMALP 2
240 #define SZ_DMALPEND 2
241 #define SZ_DMAKILL 1
242 #define SZ_DMAMOV 6
243 #define SZ_DMANOP 1
244 #define SZ_DMARMB 1
245 #define SZ_DMASEV 2
246 #define SZ_DMAST 1
247 #define SZ_DMASTP 2
248 #define SZ_DMASTZ 1
249 #define SZ_DMAWFE 2
250 #define SZ_DMAWFP 2
251 #define SZ_DMAWMB 1
252 #define SZ_DMAGO 6
253
254 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
255 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
256
257 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
258 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
259
260 /*
261 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
262 * at 1byte/burst for P<->M and M<->M respectively.
263 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
264 * should be enough for P<->M and M<->M respectively.
265 */
266 #define MCODE_BUFF_PER_REQ 256
267
268 /* If the _pl330_req is available to the client */
269 #define IS_FREE(req) (*((u8 *)((req)->mc_cpu)) == CMD_DMAEND)
270
271 /* Use this _only_ to wait on transient states */
272 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax();
273
274 #ifdef PL330_DEBUG_MCGEN
275 static unsigned cmd_line;
276 #define PL330_DBGCMD_DUMP(off, x...) do { \
277 printk("%x:", cmd_line); \
278 printk(x); \
279 cmd_line += off; \
280 } while (0)
281 #define PL330_DBGMC_START(addr) (cmd_line = addr)
282 #else
283 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0)
284 #define PL330_DBGMC_START(addr) do {} while (0)
285 #endif
286
287 /* The number of default descriptors */
288
289 #define NR_DEFAULT_DESC 16
290
291 /* Populated by the PL330 core driver for DMA API driver's info */
292 struct pl330_config {
293 u32 periph_id;
294 u32 pcell_id;
295 #define DMAC_MODE_NS (1 << 0)
296 unsigned int mode;
297 unsigned int data_bus_width:10; /* In number of bits */
298 unsigned int data_buf_dep:10;
299 unsigned int num_chan:4;
300 unsigned int num_peri:6;
301 u32 peri_ns;
302 unsigned int num_events:6;
303 u32 irq_ns;
304 };
305
306 /* Handle to the DMAC provided to the PL330 core */
307 struct pl330_info {
308 /* Owning device */
309 struct device *dev;
310 /* Size of MicroCode buffers for each channel. */
311 unsigned mcbufsz;
312 /* ioremap'ed address of PL330 registers. */
313 void __iomem *base;
314 /* Client can freely use it. */
315 void *client_data;
316 /* PL330 core data, Client must not touch it. */
317 void *pl330_data;
318 /* Populated by the PL330 core driver during pl330_add */
319 struct pl330_config pcfg;
320 /*
321 * If the DMAC has some reset mechanism, then the
322 * client may want to provide pointer to the method.
323 */
324 void (*dmac_reset)(struct pl330_info *pi);
325 };
326
327 /**
328 * Request Configuration.
329 * The PL330 core does not modify this and uses the last
330 * working configuration if the request doesn't provide any.
331 *
332 * The Client may want to provide this info only for the
333 * first request and a request with new settings.
334 */
335 struct pl330_reqcfg {
336 /* Address Incrementing */
337 unsigned dst_inc:1;
338 unsigned src_inc:1;
339
340 /*
341 * For now, the SRC & DST protection levels
342 * and burst size/length are assumed same.
343 */
344 bool nonsecure;
345 bool privileged;
346 bool insnaccess;
347 unsigned brst_len:5;
348 unsigned brst_size:3; /* in power of 2 */
349
350 enum pl330_dstcachectrl dcctl;
351 enum pl330_srccachectrl scctl;
352 enum pl330_byteswap swap;
353 struct pl330_config *pcfg;
354 };
355
356 /*
357 * One cycle of DMAC operation.
358 * There may be more than one xfer in a request.
359 */
360 struct pl330_xfer {
361 u32 src_addr;
362 u32 dst_addr;
363 /* Size to xfer */
364 u32 bytes;
365 /*
366 * Pointer to next xfer in the list.
367 * The last xfer in the req must point to NULL.
368 */
369 struct pl330_xfer *next;
370 };
371
372 /* The xfer callbacks are made with one of these arguments. */
373 enum pl330_op_err {
374 /* The all xfers in the request were success. */
375 PL330_ERR_NONE,
376 /* If req aborted due to global error. */
377 PL330_ERR_ABORT,
378 /* If req failed due to problem with Channel. */
379 PL330_ERR_FAIL,
380 };
381
382 /* A request defining Scatter-Gather List ending with NULL xfer. */
383 struct pl330_req {
384 enum pl330_reqtype rqtype;
385 /* Index of peripheral for the xfer. */
386 unsigned peri:5;
387 /* Unique token for this xfer, set by the client. */
388 void *token;
389 /* Callback to be called after xfer. */
390 void (*xfer_cb)(void *token, enum pl330_op_err err);
391 /* If NULL, req will be done at last set parameters. */
392 struct pl330_reqcfg *cfg;
393 /* Pointer to first xfer in the request. */
394 struct pl330_xfer *x;
395 /* Hook to attach to DMAC's list of reqs with due callback */
396 struct list_head rqd;
397 };
398
399 /*
400 * To know the status of the channel and DMAC, the client
401 * provides a pointer to this structure. The PL330 core
402 * fills it with current information.
403 */
404 struct pl330_chanstatus {
405 /*
406 * If the DMAC engine halted due to some error,
407 * the client should remove-add DMAC.
408 */
409 bool dmac_halted;
410 /*
411 * If channel is halted due to some error,
412 * the client should ABORT/FLUSH and START the channel.
413 */
414 bool faulting;
415 /* Location of last load */
416 u32 src_addr;
417 /* Location of last store */
418 u32 dst_addr;
419 /*
420 * Pointer to the currently active req, NULL if channel is
421 * inactive, even though the requests may be present.
422 */
423 struct pl330_req *top_req;
424 /* Pointer to req waiting second in the queue if any. */
425 struct pl330_req *wait_req;
426 };
427
428 enum pl330_chan_op {
429 /* Start the channel */
430 PL330_OP_START,
431 /* Abort the active xfer */
432 PL330_OP_ABORT,
433 /* Stop xfer and flush queue */
434 PL330_OP_FLUSH,
435 };
436
437 struct _xfer_spec {
438 u32 ccr;
439 struct pl330_req *r;
440 struct pl330_xfer *x;
441 };
442
443 enum dmamov_dst {
444 SAR = 0,
445 CCR,
446 DAR,
447 };
448
449 enum pl330_dst {
450 SRC = 0,
451 DST,
452 };
453
454 enum pl330_cond {
455 SINGLE,
456 BURST,
457 ALWAYS,
458 };
459
460 struct _pl330_req {
461 u32 mc_bus;
462 void *mc_cpu;
463 /* Number of bytes taken to setup MC for the req */
464 u32 mc_len;
465 struct pl330_req *r;
466 };
467
468 /* ToBeDone for tasklet */
469 struct _pl330_tbd {
470 bool reset_dmac;
471 bool reset_mngr;
472 u8 reset_chan;
473 };
474
475 /* A DMAC Thread */
476 struct pl330_thread {
477 u8 id;
478 int ev;
479 /* If the channel is not yet acquired by any client */
480 bool free;
481 /* Parent DMAC */
482 struct pl330_dmac *dmac;
483 /* Only two at a time */
484 struct _pl330_req req[2];
485 /* Index of the last enqueued request */
486 unsigned lstenq;
487 /* Index of the last submitted request or -1 if the DMA is stopped */
488 int req_running;
489 };
490
491 enum pl330_dmac_state {
492 UNINIT,
493 INIT,
494 DYING,
495 };
496
497 /* A DMAC */
498 struct pl330_dmac {
499 spinlock_t lock;
500 /* Holds list of reqs with due callbacks */
501 struct list_head req_done;
502 /* Pointer to platform specific stuff */
503 struct pl330_info *pinfo;
504 /* Maximum possible events/irqs */
505 int events[32];
506 /* BUS address of MicroCode buffer */
507 u32 mcode_bus;
508 /* CPU address of MicroCode buffer */
509 void *mcode_cpu;
510 /* List of all Channel threads */
511 struct pl330_thread *channels;
512 /* Pointer to the MANAGER thread */
513 struct pl330_thread *manager;
514 /* To handle bad news in interrupt */
515 struct tasklet_struct tasks;
516 struct _pl330_tbd dmac_tbd;
517 /* State of DMAC operation */
518 enum pl330_dmac_state state;
519 };
520
521 enum desc_status {
522 /* In the DMAC pool */
523 FREE,
524 /*
525 * Allocated to some channel during prep_xxx
526 * Also may be sitting on the work_list.
527 */
528 PREP,
529 /*
530 * Sitting on the work_list and already submitted
531 * to the PL330 core. Not more than two descriptors
532 * of a channel can be BUSY at any time.
533 */
534 BUSY,
535 /*
536 * Sitting on the channel work_list but xfer done
537 * by PL330 core
538 */
539 DONE,
540 };
541
542 struct dma_pl330_chan {
543 /* Schedule desc completion */
544 struct tasklet_struct task;
545
546 /* DMA-Engine Channel */
547 struct dma_chan chan;
548
549 /* List of to be xfered descriptors */
550 struct list_head work_list;
551
552 /* Pointer to the DMAC that manages this channel,
553 * NULL if the channel is available to be acquired.
554 * As the parent, this DMAC also provides descriptors
555 * to the channel.
556 */
557 struct dma_pl330_dmac *dmac;
558
559 /* To protect channel manipulation */
560 spinlock_t lock;
561
562 /* Token of a hardware channel thread of PL330 DMAC
563 * NULL if the channel is available to be acquired.
564 */
565 void *pl330_chid;
566
567 /* For D-to-M and M-to-D channels */
568 int burst_sz; /* the peripheral fifo width */
569 int burst_len; /* the number of burst */
570 dma_addr_t fifo_addr;
571
572 /* for cyclic capability */
573 bool cyclic;
574 };
575
576 struct dma_pl330_dmac {
577 struct pl330_info pif;
578
579 /* DMA-Engine Device */
580 struct dma_device ddma;
581
582 /* Pool of descriptors available for the DMAC's channels */
583 struct list_head desc_pool;
584 /* To protect desc_pool manipulation */
585 spinlock_t pool_lock;
586
587 /* Peripheral channels connected to this DMAC */
588 struct dma_pl330_chan *peripherals; /* keep at end */
589 };
590
591 struct dma_pl330_desc {
592 /* To attach to a queue as child */
593 struct list_head node;
594
595 /* Descriptor for the DMA Engine API */
596 struct dma_async_tx_descriptor txd;
597
598 /* Xfer for PL330 core */
599 struct pl330_xfer px;
600
601 struct pl330_reqcfg rqcfg;
602 struct pl330_req req;
603
604 enum desc_status status;
605
606 /* The channel which currently holds this desc */
607 struct dma_pl330_chan *pchan;
608 };
609
610 struct dma_pl330_filter_args {
611 struct dma_pl330_dmac *pdmac;
612 unsigned int chan_id;
613 };
614
615 static inline void _callback(struct pl330_req *r, enum pl330_op_err err)
616 {
617 if (r && r->xfer_cb)
618 r->xfer_cb(r->token, err);
619 }
620
621 static inline bool _queue_empty(struct pl330_thread *thrd)
622 {
623 return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1]))
624 ? true : false;
625 }
626
627 static inline bool _queue_full(struct pl330_thread *thrd)
628 {
629 return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1]))
630 ? false : true;
631 }
632
633 static inline bool is_manager(struct pl330_thread *thrd)
634 {
635 struct pl330_dmac *pl330 = thrd->dmac;
636
637 /* MANAGER is indexed at the end */
638 if (thrd->id == pl330->pinfo->pcfg.num_chan)
639 return true;
640 else
641 return false;
642 }
643
644 /* If manager of the thread is in Non-Secure mode */
645 static inline bool _manager_ns(struct pl330_thread *thrd)
646 {
647 struct pl330_dmac *pl330 = thrd->dmac;
648
649 return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false;
650 }
651
652 static inline u32 get_id(struct pl330_info *pi, u32 off)
653 {
654 void __iomem *regs = pi->base;
655 u32 id = 0;
656
657 id |= (readb(regs + off + 0x0) << 0);
658 id |= (readb(regs + off + 0x4) << 8);
659 id |= (readb(regs + off + 0x8) << 16);
660 id |= (readb(regs + off + 0xc) << 24);
661
662 return id;
663 }
664
665 static inline u32 get_revision(u32 periph_id)
666 {
667 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
668 }
669
670 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
671 enum pl330_dst da, u16 val)
672 {
673 if (dry_run)
674 return SZ_DMAADDH;
675
676 buf[0] = CMD_DMAADDH;
677 buf[0] |= (da << 1);
678 *((u16 *)&buf[1]) = val;
679
680 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
681 da == 1 ? "DA" : "SA", val);
682
683 return SZ_DMAADDH;
684 }
685
686 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
687 {
688 if (dry_run)
689 return SZ_DMAEND;
690
691 buf[0] = CMD_DMAEND;
692
693 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
694
695 return SZ_DMAEND;
696 }
697
698 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
699 {
700 if (dry_run)
701 return SZ_DMAFLUSHP;
702
703 buf[0] = CMD_DMAFLUSHP;
704
705 peri &= 0x1f;
706 peri <<= 3;
707 buf[1] = peri;
708
709 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
710
711 return SZ_DMAFLUSHP;
712 }
713
714 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond)
715 {
716 if (dry_run)
717 return SZ_DMALD;
718
719 buf[0] = CMD_DMALD;
720
721 if (cond == SINGLE)
722 buf[0] |= (0 << 1) | (1 << 0);
723 else if (cond == BURST)
724 buf[0] |= (1 << 1) | (1 << 0);
725
726 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
727 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
728
729 return SZ_DMALD;
730 }
731
732 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
733 enum pl330_cond cond, u8 peri)
734 {
735 if (dry_run)
736 return SZ_DMALDP;
737
738 buf[0] = CMD_DMALDP;
739
740 if (cond == BURST)
741 buf[0] |= (1 << 1);
742
743 peri &= 0x1f;
744 peri <<= 3;
745 buf[1] = peri;
746
747 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
748 cond == SINGLE ? 'S' : 'B', peri >> 3);
749
750 return SZ_DMALDP;
751 }
752
753 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
754 unsigned loop, u8 cnt)
755 {
756 if (dry_run)
757 return SZ_DMALP;
758
759 buf[0] = CMD_DMALP;
760
761 if (loop)
762 buf[0] |= (1 << 1);
763
764 cnt--; /* DMAC increments by 1 internally */
765 buf[1] = cnt;
766
767 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
768
769 return SZ_DMALP;
770 }
771
772 struct _arg_LPEND {
773 enum pl330_cond cond;
774 bool forever;
775 unsigned loop;
776 u8 bjump;
777 };
778
779 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
780 const struct _arg_LPEND *arg)
781 {
782 enum pl330_cond cond = arg->cond;
783 bool forever = arg->forever;
784 unsigned loop = arg->loop;
785 u8 bjump = arg->bjump;
786
787 if (dry_run)
788 return SZ_DMALPEND;
789
790 buf[0] = CMD_DMALPEND;
791
792 if (loop)
793 buf[0] |= (1 << 2);
794
795 if (!forever)
796 buf[0] |= (1 << 4);
797
798 if (cond == SINGLE)
799 buf[0] |= (0 << 1) | (1 << 0);
800 else if (cond == BURST)
801 buf[0] |= (1 << 1) | (1 << 0);
802
803 buf[1] = bjump;
804
805 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
806 forever ? "FE" : "END",
807 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
808 loop ? '1' : '0',
809 bjump);
810
811 return SZ_DMALPEND;
812 }
813
814 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
815 {
816 if (dry_run)
817 return SZ_DMAKILL;
818
819 buf[0] = CMD_DMAKILL;
820
821 return SZ_DMAKILL;
822 }
823
824 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
825 enum dmamov_dst dst, u32 val)
826 {
827 if (dry_run)
828 return SZ_DMAMOV;
829
830 buf[0] = CMD_DMAMOV;
831 buf[1] = dst;
832 *((u32 *)&buf[2]) = val;
833
834 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
835 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
836
837 return SZ_DMAMOV;
838 }
839
840 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
841 {
842 if (dry_run)
843 return SZ_DMANOP;
844
845 buf[0] = CMD_DMANOP;
846
847 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
848
849 return SZ_DMANOP;
850 }
851
852 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
853 {
854 if (dry_run)
855 return SZ_DMARMB;
856
857 buf[0] = CMD_DMARMB;
858
859 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
860
861 return SZ_DMARMB;
862 }
863
864 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
865 {
866 if (dry_run)
867 return SZ_DMASEV;
868
869 buf[0] = CMD_DMASEV;
870
871 ev &= 0x1f;
872 ev <<= 3;
873 buf[1] = ev;
874
875 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
876
877 return SZ_DMASEV;
878 }
879
880 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
881 {
882 if (dry_run)
883 return SZ_DMAST;
884
885 buf[0] = CMD_DMAST;
886
887 if (cond == SINGLE)
888 buf[0] |= (0 << 1) | (1 << 0);
889 else if (cond == BURST)
890 buf[0] |= (1 << 1) | (1 << 0);
891
892 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
893 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
894
895 return SZ_DMAST;
896 }
897
898 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
899 enum pl330_cond cond, u8 peri)
900 {
901 if (dry_run)
902 return SZ_DMASTP;
903
904 buf[0] = CMD_DMASTP;
905
906 if (cond == BURST)
907 buf[0] |= (1 << 1);
908
909 peri &= 0x1f;
910 peri <<= 3;
911 buf[1] = peri;
912
913 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
914 cond == SINGLE ? 'S' : 'B', peri >> 3);
915
916 return SZ_DMASTP;
917 }
918
919 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
920 {
921 if (dry_run)
922 return SZ_DMASTZ;
923
924 buf[0] = CMD_DMASTZ;
925
926 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
927
928 return SZ_DMASTZ;
929 }
930
931 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
932 unsigned invalidate)
933 {
934 if (dry_run)
935 return SZ_DMAWFE;
936
937 buf[0] = CMD_DMAWFE;
938
939 ev &= 0x1f;
940 ev <<= 3;
941 buf[1] = ev;
942
943 if (invalidate)
944 buf[1] |= (1 << 1);
945
946 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
947 ev >> 3, invalidate ? ", I" : "");
948
949 return SZ_DMAWFE;
950 }
951
952 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
953 enum pl330_cond cond, u8 peri)
954 {
955 if (dry_run)
956 return SZ_DMAWFP;
957
958 buf[0] = CMD_DMAWFP;
959
960 if (cond == SINGLE)
961 buf[0] |= (0 << 1) | (0 << 0);
962 else if (cond == BURST)
963 buf[0] |= (1 << 1) | (0 << 0);
964 else
965 buf[0] |= (0 << 1) | (1 << 0);
966
967 peri &= 0x1f;
968 peri <<= 3;
969 buf[1] = peri;
970
971 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
972 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
973
974 return SZ_DMAWFP;
975 }
976
977 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
978 {
979 if (dry_run)
980 return SZ_DMAWMB;
981
982 buf[0] = CMD_DMAWMB;
983
984 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
985
986 return SZ_DMAWMB;
987 }
988
989 struct _arg_GO {
990 u8 chan;
991 u32 addr;
992 unsigned ns;
993 };
994
995 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
996 const struct _arg_GO *arg)
997 {
998 u8 chan = arg->chan;
999 u32 addr = arg->addr;
1000 unsigned ns = arg->ns;
1001
1002 if (dry_run)
1003 return SZ_DMAGO;
1004
1005 buf[0] = CMD_DMAGO;
1006 buf[0] |= (ns << 1);
1007
1008 buf[1] = chan & 0x7;
1009
1010 *((u32 *)&buf[2]) = addr;
1011
1012 return SZ_DMAGO;
1013 }
1014
1015 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
1016
1017 /* Returns Time-Out */
1018 static bool _until_dmac_idle(struct pl330_thread *thrd)
1019 {
1020 void __iomem *regs = thrd->dmac->pinfo->base;
1021 unsigned long loops = msecs_to_loops(5);
1022
1023 do {
1024 /* Until Manager is Idle */
1025 if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
1026 break;
1027
1028 cpu_relax();
1029 } while (--loops);
1030
1031 if (!loops)
1032 return true;
1033
1034 return false;
1035 }
1036
1037 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
1038 u8 insn[], bool as_manager)
1039 {
1040 void __iomem *regs = thrd->dmac->pinfo->base;
1041 u32 val;
1042
1043 val = (insn[0] << 16) | (insn[1] << 24);
1044 if (!as_manager) {
1045 val |= (1 << 0);
1046 val |= (thrd->id << 8); /* Channel Number */
1047 }
1048 writel(val, regs + DBGINST0);
1049
1050 val = *((u32 *)&insn[2]);
1051 writel(val, regs + DBGINST1);
1052
1053 /* If timed out due to halted state-machine */
1054 if (_until_dmac_idle(thrd)) {
1055 dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n");
1056 return;
1057 }
1058
1059 /* Get going */
1060 writel(0, regs + DBGCMD);
1061 }
1062
1063 /*
1064 * Mark a _pl330_req as free.
1065 * We do it by writing DMAEND as the first instruction
1066 * because no valid request is going to have DMAEND as
1067 * its first instruction to execute.
1068 */
1069 static void mark_free(struct pl330_thread *thrd, int idx)
1070 {
1071 struct _pl330_req *req = &thrd->req[idx];
1072
1073 _emit_END(0, req->mc_cpu);
1074 req->mc_len = 0;
1075
1076 thrd->req_running = -1;
1077 }
1078
1079 static inline u32 _state(struct pl330_thread *thrd)
1080 {
1081 void __iomem *regs = thrd->dmac->pinfo->base;
1082 u32 val;
1083
1084 if (is_manager(thrd))
1085 val = readl(regs + DS) & 0xf;
1086 else
1087 val = readl(regs + CS(thrd->id)) & 0xf;
1088
1089 switch (val) {
1090 case DS_ST_STOP:
1091 return PL330_STATE_STOPPED;
1092 case DS_ST_EXEC:
1093 return PL330_STATE_EXECUTING;
1094 case DS_ST_CMISS:
1095 return PL330_STATE_CACHEMISS;
1096 case DS_ST_UPDTPC:
1097 return PL330_STATE_UPDTPC;
1098 case DS_ST_WFE:
1099 return PL330_STATE_WFE;
1100 case DS_ST_FAULT:
1101 return PL330_STATE_FAULTING;
1102 case DS_ST_ATBRR:
1103 if (is_manager(thrd))
1104 return PL330_STATE_INVALID;
1105 else
1106 return PL330_STATE_ATBARRIER;
1107 case DS_ST_QBUSY:
1108 if (is_manager(thrd))
1109 return PL330_STATE_INVALID;
1110 else
1111 return PL330_STATE_QUEUEBUSY;
1112 case DS_ST_WFP:
1113 if (is_manager(thrd))
1114 return PL330_STATE_INVALID;
1115 else
1116 return PL330_STATE_WFP;
1117 case DS_ST_KILL:
1118 if (is_manager(thrd))
1119 return PL330_STATE_INVALID;
1120 else
1121 return PL330_STATE_KILLING;
1122 case DS_ST_CMPLT:
1123 if (is_manager(thrd))
1124 return PL330_STATE_INVALID;
1125 else
1126 return PL330_STATE_COMPLETING;
1127 case DS_ST_FLTCMP:
1128 if (is_manager(thrd))
1129 return PL330_STATE_INVALID;
1130 else
1131 return PL330_STATE_FAULT_COMPLETING;
1132 default:
1133 return PL330_STATE_INVALID;
1134 }
1135 }
1136
1137 static void _stop(struct pl330_thread *thrd)
1138 {
1139 void __iomem *regs = thrd->dmac->pinfo->base;
1140 u8 insn[6] = {0, 0, 0, 0, 0, 0};
1141
1142 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1143 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1144
1145 /* Return if nothing needs to be done */
1146 if (_state(thrd) == PL330_STATE_COMPLETING
1147 || _state(thrd) == PL330_STATE_KILLING
1148 || _state(thrd) == PL330_STATE_STOPPED)
1149 return;
1150
1151 _emit_KILL(0, insn);
1152
1153 /* Stop generating interrupts for SEV */
1154 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1155
1156 _execute_DBGINSN(thrd, insn, is_manager(thrd));
1157 }
1158
1159 /* Start doing req 'idx' of thread 'thrd' */
1160 static bool _trigger(struct pl330_thread *thrd)
1161 {
1162 void __iomem *regs = thrd->dmac->pinfo->base;
1163 struct _pl330_req *req;
1164 struct pl330_req *r;
1165 struct _arg_GO go;
1166 unsigned ns;
1167 u8 insn[6] = {0, 0, 0, 0, 0, 0};
1168 int idx;
1169
1170 /* Return if already ACTIVE */
1171 if (_state(thrd) != PL330_STATE_STOPPED)
1172 return true;
1173
1174 idx = 1 - thrd->lstenq;
1175 if (!IS_FREE(&thrd->req[idx]))
1176 req = &thrd->req[idx];
1177 else {
1178 idx = thrd->lstenq;
1179 if (!IS_FREE(&thrd->req[idx]))
1180 req = &thrd->req[idx];
1181 else
1182 req = NULL;
1183 }
1184
1185 /* Return if no request */
1186 if (!req || !req->r)
1187 return true;
1188
1189 r = req->r;
1190
1191 if (r->cfg)
1192 ns = r->cfg->nonsecure ? 1 : 0;
1193 else if (readl(regs + CS(thrd->id)) & CS_CNS)
1194 ns = 1;
1195 else
1196 ns = 0;
1197
1198 /* See 'Abort Sources' point-4 at Page 2-25 */
1199 if (_manager_ns(thrd) && !ns)
1200 dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n",
1201 __func__, __LINE__);
1202
1203 go.chan = thrd->id;
1204 go.addr = req->mc_bus;
1205 go.ns = ns;
1206 _emit_GO(0, insn, &go);
1207
1208 /* Set to generate interrupts for SEV */
1209 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1210
1211 /* Only manager can execute GO */
1212 _execute_DBGINSN(thrd, insn, true);
1213
1214 thrd->req_running = idx;
1215
1216 return true;
1217 }
1218
1219 static bool _start(struct pl330_thread *thrd)
1220 {
1221 switch (_state(thrd)) {
1222 case PL330_STATE_FAULT_COMPLETING:
1223 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1224
1225 if (_state(thrd) == PL330_STATE_KILLING)
1226 UNTIL(thrd, PL330_STATE_STOPPED)
1227
1228 case PL330_STATE_FAULTING:
1229 _stop(thrd);
1230
1231 case PL330_STATE_KILLING:
1232 case PL330_STATE_COMPLETING:
1233 UNTIL(thrd, PL330_STATE_STOPPED)
1234
1235 case PL330_STATE_STOPPED:
1236 return _trigger(thrd);
1237
1238 case PL330_STATE_WFP:
1239 case PL330_STATE_QUEUEBUSY:
1240 case PL330_STATE_ATBARRIER:
1241 case PL330_STATE_UPDTPC:
1242 case PL330_STATE_CACHEMISS:
1243 case PL330_STATE_EXECUTING:
1244 return true;
1245
1246 case PL330_STATE_WFE: /* For RESUME, nothing yet */
1247 default:
1248 return false;
1249 }
1250 }
1251
1252 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1253 const struct _xfer_spec *pxs, int cyc)
1254 {
1255 int off = 0;
1256 struct pl330_config *pcfg = pxs->r->cfg->pcfg;
1257
1258 /* check lock-up free version */
1259 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1260 while (cyc--) {
1261 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1262 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1263 }
1264 } else {
1265 while (cyc--) {
1266 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1267 off += _emit_RMB(dry_run, &buf[off]);
1268 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1269 off += _emit_WMB(dry_run, &buf[off]);
1270 }
1271 }
1272
1273 return off;
1274 }
1275
1276 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[],
1277 const struct _xfer_spec *pxs, int cyc)
1278 {
1279 int off = 0;
1280
1281 while (cyc--) {
1282 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1283 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1284 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1285 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1286 }
1287
1288 return off;
1289 }
1290
1291 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[],
1292 const struct _xfer_spec *pxs, int cyc)
1293 {
1294 int off = 0;
1295
1296 while (cyc--) {
1297 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1298 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1299 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1300 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1301 }
1302
1303 return off;
1304 }
1305
1306 static int _bursts(unsigned dry_run, u8 buf[],
1307 const struct _xfer_spec *pxs, int cyc)
1308 {
1309 int off = 0;
1310
1311 switch (pxs->r->rqtype) {
1312 case MEMTODEV:
1313 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc);
1314 break;
1315 case DEVTOMEM:
1316 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc);
1317 break;
1318 case MEMTOMEM:
1319 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1320 break;
1321 default:
1322 off += 0x40000000; /* Scare off the Client */
1323 break;
1324 }
1325
1326 return off;
1327 }
1328
1329 /* Returns bytes consumed and updates bursts */
1330 static inline int _loop(unsigned dry_run, u8 buf[],
1331 unsigned long *bursts, const struct _xfer_spec *pxs)
1332 {
1333 int cyc, cycmax, szlp, szlpend, szbrst, off;
1334 unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1335 struct _arg_LPEND lpend;
1336
1337 /* Max iterations possible in DMALP is 256 */
1338 if (*bursts >= 256*256) {
1339 lcnt1 = 256;
1340 lcnt0 = 256;
1341 cyc = *bursts / lcnt1 / lcnt0;
1342 } else if (*bursts > 256) {
1343 lcnt1 = 256;
1344 lcnt0 = *bursts / lcnt1;
1345 cyc = 1;
1346 } else {
1347 lcnt1 = *bursts;
1348 lcnt0 = 0;
1349 cyc = 1;
1350 }
1351
1352 szlp = _emit_LP(1, buf, 0, 0);
1353 szbrst = _bursts(1, buf, pxs, 1);
1354
1355 lpend.cond = ALWAYS;
1356 lpend.forever = false;
1357 lpend.loop = 0;
1358 lpend.bjump = 0;
1359 szlpend = _emit_LPEND(1, buf, &lpend);
1360
1361 if (lcnt0) {
1362 szlp *= 2;
1363 szlpend *= 2;
1364 }
1365
1366 /*
1367 * Max bursts that we can unroll due to limit on the
1368 * size of backward jump that can be encoded in DMALPEND
1369 * which is 8-bits and hence 255
1370 */
1371 cycmax = (255 - (szlp + szlpend)) / szbrst;
1372
1373 cyc = (cycmax < cyc) ? cycmax : cyc;
1374
1375 off = 0;
1376
1377 if (lcnt0) {
1378 off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1379 ljmp0 = off;
1380 }
1381
1382 off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1383 ljmp1 = off;
1384
1385 off += _bursts(dry_run, &buf[off], pxs, cyc);
1386
1387 lpend.cond = ALWAYS;
1388 lpend.forever = false;
1389 lpend.loop = 1;
1390 lpend.bjump = off - ljmp1;
1391 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1392
1393 if (lcnt0) {
1394 lpend.cond = ALWAYS;
1395 lpend.forever = false;
1396 lpend.loop = 0;
1397 lpend.bjump = off - ljmp0;
1398 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1399 }
1400
1401 *bursts = lcnt1 * cyc;
1402 if (lcnt0)
1403 *bursts *= lcnt0;
1404
1405 return off;
1406 }
1407
1408 static inline int _setup_loops(unsigned dry_run, u8 buf[],
1409 const struct _xfer_spec *pxs)
1410 {
1411 struct pl330_xfer *x = pxs->x;
1412 u32 ccr = pxs->ccr;
1413 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1414 int off = 0;
1415
1416 while (bursts) {
1417 c = bursts;
1418 off += _loop(dry_run, &buf[off], &c, pxs);
1419 bursts -= c;
1420 }
1421
1422 return off;
1423 }
1424
1425 static inline int _setup_xfer(unsigned dry_run, u8 buf[],
1426 const struct _xfer_spec *pxs)
1427 {
1428 struct pl330_xfer *x = pxs->x;
1429 int off = 0;
1430
1431 /* DMAMOV SAR, x->src_addr */
1432 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1433 /* DMAMOV DAR, x->dst_addr */
1434 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1435
1436 /* Setup Loop(s) */
1437 off += _setup_loops(dry_run, &buf[off], pxs);
1438
1439 return off;
1440 }
1441
1442 /*
1443 * A req is a sequence of one or more xfer units.
1444 * Returns the number of bytes taken to setup the MC for the req.
1445 */
1446 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd,
1447 unsigned index, struct _xfer_spec *pxs)
1448 {
1449 struct _pl330_req *req = &thrd->req[index];
1450 struct pl330_xfer *x;
1451 u8 *buf = req->mc_cpu;
1452 int off = 0;
1453
1454 PL330_DBGMC_START(req->mc_bus);
1455
1456 /* DMAMOV CCR, ccr */
1457 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1458
1459 x = pxs->r->x;
1460 do {
1461 /* Error if xfer length is not aligned at burst size */
1462 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1463 return -EINVAL;
1464
1465 pxs->x = x;
1466 off += _setup_xfer(dry_run, &buf[off], pxs);
1467
1468 x = x->next;
1469 } while (x);
1470
1471 /* DMASEV peripheral/event */
1472 off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1473 /* DMAEND */
1474 off += _emit_END(dry_run, &buf[off]);
1475
1476 return off;
1477 }
1478
1479 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1480 {
1481 u32 ccr = 0;
1482
1483 if (rqc->src_inc)
1484 ccr |= CC_SRCINC;
1485
1486 if (rqc->dst_inc)
1487 ccr |= CC_DSTINC;
1488
1489 /* We set same protection levels for Src and DST for now */
1490 if (rqc->privileged)
1491 ccr |= CC_SRCPRI | CC_DSTPRI;
1492 if (rqc->nonsecure)
1493 ccr |= CC_SRCNS | CC_DSTNS;
1494 if (rqc->insnaccess)
1495 ccr |= CC_SRCIA | CC_DSTIA;
1496
1497 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1498 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1499
1500 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1501 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1502
1503 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1504 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1505
1506 ccr |= (rqc->swap << CC_SWAP_SHFT);
1507
1508 return ccr;
1509 }
1510
1511 static inline bool _is_valid(u32 ccr)
1512 {
1513 enum pl330_dstcachectrl dcctl;
1514 enum pl330_srccachectrl scctl;
1515
1516 dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK;
1517 scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK;
1518
1519 if (dcctl == DINVALID1 || dcctl == DINVALID2
1520 || scctl == SINVALID1 || scctl == SINVALID2)
1521 return false;
1522 else
1523 return true;
1524 }
1525
1526 /*
1527 * Submit a list of xfers after which the client wants notification.
1528 * Client is not notified after each xfer unit, just once after all
1529 * xfer units are done or some error occurs.
1530 */
1531 static int pl330_submit_req(void *ch_id, struct pl330_req *r)
1532 {
1533 struct pl330_thread *thrd = ch_id;
1534 struct pl330_dmac *pl330;
1535 struct pl330_info *pi;
1536 struct _xfer_spec xs;
1537 unsigned long flags;
1538 void __iomem *regs;
1539 unsigned idx;
1540 u32 ccr;
1541 int ret = 0;
1542
1543 /* No Req or Unacquired Channel or DMAC */
1544 if (!r || !thrd || thrd->free)
1545 return -EINVAL;
1546
1547 pl330 = thrd->dmac;
1548 pi = pl330->pinfo;
1549 regs = pi->base;
1550
1551 if (pl330->state == DYING
1552 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1553 dev_info(thrd->dmac->pinfo->dev, "%s:%d\n",
1554 __func__, __LINE__);
1555 return -EAGAIN;
1556 }
1557
1558 /* If request for non-existing peripheral */
1559 if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) {
1560 dev_info(thrd->dmac->pinfo->dev,
1561 "%s:%d Invalid peripheral(%u)!\n",
1562 __func__, __LINE__, r->peri);
1563 return -EINVAL;
1564 }
1565
1566 spin_lock_irqsave(&pl330->lock, flags);
1567
1568 if (_queue_full(thrd)) {
1569 ret = -EAGAIN;
1570 goto xfer_exit;
1571 }
1572
1573
1574 /* Use last settings, if not provided */
1575 if (r->cfg) {
1576 /* Prefer Secure Channel */
1577 if (!_manager_ns(thrd))
1578 r->cfg->nonsecure = 0;
1579 else
1580 r->cfg->nonsecure = 1;
1581
1582 ccr = _prepare_ccr(r->cfg);
1583 } else {
1584 ccr = readl(regs + CC(thrd->id));
1585 }
1586
1587 /* If this req doesn't have valid xfer settings */
1588 if (!_is_valid(ccr)) {
1589 ret = -EINVAL;
1590 dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n",
1591 __func__, __LINE__, ccr);
1592 goto xfer_exit;
1593 }
1594
1595 idx = IS_FREE(&thrd->req[0]) ? 0 : 1;
1596
1597 xs.ccr = ccr;
1598 xs.r = r;
1599
1600 /* First dry run to check if req is acceptable */
1601 ret = _setup_req(1, thrd, idx, &xs);
1602 if (ret < 0)
1603 goto xfer_exit;
1604
1605 if (ret > pi->mcbufsz / 2) {
1606 dev_info(thrd->dmac->pinfo->dev,
1607 "%s:%d Trying increasing mcbufsz\n",
1608 __func__, __LINE__);
1609 ret = -ENOMEM;
1610 goto xfer_exit;
1611 }
1612
1613 /* Hook the request */
1614 thrd->lstenq = idx;
1615 thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs);
1616 thrd->req[idx].r = r;
1617
1618 ret = 0;
1619
1620 xfer_exit:
1621 spin_unlock_irqrestore(&pl330->lock, flags);
1622
1623 return ret;
1624 }
1625
1626 static void pl330_dotask(unsigned long data)
1627 {
1628 struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1629 struct pl330_info *pi = pl330->pinfo;
1630 unsigned long flags;
1631 int i;
1632
1633 spin_lock_irqsave(&pl330->lock, flags);
1634
1635 /* The DMAC itself gone nuts */
1636 if (pl330->dmac_tbd.reset_dmac) {
1637 pl330->state = DYING;
1638 /* Reset the manager too */
1639 pl330->dmac_tbd.reset_mngr = true;
1640 /* Clear the reset flag */
1641 pl330->dmac_tbd.reset_dmac = false;
1642 }
1643
1644 if (pl330->dmac_tbd.reset_mngr) {
1645 _stop(pl330->manager);
1646 /* Reset all channels */
1647 pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1;
1648 /* Clear the reset flag */
1649 pl330->dmac_tbd.reset_mngr = false;
1650 }
1651
1652 for (i = 0; i < pi->pcfg.num_chan; i++) {
1653
1654 if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1655 struct pl330_thread *thrd = &pl330->channels[i];
1656 void __iomem *regs = pi->base;
1657 enum pl330_op_err err;
1658
1659 _stop(thrd);
1660
1661 if (readl(regs + FSC) & (1 << thrd->id))
1662 err = PL330_ERR_FAIL;
1663 else
1664 err = PL330_ERR_ABORT;
1665
1666 spin_unlock_irqrestore(&pl330->lock, flags);
1667
1668 _callback(thrd->req[1 - thrd->lstenq].r, err);
1669 _callback(thrd->req[thrd->lstenq].r, err);
1670
1671 spin_lock_irqsave(&pl330->lock, flags);
1672
1673 thrd->req[0].r = NULL;
1674 thrd->req[1].r = NULL;
1675 mark_free(thrd, 0);
1676 mark_free(thrd, 1);
1677
1678 /* Clear the reset flag */
1679 pl330->dmac_tbd.reset_chan &= ~(1 << i);
1680 }
1681 }
1682
1683 spin_unlock_irqrestore(&pl330->lock, flags);
1684
1685 return;
1686 }
1687
1688 /* Returns 1 if state was updated, 0 otherwise */
1689 static int pl330_update(const struct pl330_info *pi)
1690 {
1691 struct pl330_req *rqdone, *tmp;
1692 struct pl330_dmac *pl330;
1693 unsigned long flags;
1694 void __iomem *regs;
1695 u32 val;
1696 int id, ev, ret = 0;
1697
1698 if (!pi || !pi->pl330_data)
1699 return 0;
1700
1701 regs = pi->base;
1702 pl330 = pi->pl330_data;
1703
1704 spin_lock_irqsave(&pl330->lock, flags);
1705
1706 val = readl(regs + FSM) & 0x1;
1707 if (val)
1708 pl330->dmac_tbd.reset_mngr = true;
1709 else
1710 pl330->dmac_tbd.reset_mngr = false;
1711
1712 val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1);
1713 pl330->dmac_tbd.reset_chan |= val;
1714 if (val) {
1715 int i = 0;
1716 while (i < pi->pcfg.num_chan) {
1717 if (val & (1 << i)) {
1718 dev_info(pi->dev,
1719 "Reset Channel-%d\t CS-%x FTC-%x\n",
1720 i, readl(regs + CS(i)),
1721 readl(regs + FTC(i)));
1722 _stop(&pl330->channels[i]);
1723 }
1724 i++;
1725 }
1726 }
1727
1728 /* Check which event happened i.e, thread notified */
1729 val = readl(regs + ES);
1730 if (pi->pcfg.num_events < 32
1731 && val & ~((1 << pi->pcfg.num_events) - 1)) {
1732 pl330->dmac_tbd.reset_dmac = true;
1733 dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__);
1734 ret = 1;
1735 goto updt_exit;
1736 }
1737
1738 for (ev = 0; ev < pi->pcfg.num_events; ev++) {
1739 if (val & (1 << ev)) { /* Event occurred */
1740 struct pl330_thread *thrd;
1741 u32 inten = readl(regs + INTEN);
1742 int active;
1743
1744 /* Clear the event */
1745 if (inten & (1 << ev))
1746 writel(1 << ev, regs + INTCLR);
1747
1748 ret = 1;
1749
1750 id = pl330->events[ev];
1751
1752 thrd = &pl330->channels[id];
1753
1754 active = thrd->req_running;
1755 if (active == -1) /* Aborted */
1756 continue;
1757
1758 /* Detach the req */
1759 rqdone = thrd->req[active].r;
1760 thrd->req[active].r = NULL;
1761
1762 mark_free(thrd, active);
1763
1764 /* Get going again ASAP */
1765 _start(thrd);
1766
1767 /* For now, just make a list of callbacks to be done */
1768 list_add_tail(&rqdone->rqd, &pl330->req_done);
1769 }
1770 }
1771
1772 /* Now that we are in no hurry, do the callbacks */
1773 list_for_each_entry_safe(rqdone, tmp, &pl330->req_done, rqd) {
1774 list_del(&rqdone->rqd);
1775
1776 spin_unlock_irqrestore(&pl330->lock, flags);
1777 _callback(rqdone, PL330_ERR_NONE);
1778 spin_lock_irqsave(&pl330->lock, flags);
1779 }
1780
1781 updt_exit:
1782 spin_unlock_irqrestore(&pl330->lock, flags);
1783
1784 if (pl330->dmac_tbd.reset_dmac
1785 || pl330->dmac_tbd.reset_mngr
1786 || pl330->dmac_tbd.reset_chan) {
1787 ret = 1;
1788 tasklet_schedule(&pl330->tasks);
1789 }
1790
1791 return ret;
1792 }
1793
1794 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op)
1795 {
1796 struct pl330_thread *thrd = ch_id;
1797 struct pl330_dmac *pl330;
1798 unsigned long flags;
1799 int ret = 0, active;
1800
1801 if (!thrd || thrd->free || thrd->dmac->state == DYING)
1802 return -EINVAL;
1803
1804 pl330 = thrd->dmac;
1805 active = thrd->req_running;
1806
1807 spin_lock_irqsave(&pl330->lock, flags);
1808
1809 switch (op) {
1810 case PL330_OP_FLUSH:
1811 /* Make sure the channel is stopped */
1812 _stop(thrd);
1813
1814 thrd->req[0].r = NULL;
1815 thrd->req[1].r = NULL;
1816 mark_free(thrd, 0);
1817 mark_free(thrd, 1);
1818 break;
1819
1820 case PL330_OP_ABORT:
1821 /* Make sure the channel is stopped */
1822 _stop(thrd);
1823
1824 /* ABORT is only for the active req */
1825 if (active == -1)
1826 break;
1827
1828 thrd->req[active].r = NULL;
1829 mark_free(thrd, active);
1830
1831 /* Start the next */
1832 case PL330_OP_START:
1833 if ((active == -1) && !_start(thrd))
1834 ret = -EIO;
1835 break;
1836
1837 default:
1838 ret = -EINVAL;
1839 }
1840
1841 spin_unlock_irqrestore(&pl330->lock, flags);
1842 return ret;
1843 }
1844
1845 /* Reserve an event */
1846 static inline int _alloc_event(struct pl330_thread *thrd)
1847 {
1848 struct pl330_dmac *pl330 = thrd->dmac;
1849 struct pl330_info *pi = pl330->pinfo;
1850 int ev;
1851
1852 for (ev = 0; ev < pi->pcfg.num_events; ev++)
1853 if (pl330->events[ev] == -1) {
1854 pl330->events[ev] = thrd->id;
1855 return ev;
1856 }
1857
1858 return -1;
1859 }
1860
1861 static bool _chan_ns(const struct pl330_info *pi, int i)
1862 {
1863 return pi->pcfg.irq_ns & (1 << i);
1864 }
1865
1866 /* Upon success, returns IdentityToken for the
1867 * allocated channel, NULL otherwise.
1868 */
1869 static void *pl330_request_channel(const struct pl330_info *pi)
1870 {
1871 struct pl330_thread *thrd = NULL;
1872 struct pl330_dmac *pl330;
1873 unsigned long flags;
1874 int chans, i;
1875
1876 if (!pi || !pi->pl330_data)
1877 return NULL;
1878
1879 pl330 = pi->pl330_data;
1880
1881 if (pl330->state == DYING)
1882 return NULL;
1883
1884 chans = pi->pcfg.num_chan;
1885
1886 spin_lock_irqsave(&pl330->lock, flags);
1887
1888 for (i = 0; i < chans; i++) {
1889 thrd = &pl330->channels[i];
1890 if ((thrd->free) && (!_manager_ns(thrd) ||
1891 _chan_ns(pi, i))) {
1892 thrd->ev = _alloc_event(thrd);
1893 if (thrd->ev >= 0) {
1894 thrd->free = false;
1895 thrd->lstenq = 1;
1896 thrd->req[0].r = NULL;
1897 mark_free(thrd, 0);
1898 thrd->req[1].r = NULL;
1899 mark_free(thrd, 1);
1900 break;
1901 }
1902 }
1903 thrd = NULL;
1904 }
1905
1906 spin_unlock_irqrestore(&pl330->lock, flags);
1907
1908 return thrd;
1909 }
1910
1911 /* Release an event */
1912 static inline void _free_event(struct pl330_thread *thrd, int ev)
1913 {
1914 struct pl330_dmac *pl330 = thrd->dmac;
1915 struct pl330_info *pi = pl330->pinfo;
1916
1917 /* If the event is valid and was held by the thread */
1918 if (ev >= 0 && ev < pi->pcfg.num_events
1919 && pl330->events[ev] == thrd->id)
1920 pl330->events[ev] = -1;
1921 }
1922
1923 static void pl330_release_channel(void *ch_id)
1924 {
1925 struct pl330_thread *thrd = ch_id;
1926 struct pl330_dmac *pl330;
1927 unsigned long flags;
1928
1929 if (!thrd || thrd->free)
1930 return;
1931
1932 _stop(thrd);
1933
1934 _callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT);
1935 _callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT);
1936
1937 pl330 = thrd->dmac;
1938
1939 spin_lock_irqsave(&pl330->lock, flags);
1940 _free_event(thrd, thrd->ev);
1941 thrd->free = true;
1942 spin_unlock_irqrestore(&pl330->lock, flags);
1943 }
1944
1945 /* Initialize the structure for PL330 configuration, that can be used
1946 * by the client driver the make best use of the DMAC
1947 */
1948 static void read_dmac_config(struct pl330_info *pi)
1949 {
1950 void __iomem *regs = pi->base;
1951 u32 val;
1952
1953 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1954 val &= CRD_DATA_WIDTH_MASK;
1955 pi->pcfg.data_bus_width = 8 * (1 << val);
1956
1957 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1958 val &= CRD_DATA_BUFF_MASK;
1959 pi->pcfg.data_buf_dep = val + 1;
1960
1961 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1962 val &= CR0_NUM_CHANS_MASK;
1963 val += 1;
1964 pi->pcfg.num_chan = val;
1965
1966 val = readl(regs + CR0);
1967 if (val & CR0_PERIPH_REQ_SET) {
1968 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1969 val += 1;
1970 pi->pcfg.num_peri = val;
1971 pi->pcfg.peri_ns = readl(regs + CR4);
1972 } else {
1973 pi->pcfg.num_peri = 0;
1974 }
1975
1976 val = readl(regs + CR0);
1977 if (val & CR0_BOOT_MAN_NS)
1978 pi->pcfg.mode |= DMAC_MODE_NS;
1979 else
1980 pi->pcfg.mode &= ~DMAC_MODE_NS;
1981
1982 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1983 val &= CR0_NUM_EVENTS_MASK;
1984 val += 1;
1985 pi->pcfg.num_events = val;
1986
1987 pi->pcfg.irq_ns = readl(regs + CR3);
1988
1989 pi->pcfg.periph_id = get_id(pi, PERIPH_ID);
1990 pi->pcfg.pcell_id = get_id(pi, PCELL_ID);
1991 }
1992
1993 static inline void _reset_thread(struct pl330_thread *thrd)
1994 {
1995 struct pl330_dmac *pl330 = thrd->dmac;
1996 struct pl330_info *pi = pl330->pinfo;
1997
1998 thrd->req[0].mc_cpu = pl330->mcode_cpu
1999 + (thrd->id * pi->mcbufsz);
2000 thrd->req[0].mc_bus = pl330->mcode_bus
2001 + (thrd->id * pi->mcbufsz);
2002 thrd->req[0].r = NULL;
2003 mark_free(thrd, 0);
2004
2005 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
2006 + pi->mcbufsz / 2;
2007 thrd->req[1].mc_bus = thrd->req[0].mc_bus
2008 + pi->mcbufsz / 2;
2009 thrd->req[1].r = NULL;
2010 mark_free(thrd, 1);
2011 }
2012
2013 static int dmac_alloc_threads(struct pl330_dmac *pl330)
2014 {
2015 struct pl330_info *pi = pl330->pinfo;
2016 int chans = pi->pcfg.num_chan;
2017 struct pl330_thread *thrd;
2018 int i;
2019
2020 /* Allocate 1 Manager and 'chans' Channel threads */
2021 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
2022 GFP_KERNEL);
2023 if (!pl330->channels)
2024 return -ENOMEM;
2025
2026 /* Init Channel threads */
2027 for (i = 0; i < chans; i++) {
2028 thrd = &pl330->channels[i];
2029 thrd->id = i;
2030 thrd->dmac = pl330;
2031 _reset_thread(thrd);
2032 thrd->free = true;
2033 }
2034
2035 /* MANAGER is indexed at the end */
2036 thrd = &pl330->channels[chans];
2037 thrd->id = chans;
2038 thrd->dmac = pl330;
2039 thrd->free = false;
2040 pl330->manager = thrd;
2041
2042 return 0;
2043 }
2044
2045 static int dmac_alloc_resources(struct pl330_dmac *pl330)
2046 {
2047 struct pl330_info *pi = pl330->pinfo;
2048 int chans = pi->pcfg.num_chan;
2049 int ret;
2050
2051 /*
2052 * Alloc MicroCode buffer for 'chans' Channel threads.
2053 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
2054 */
2055 pl330->mcode_cpu = dma_alloc_coherent(pi->dev,
2056 chans * pi->mcbufsz,
2057 &pl330->mcode_bus, GFP_KERNEL);
2058 if (!pl330->mcode_cpu) {
2059 dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2060 __func__, __LINE__);
2061 return -ENOMEM;
2062 }
2063
2064 ret = dmac_alloc_threads(pl330);
2065 if (ret) {
2066 dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n",
2067 __func__, __LINE__);
2068 dma_free_coherent(pi->dev,
2069 chans * pi->mcbufsz,
2070 pl330->mcode_cpu, pl330->mcode_bus);
2071 return ret;
2072 }
2073
2074 return 0;
2075 }
2076
2077 static int pl330_add(struct pl330_info *pi)
2078 {
2079 struct pl330_dmac *pl330;
2080 void __iomem *regs;
2081 int i, ret;
2082
2083 if (!pi || !pi->dev)
2084 return -EINVAL;
2085
2086 /* If already added */
2087 if (pi->pl330_data)
2088 return -EINVAL;
2089
2090 /*
2091 * If the SoC can perform reset on the DMAC, then do it
2092 * before reading its configuration.
2093 */
2094 if (pi->dmac_reset)
2095 pi->dmac_reset(pi);
2096
2097 regs = pi->base;
2098
2099 /* Check if we can handle this DMAC */
2100 if ((get_id(pi, PERIPH_ID) & 0xfffff) != PERIPH_ID_VAL
2101 || get_id(pi, PCELL_ID) != PCELL_ID_VAL) {
2102 dev_err(pi->dev, "PERIPH_ID 0x%x, PCELL_ID 0x%x !\n",
2103 get_id(pi, PERIPH_ID), get_id(pi, PCELL_ID));
2104 return -EINVAL;
2105 }
2106
2107 /* Read the configuration of the DMAC */
2108 read_dmac_config(pi);
2109
2110 if (pi->pcfg.num_events == 0) {
2111 dev_err(pi->dev, "%s:%d Can't work without events!\n",
2112 __func__, __LINE__);
2113 return -EINVAL;
2114 }
2115
2116 pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL);
2117 if (!pl330) {
2118 dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2119 __func__, __LINE__);
2120 return -ENOMEM;
2121 }
2122
2123 /* Assign the info structure and private data */
2124 pl330->pinfo = pi;
2125 pi->pl330_data = pl330;
2126
2127 spin_lock_init(&pl330->lock);
2128
2129 INIT_LIST_HEAD(&pl330->req_done);
2130
2131 /* Use default MC buffer size if not provided */
2132 if (!pi->mcbufsz)
2133 pi->mcbufsz = MCODE_BUFF_PER_REQ * 2;
2134
2135 /* Mark all events as free */
2136 for (i = 0; i < pi->pcfg.num_events; i++)
2137 pl330->events[i] = -1;
2138
2139 /* Allocate resources needed by the DMAC */
2140 ret = dmac_alloc_resources(pl330);
2141 if (ret) {
2142 dev_err(pi->dev, "Unable to create channels for DMAC\n");
2143 kfree(pl330);
2144 return ret;
2145 }
2146
2147 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
2148
2149 pl330->state = INIT;
2150
2151 return 0;
2152 }
2153
2154 static int dmac_free_threads(struct pl330_dmac *pl330)
2155 {
2156 struct pl330_info *pi = pl330->pinfo;
2157 int chans = pi->pcfg.num_chan;
2158 struct pl330_thread *thrd;
2159 int i;
2160
2161 /* Release Channel threads */
2162 for (i = 0; i < chans; i++) {
2163 thrd = &pl330->channels[i];
2164 pl330_release_channel((void *)thrd);
2165 }
2166
2167 /* Free memory */
2168 kfree(pl330->channels);
2169
2170 return 0;
2171 }
2172
2173 static void dmac_free_resources(struct pl330_dmac *pl330)
2174 {
2175 struct pl330_info *pi = pl330->pinfo;
2176 int chans = pi->pcfg.num_chan;
2177
2178 dmac_free_threads(pl330);
2179
2180 dma_free_coherent(pi->dev, chans * pi->mcbufsz,
2181 pl330->mcode_cpu, pl330->mcode_bus);
2182 }
2183
2184 static void pl330_del(struct pl330_info *pi)
2185 {
2186 struct pl330_dmac *pl330;
2187
2188 if (!pi || !pi->pl330_data)
2189 return;
2190
2191 pl330 = pi->pl330_data;
2192
2193 pl330->state = UNINIT;
2194
2195 tasklet_kill(&pl330->tasks);
2196
2197 /* Free DMAC resources */
2198 dmac_free_resources(pl330);
2199
2200 kfree(pl330);
2201 pi->pl330_data = NULL;
2202 }
2203
2204 /* forward declaration */
2205 static struct amba_driver pl330_driver;
2206
2207 static inline struct dma_pl330_chan *
2208 to_pchan(struct dma_chan *ch)
2209 {
2210 if (!ch)
2211 return NULL;
2212
2213 return container_of(ch, struct dma_pl330_chan, chan);
2214 }
2215
2216 static inline struct dma_pl330_desc *
2217 to_desc(struct dma_async_tx_descriptor *tx)
2218 {
2219 return container_of(tx, struct dma_pl330_desc, txd);
2220 }
2221
2222 static inline void free_desc_list(struct list_head *list)
2223 {
2224 struct dma_pl330_dmac *pdmac;
2225 struct dma_pl330_desc *desc;
2226 struct dma_pl330_chan *pch = NULL;
2227 unsigned long flags;
2228
2229 /* Finish off the work list */
2230 list_for_each_entry(desc, list, node) {
2231 dma_async_tx_callback callback;
2232 void *param;
2233
2234 /* All desc in a list belong to same channel */
2235 pch = desc->pchan;
2236 callback = desc->txd.callback;
2237 param = desc->txd.callback_param;
2238
2239 if (callback)
2240 callback(param);
2241
2242 desc->pchan = NULL;
2243 }
2244
2245 /* pch will be unset if list was empty */
2246 if (!pch)
2247 return;
2248
2249 pdmac = pch->dmac;
2250
2251 spin_lock_irqsave(&pdmac->pool_lock, flags);
2252 list_splice_tail_init(list, &pdmac->desc_pool);
2253 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2254 }
2255
2256 static inline void handle_cyclic_desc_list(struct list_head *list)
2257 {
2258 struct dma_pl330_desc *desc;
2259 struct dma_pl330_chan *pch = NULL;
2260 unsigned long flags;
2261
2262 list_for_each_entry(desc, list, node) {
2263 dma_async_tx_callback callback;
2264
2265 /* Change status to reload it */
2266 desc->status = PREP;
2267 pch = desc->pchan;
2268 callback = desc->txd.callback;
2269 if (callback)
2270 callback(desc->txd.callback_param);
2271 }
2272
2273 /* pch will be unset if list was empty */
2274 if (!pch)
2275 return;
2276
2277 spin_lock_irqsave(&pch->lock, flags);
2278 list_splice_tail_init(list, &pch->work_list);
2279 spin_unlock_irqrestore(&pch->lock, flags);
2280 }
2281
2282 static inline void fill_queue(struct dma_pl330_chan *pch)
2283 {
2284 struct dma_pl330_desc *desc;
2285 int ret;
2286
2287 list_for_each_entry(desc, &pch->work_list, node) {
2288
2289 /* If already submitted */
2290 if (desc->status == BUSY)
2291 break;
2292
2293 ret = pl330_submit_req(pch->pl330_chid,
2294 &desc->req);
2295 if (!ret) {
2296 desc->status = BUSY;
2297 break;
2298 } else if (ret == -EAGAIN) {
2299 /* QFull or DMAC Dying */
2300 break;
2301 } else {
2302 /* Unacceptable request */
2303 desc->status = DONE;
2304 dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n",
2305 __func__, __LINE__, desc->txd.cookie);
2306 tasklet_schedule(&pch->task);
2307 }
2308 }
2309 }
2310
2311 static void pl330_tasklet(unsigned long data)
2312 {
2313 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2314 struct dma_pl330_desc *desc, *_dt;
2315 unsigned long flags;
2316 LIST_HEAD(list);
2317
2318 spin_lock_irqsave(&pch->lock, flags);
2319
2320 /* Pick up ripe tomatoes */
2321 list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2322 if (desc->status == DONE) {
2323 if (!pch->cyclic)
2324 dma_cookie_complete(&desc->txd);
2325 list_move_tail(&desc->node, &list);
2326 }
2327
2328 /* Try to submit a req imm. next to the last completed cookie */
2329 fill_queue(pch);
2330
2331 /* Make sure the PL330 Channel thread is active */
2332 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START);
2333
2334 spin_unlock_irqrestore(&pch->lock, flags);
2335
2336 if (pch->cyclic)
2337 handle_cyclic_desc_list(&list);
2338 else
2339 free_desc_list(&list);
2340 }
2341
2342 static void dma_pl330_rqcb(void *token, enum pl330_op_err err)
2343 {
2344 struct dma_pl330_desc *desc = token;
2345 struct dma_pl330_chan *pch = desc->pchan;
2346 unsigned long flags;
2347
2348 /* If desc aborted */
2349 if (!pch)
2350 return;
2351
2352 spin_lock_irqsave(&pch->lock, flags);
2353
2354 desc->status = DONE;
2355
2356 spin_unlock_irqrestore(&pch->lock, flags);
2357
2358 tasklet_schedule(&pch->task);
2359 }
2360
2361 static bool pl330_dt_filter(struct dma_chan *chan, void *param)
2362 {
2363 struct dma_pl330_filter_args *fargs = param;
2364
2365 if (chan->device != &fargs->pdmac->ddma)
2366 return false;
2367
2368 return (chan->chan_id == fargs->chan_id);
2369 }
2370
2371 bool pl330_filter(struct dma_chan *chan, void *param)
2372 {
2373 u8 *peri_id;
2374
2375 if (chan->device->dev->driver != &pl330_driver.drv)
2376 return false;
2377
2378 peri_id = chan->private;
2379 return *peri_id == (unsigned)param;
2380 }
2381 EXPORT_SYMBOL(pl330_filter);
2382
2383 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2384 struct of_dma *ofdma)
2385 {
2386 int count = dma_spec->args_count;
2387 struct dma_pl330_dmac *pdmac = ofdma->of_dma_data;
2388 struct dma_pl330_filter_args fargs;
2389 dma_cap_mask_t cap;
2390
2391 if (!pdmac)
2392 return NULL;
2393
2394 if (count != 1)
2395 return NULL;
2396
2397 fargs.pdmac = pdmac;
2398 fargs.chan_id = dma_spec->args[0];
2399
2400 dma_cap_zero(cap);
2401 dma_cap_set(DMA_SLAVE, cap);
2402 dma_cap_set(DMA_CYCLIC, cap);
2403
2404 return dma_request_channel(cap, pl330_dt_filter, &fargs);
2405 }
2406
2407 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2408 {
2409 struct dma_pl330_chan *pch = to_pchan(chan);
2410 struct dma_pl330_dmac *pdmac = pch->dmac;
2411 unsigned long flags;
2412
2413 spin_lock_irqsave(&pch->lock, flags);
2414
2415 dma_cookie_init(chan);
2416 pch->cyclic = false;
2417
2418 pch->pl330_chid = pl330_request_channel(&pdmac->pif);
2419 if (!pch->pl330_chid) {
2420 spin_unlock_irqrestore(&pch->lock, flags);
2421 return -ENOMEM;
2422 }
2423
2424 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2425
2426 spin_unlock_irqrestore(&pch->lock, flags);
2427
2428 return 1;
2429 }
2430
2431 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg)
2432 {
2433 struct dma_pl330_chan *pch = to_pchan(chan);
2434 struct dma_pl330_desc *desc, *_dt;
2435 unsigned long flags;
2436 struct dma_pl330_dmac *pdmac = pch->dmac;
2437 struct dma_slave_config *slave_config;
2438 LIST_HEAD(list);
2439
2440 switch (cmd) {
2441 case DMA_TERMINATE_ALL:
2442 spin_lock_irqsave(&pch->lock, flags);
2443
2444 /* FLUSH the PL330 Channel thread */
2445 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH);
2446
2447 /* Mark all desc done */
2448 list_for_each_entry_safe(desc, _dt, &pch->work_list , node) {
2449 desc->status = DONE;
2450 list_move_tail(&desc->node, &list);
2451 }
2452
2453 list_splice_tail_init(&list, &pdmac->desc_pool);
2454 spin_unlock_irqrestore(&pch->lock, flags);
2455 break;
2456 case DMA_SLAVE_CONFIG:
2457 slave_config = (struct dma_slave_config *)arg;
2458
2459 if (slave_config->direction == DMA_MEM_TO_DEV) {
2460 if (slave_config->dst_addr)
2461 pch->fifo_addr = slave_config->dst_addr;
2462 if (slave_config->dst_addr_width)
2463 pch->burst_sz = __ffs(slave_config->dst_addr_width);
2464 if (slave_config->dst_maxburst)
2465 pch->burst_len = slave_config->dst_maxburst;
2466 } else if (slave_config->direction == DMA_DEV_TO_MEM) {
2467 if (slave_config->src_addr)
2468 pch->fifo_addr = slave_config->src_addr;
2469 if (slave_config->src_addr_width)
2470 pch->burst_sz = __ffs(slave_config->src_addr_width);
2471 if (slave_config->src_maxburst)
2472 pch->burst_len = slave_config->src_maxburst;
2473 }
2474 break;
2475 default:
2476 dev_err(pch->dmac->pif.dev, "Not supported command.\n");
2477 return -ENXIO;
2478 }
2479
2480 return 0;
2481 }
2482
2483 static void pl330_free_chan_resources(struct dma_chan *chan)
2484 {
2485 struct dma_pl330_chan *pch = to_pchan(chan);
2486 unsigned long flags;
2487
2488 spin_lock_irqsave(&pch->lock, flags);
2489
2490 tasklet_kill(&pch->task);
2491
2492 pl330_release_channel(pch->pl330_chid);
2493 pch->pl330_chid = NULL;
2494
2495 if (pch->cyclic)
2496 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2497
2498 spin_unlock_irqrestore(&pch->lock, flags);
2499 }
2500
2501 static enum dma_status
2502 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2503 struct dma_tx_state *txstate)
2504 {
2505 return dma_cookie_status(chan, cookie, txstate);
2506 }
2507
2508 static void pl330_issue_pending(struct dma_chan *chan)
2509 {
2510 pl330_tasklet((unsigned long) to_pchan(chan));
2511 }
2512
2513 /*
2514 * We returned the last one of the circular list of descriptor(s)
2515 * from prep_xxx, so the argument to submit corresponds to the last
2516 * descriptor of the list.
2517 */
2518 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2519 {
2520 struct dma_pl330_desc *desc, *last = to_desc(tx);
2521 struct dma_pl330_chan *pch = to_pchan(tx->chan);
2522 dma_cookie_t cookie;
2523 unsigned long flags;
2524
2525 spin_lock_irqsave(&pch->lock, flags);
2526
2527 /* Assign cookies to all nodes */
2528 while (!list_empty(&last->node)) {
2529 desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2530
2531 dma_cookie_assign(&desc->txd);
2532
2533 list_move_tail(&desc->node, &pch->work_list);
2534 }
2535
2536 cookie = dma_cookie_assign(&last->txd);
2537 list_add_tail(&last->node, &pch->work_list);
2538 spin_unlock_irqrestore(&pch->lock, flags);
2539
2540 return cookie;
2541 }
2542
2543 static inline void _init_desc(struct dma_pl330_desc *desc)
2544 {
2545 desc->pchan = NULL;
2546 desc->req.x = &desc->px;
2547 desc->req.token = desc;
2548 desc->rqcfg.swap = SWAP_NO;
2549 desc->rqcfg.privileged = 0;
2550 desc->rqcfg.insnaccess = 0;
2551 desc->rqcfg.scctl = SCCTRL0;
2552 desc->rqcfg.dcctl = DCCTRL0;
2553 desc->req.cfg = &desc->rqcfg;
2554 desc->req.xfer_cb = dma_pl330_rqcb;
2555 desc->txd.tx_submit = pl330_tx_submit;
2556
2557 INIT_LIST_HEAD(&desc->node);
2558 }
2559
2560 /* Returns the number of descriptors added to the DMAC pool */
2561 static int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count)
2562 {
2563 struct dma_pl330_desc *desc;
2564 unsigned long flags;
2565 int i;
2566
2567 if (!pdmac)
2568 return 0;
2569
2570 desc = kmalloc(count * sizeof(*desc), flg);
2571 if (!desc)
2572 return 0;
2573
2574 spin_lock_irqsave(&pdmac->pool_lock, flags);
2575
2576 for (i = 0; i < count; i++) {
2577 _init_desc(&desc[i]);
2578 list_add_tail(&desc[i].node, &pdmac->desc_pool);
2579 }
2580
2581 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2582
2583 return count;
2584 }
2585
2586 static struct dma_pl330_desc *
2587 pluck_desc(struct dma_pl330_dmac *pdmac)
2588 {
2589 struct dma_pl330_desc *desc = NULL;
2590 unsigned long flags;
2591
2592 if (!pdmac)
2593 return NULL;
2594
2595 spin_lock_irqsave(&pdmac->pool_lock, flags);
2596
2597 if (!list_empty(&pdmac->desc_pool)) {
2598 desc = list_entry(pdmac->desc_pool.next,
2599 struct dma_pl330_desc, node);
2600
2601 list_del_init(&desc->node);
2602
2603 desc->status = PREP;
2604 desc->txd.callback = NULL;
2605 }
2606
2607 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2608
2609 return desc;
2610 }
2611
2612 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2613 {
2614 struct dma_pl330_dmac *pdmac = pch->dmac;
2615 u8 *peri_id = pch->chan.private;
2616 struct dma_pl330_desc *desc;
2617
2618 /* Pluck one desc from the pool of DMAC */
2619 desc = pluck_desc(pdmac);
2620
2621 /* If the DMAC pool is empty, alloc new */
2622 if (!desc) {
2623 if (!add_desc(pdmac, GFP_ATOMIC, 1))
2624 return NULL;
2625
2626 /* Try again */
2627 desc = pluck_desc(pdmac);
2628 if (!desc) {
2629 dev_err(pch->dmac->pif.dev,
2630 "%s:%d ALERT!\n", __func__, __LINE__);
2631 return NULL;
2632 }
2633 }
2634
2635 /* Initialize the descriptor */
2636 desc->pchan = pch;
2637 desc->txd.cookie = 0;
2638 async_tx_ack(&desc->txd);
2639
2640 desc->req.peri = peri_id ? pch->chan.chan_id : 0;
2641 desc->rqcfg.pcfg = &pch->dmac->pif.pcfg;
2642
2643 dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2644
2645 return desc;
2646 }
2647
2648 static inline void fill_px(struct pl330_xfer *px,
2649 dma_addr_t dst, dma_addr_t src, size_t len)
2650 {
2651 px->next = NULL;
2652 px->bytes = len;
2653 px->dst_addr = dst;
2654 px->src_addr = src;
2655 }
2656
2657 static struct dma_pl330_desc *
2658 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2659 dma_addr_t src, size_t len)
2660 {
2661 struct dma_pl330_desc *desc = pl330_get_desc(pch);
2662
2663 if (!desc) {
2664 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2665 __func__, __LINE__);
2666 return NULL;
2667 }
2668
2669 /*
2670 * Ideally we should lookout for reqs bigger than
2671 * those that can be programmed with 256 bytes of
2672 * MC buffer, but considering a req size is seldom
2673 * going to be word-unaligned and more than 200MB,
2674 * we take it easy.
2675 * Also, should the limit is reached we'd rather
2676 * have the platform increase MC buffer size than
2677 * complicating this API driver.
2678 */
2679 fill_px(&desc->px, dst, src, len);
2680
2681 return desc;
2682 }
2683
2684 /* Call after fixing burst size */
2685 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2686 {
2687 struct dma_pl330_chan *pch = desc->pchan;
2688 struct pl330_info *pi = &pch->dmac->pif;
2689 int burst_len;
2690
2691 burst_len = pi->pcfg.data_bus_width / 8;
2692 burst_len *= pi->pcfg.data_buf_dep;
2693 burst_len >>= desc->rqcfg.brst_size;
2694
2695 /* src/dst_burst_len can't be more than 16 */
2696 if (burst_len > 16)
2697 burst_len = 16;
2698
2699 while (burst_len > 1) {
2700 if (!(len % (burst_len << desc->rqcfg.brst_size)))
2701 break;
2702 burst_len--;
2703 }
2704
2705 return burst_len;
2706 }
2707
2708 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2709 struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2710 size_t period_len, enum dma_transfer_direction direction,
2711 unsigned long flags, void *context)
2712 {
2713 struct dma_pl330_desc *desc;
2714 struct dma_pl330_chan *pch = to_pchan(chan);
2715 dma_addr_t dst;
2716 dma_addr_t src;
2717
2718 desc = pl330_get_desc(pch);
2719 if (!desc) {
2720 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2721 __func__, __LINE__);
2722 return NULL;
2723 }
2724
2725 switch (direction) {
2726 case DMA_MEM_TO_DEV:
2727 desc->rqcfg.src_inc = 1;
2728 desc->rqcfg.dst_inc = 0;
2729 desc->req.rqtype = MEMTODEV;
2730 src = dma_addr;
2731 dst = pch->fifo_addr;
2732 break;
2733 case DMA_DEV_TO_MEM:
2734 desc->rqcfg.src_inc = 0;
2735 desc->rqcfg.dst_inc = 1;
2736 desc->req.rqtype = DEVTOMEM;
2737 src = pch->fifo_addr;
2738 dst = dma_addr;
2739 break;
2740 default:
2741 dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n",
2742 __func__, __LINE__);
2743 return NULL;
2744 }
2745
2746 desc->rqcfg.brst_size = pch->burst_sz;
2747 desc->rqcfg.brst_len = 1;
2748
2749 pch->cyclic = true;
2750
2751 fill_px(&desc->px, dst, src, period_len);
2752
2753 return &desc->txd;
2754 }
2755
2756 static struct dma_async_tx_descriptor *
2757 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2758 dma_addr_t src, size_t len, unsigned long flags)
2759 {
2760 struct dma_pl330_desc *desc;
2761 struct dma_pl330_chan *pch = to_pchan(chan);
2762 struct pl330_info *pi;
2763 int burst;
2764
2765 if (unlikely(!pch || !len))
2766 return NULL;
2767
2768 pi = &pch->dmac->pif;
2769
2770 desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2771 if (!desc)
2772 return NULL;
2773
2774 desc->rqcfg.src_inc = 1;
2775 desc->rqcfg.dst_inc = 1;
2776 desc->req.rqtype = MEMTOMEM;
2777
2778 /* Select max possible burst size */
2779 burst = pi->pcfg.data_bus_width / 8;
2780
2781 while (burst > 1) {
2782 if (!(len % burst))
2783 break;
2784 burst /= 2;
2785 }
2786
2787 desc->rqcfg.brst_size = 0;
2788 while (burst != (1 << desc->rqcfg.brst_size))
2789 desc->rqcfg.brst_size++;
2790
2791 desc->rqcfg.brst_len = get_burst_len(desc, len);
2792
2793 desc->txd.flags = flags;
2794
2795 return &desc->txd;
2796 }
2797
2798 static struct dma_async_tx_descriptor *
2799 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2800 unsigned int sg_len, enum dma_transfer_direction direction,
2801 unsigned long flg, void *context)
2802 {
2803 struct dma_pl330_desc *first, *desc = NULL;
2804 struct dma_pl330_chan *pch = to_pchan(chan);
2805 struct scatterlist *sg;
2806 unsigned long flags;
2807 int i;
2808 dma_addr_t addr;
2809
2810 if (unlikely(!pch || !sgl || !sg_len))
2811 return NULL;
2812
2813 addr = pch->fifo_addr;
2814
2815 first = NULL;
2816
2817 for_each_sg(sgl, sg, sg_len, i) {
2818
2819 desc = pl330_get_desc(pch);
2820 if (!desc) {
2821 struct dma_pl330_dmac *pdmac = pch->dmac;
2822
2823 dev_err(pch->dmac->pif.dev,
2824 "%s:%d Unable to fetch desc\n",
2825 __func__, __LINE__);
2826 if (!first)
2827 return NULL;
2828
2829 spin_lock_irqsave(&pdmac->pool_lock, flags);
2830
2831 while (!list_empty(&first->node)) {
2832 desc = list_entry(first->node.next,
2833 struct dma_pl330_desc, node);
2834 list_move_tail(&desc->node, &pdmac->desc_pool);
2835 }
2836
2837 list_move_tail(&first->node, &pdmac->desc_pool);
2838
2839 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2840
2841 return NULL;
2842 }
2843
2844 if (!first)
2845 first = desc;
2846 else
2847 list_add_tail(&desc->node, &first->node);
2848
2849 if (direction == DMA_MEM_TO_DEV) {
2850 desc->rqcfg.src_inc = 1;
2851 desc->rqcfg.dst_inc = 0;
2852 desc->req.rqtype = MEMTODEV;
2853 fill_px(&desc->px,
2854 addr, sg_dma_address(sg), sg_dma_len(sg));
2855 } else {
2856 desc->rqcfg.src_inc = 0;
2857 desc->rqcfg.dst_inc = 1;
2858 desc->req.rqtype = DEVTOMEM;
2859 fill_px(&desc->px,
2860 sg_dma_address(sg), addr, sg_dma_len(sg));
2861 }
2862
2863 desc->rqcfg.brst_size = pch->burst_sz;
2864 desc->rqcfg.brst_len = 1;
2865 }
2866
2867 /* Return the last desc in the chain */
2868 desc->txd.flags = flg;
2869 return &desc->txd;
2870 }
2871
2872 static irqreturn_t pl330_irq_handler(int irq, void *data)
2873 {
2874 if (pl330_update(data))
2875 return IRQ_HANDLED;
2876 else
2877 return IRQ_NONE;
2878 }
2879
2880 static int
2881 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2882 {
2883 struct dma_pl330_platdata *pdat;
2884 struct dma_pl330_dmac *pdmac;
2885 struct dma_pl330_chan *pch;
2886 struct pl330_info *pi;
2887 struct dma_device *pd;
2888 struct resource *res;
2889 int i, ret, irq;
2890 int num_chan;
2891
2892 pdat = adev->dev.platform_data;
2893
2894 /* Allocate a new DMAC and its Channels */
2895 pdmac = devm_kzalloc(&adev->dev, sizeof(*pdmac), GFP_KERNEL);
2896 if (!pdmac) {
2897 dev_err(&adev->dev, "unable to allocate mem\n");
2898 return -ENOMEM;
2899 }
2900
2901 pi = &pdmac->pif;
2902 pi->dev = &adev->dev;
2903 pi->pl330_data = NULL;
2904 pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2905
2906 res = &adev->res;
2907 pi->base = devm_request_and_ioremap(&adev->dev, res);
2908 if (!pi->base)
2909 return -ENXIO;
2910
2911 amba_set_drvdata(adev, pdmac);
2912
2913 irq = adev->irq[0];
2914 ret = request_irq(irq, pl330_irq_handler, 0,
2915 dev_name(&adev->dev), pi);
2916 if (ret)
2917 return ret;
2918
2919 ret = pl330_add(pi);
2920 if (ret)
2921 goto probe_err1;
2922
2923 INIT_LIST_HEAD(&pdmac->desc_pool);
2924 spin_lock_init(&pdmac->pool_lock);
2925
2926 /* Create a descriptor pool of default size */
2927 if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC))
2928 dev_warn(&adev->dev, "unable to allocate desc\n");
2929
2930 pd = &pdmac->ddma;
2931 INIT_LIST_HEAD(&pd->channels);
2932
2933 /* Initialize channel parameters */
2934 if (pdat)
2935 num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan);
2936 else
2937 num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan);
2938
2939 pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2940 if (!pdmac->peripherals) {
2941 ret = -ENOMEM;
2942 dev_err(&adev->dev, "unable to allocate pdmac->peripherals\n");
2943 goto probe_err2;
2944 }
2945
2946 for (i = 0; i < num_chan; i++) {
2947 pch = &pdmac->peripherals[i];
2948 if (!adev->dev.of_node)
2949 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2950 else
2951 pch->chan.private = adev->dev.of_node;
2952
2953 INIT_LIST_HEAD(&pch->work_list);
2954 spin_lock_init(&pch->lock);
2955 pch->pl330_chid = NULL;
2956 pch->chan.device = pd;
2957 pch->dmac = pdmac;
2958
2959 /* Add the channel to the DMAC list */
2960 list_add_tail(&pch->chan.device_node, &pd->channels);
2961 }
2962
2963 pd->dev = &adev->dev;
2964 if (pdat) {
2965 pd->cap_mask = pdat->cap_mask;
2966 } else {
2967 dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2968 if (pi->pcfg.num_peri) {
2969 dma_cap_set(DMA_SLAVE, pd->cap_mask);
2970 dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2971 dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2972 }
2973 }
2974
2975 pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2976 pd->device_free_chan_resources = pl330_free_chan_resources;
2977 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2978 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2979 pd->device_tx_status = pl330_tx_status;
2980 pd->device_prep_slave_sg = pl330_prep_slave_sg;
2981 pd->device_control = pl330_control;
2982 pd->device_issue_pending = pl330_issue_pending;
2983
2984 ret = dma_async_device_register(pd);
2985 if (ret) {
2986 dev_err(&adev->dev, "unable to register DMAC\n");
2987 goto probe_err2;
2988 }
2989
2990 dev_info(&adev->dev,
2991 "Loaded driver for PL330 DMAC-%d\n", adev->periphid);
2992 dev_info(&adev->dev,
2993 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2994 pi->pcfg.data_buf_dep,
2995 pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan,
2996 pi->pcfg.num_peri, pi->pcfg.num_events);
2997
2998 ret = of_dma_controller_register(adev->dev.of_node,
2999 of_dma_pl330_xlate, pdmac);
3000 if (ret) {
3001 dev_err(&adev->dev,
3002 "unable to register DMA to the generic DT DMA helpers\n");
3003 goto probe_err2;
3004 }
3005
3006 return 0;
3007
3008 probe_err2:
3009 pl330_del(pi);
3010 probe_err1:
3011 free_irq(irq, pi);
3012
3013 return ret;
3014 }
3015
3016 static int pl330_remove(struct amba_device *adev)
3017 {
3018 struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev);
3019 struct dma_pl330_chan *pch, *_p;
3020 struct pl330_info *pi;
3021 int irq;
3022
3023 if (!pdmac)
3024 return 0;
3025
3026 of_dma_controller_free(adev->dev.of_node);
3027
3028 amba_set_drvdata(adev, NULL);
3029
3030 /* Idle the DMAC */
3031 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels,
3032 chan.device_node) {
3033
3034 /* Remove the channel */
3035 list_del(&pch->chan.device_node);
3036
3037 /* Flush the channel */
3038 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
3039 pl330_free_chan_resources(&pch->chan);
3040 }
3041
3042 pi = &pdmac->pif;
3043
3044 pl330_del(pi);
3045
3046 irq = adev->irq[0];
3047 free_irq(irq, pi);
3048
3049 return 0;
3050 }
3051
3052 static struct amba_id pl330_ids[] = {
3053 {
3054 .id = 0x00041330,
3055 .mask = 0x000fffff,
3056 },
3057 { 0, 0 },
3058 };
3059
3060 MODULE_DEVICE_TABLE(amba, pl330_ids);
3061
3062 static struct amba_driver pl330_driver = {
3063 .drv = {
3064 .owner = THIS_MODULE,
3065 .name = "dma-pl330",
3066 },
3067 .id_table = pl330_ids,
3068 .probe = pl330_probe,
3069 .remove = pl330_remove,
3070 };
3071
3072 module_amba_driver(pl330_driver);
3073
3074 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
3075 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3076 MODULE_LICENSE("GPL");
This page took 0.122955 seconds and 5 git commands to generate.