FIRMWARE: bcm47xx_nvram: Fix module license.
[deliverable/linux.git] / drivers / dma / sirf-dma.c
1 /*
2 * DMA controller driver for CSR SiRFprimaII
3 *
4 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
5 *
6 * Licensed under GPLv2 or later.
7 */
8
9 #include <linux/module.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/slab.h>
16 #include <linux/of_irq.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/of_platform.h>
20 #include <linux/clk.h>
21 #include <linux/of_dma.h>
22 #include <linux/sirfsoc_dma.h>
23
24 #include "dmaengine.h"
25
26 #define SIRFSOC_DMA_VER_A7V1 1
27 #define SIRFSOC_DMA_VER_A7V2 2
28 #define SIRFSOC_DMA_VER_A6 4
29
30 #define SIRFSOC_DMA_DESCRIPTORS 16
31 #define SIRFSOC_DMA_CHANNELS 16
32 #define SIRFSOC_DMA_TABLE_NUM 256
33
34 #define SIRFSOC_DMA_CH_ADDR 0x00
35 #define SIRFSOC_DMA_CH_XLEN 0x04
36 #define SIRFSOC_DMA_CH_YLEN 0x08
37 #define SIRFSOC_DMA_CH_CTRL 0x0C
38
39 #define SIRFSOC_DMA_WIDTH_0 0x100
40 #define SIRFSOC_DMA_CH_VALID 0x140
41 #define SIRFSOC_DMA_CH_INT 0x144
42 #define SIRFSOC_DMA_INT_EN 0x148
43 #define SIRFSOC_DMA_INT_EN_CLR 0x14C
44 #define SIRFSOC_DMA_CH_LOOP_CTRL 0x150
45 #define SIRFSOC_DMA_CH_LOOP_CTRL_CLR 0x154
46 #define SIRFSOC_DMA_WIDTH_ATLAS7 0x10
47 #define SIRFSOC_DMA_VALID_ATLAS7 0x14
48 #define SIRFSOC_DMA_INT_ATLAS7 0x18
49 #define SIRFSOC_DMA_INT_EN_ATLAS7 0x1c
50 #define SIRFSOC_DMA_LOOP_CTRL_ATLAS7 0x20
51 #define SIRFSOC_DMA_CUR_DATA_ADDR 0x34
52 #define SIRFSOC_DMA_MUL_ATLAS7 0x38
53 #define SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7 0x158
54 #define SIRFSOC_DMA_CH_LOOP_CTRL_CLR_ATLAS7 0x15C
55 #define SIRFSOC_DMA_IOBG_SCMD_EN 0x800
56 #define SIRFSOC_DMA_EARLY_RESP_SET 0x818
57 #define SIRFSOC_DMA_EARLY_RESP_CLR 0x81C
58
59 #define SIRFSOC_DMA_MODE_CTRL_BIT 4
60 #define SIRFSOC_DMA_DIR_CTRL_BIT 5
61 #define SIRFSOC_DMA_MODE_CTRL_BIT_ATLAS7 2
62 #define SIRFSOC_DMA_CHAIN_CTRL_BIT_ATLAS7 3
63 #define SIRFSOC_DMA_DIR_CTRL_BIT_ATLAS7 4
64 #define SIRFSOC_DMA_TAB_NUM_ATLAS7 7
65 #define SIRFSOC_DMA_CHAIN_INT_BIT_ATLAS7 5
66 #define SIRFSOC_DMA_CHAIN_FLAG_SHIFT_ATLAS7 25
67 #define SIRFSOC_DMA_CHAIN_ADDR_SHIFT 32
68
69 #define SIRFSOC_DMA_INT_FINI_INT_ATLAS7 BIT(0)
70 #define SIRFSOC_DMA_INT_CNT_INT_ATLAS7 BIT(1)
71 #define SIRFSOC_DMA_INT_PAU_INT_ATLAS7 BIT(2)
72 #define SIRFSOC_DMA_INT_LOOP_INT_ATLAS7 BIT(3)
73 #define SIRFSOC_DMA_INT_INV_INT_ATLAS7 BIT(4)
74 #define SIRFSOC_DMA_INT_END_INT_ATLAS7 BIT(5)
75 #define SIRFSOC_DMA_INT_ALL_ATLAS7 0x3F
76
77 /* xlen and dma_width register is in 4 bytes boundary */
78 #define SIRFSOC_DMA_WORD_LEN 4
79 #define SIRFSOC_DMA_XLEN_MAX_V1 0x800
80 #define SIRFSOC_DMA_XLEN_MAX_V2 0x1000
81
82 struct sirfsoc_dma_desc {
83 struct dma_async_tx_descriptor desc;
84 struct list_head node;
85
86 /* SiRFprimaII 2D-DMA parameters */
87
88 int xlen; /* DMA xlen */
89 int ylen; /* DMA ylen */
90 int width; /* DMA width */
91 int dir;
92 bool cyclic; /* is loop DMA? */
93 bool chain; /* is chain DMA? */
94 u32 addr; /* DMA buffer address */
95 u64 chain_table[SIRFSOC_DMA_TABLE_NUM]; /* chain tbl */
96 };
97
98 struct sirfsoc_dma_chan {
99 struct dma_chan chan;
100 struct list_head free;
101 struct list_head prepared;
102 struct list_head queued;
103 struct list_head active;
104 struct list_head completed;
105 unsigned long happened_cyclic;
106 unsigned long completed_cyclic;
107
108 /* Lock for this structure */
109 spinlock_t lock;
110
111 int mode;
112 };
113
114 struct sirfsoc_dma_regs {
115 u32 ctrl[SIRFSOC_DMA_CHANNELS];
116 u32 interrupt_en;
117 };
118
119 struct sirfsoc_dma {
120 struct dma_device dma;
121 struct tasklet_struct tasklet;
122 struct sirfsoc_dma_chan channels[SIRFSOC_DMA_CHANNELS];
123 void __iomem *base;
124 int irq;
125 struct clk *clk;
126 int type;
127 void (*exec_desc)(struct sirfsoc_dma_desc *sdesc,
128 int cid, int burst_mode, void __iomem *base);
129 struct sirfsoc_dma_regs regs_save;
130 };
131
132 struct sirfsoc_dmadata {
133 void (*exec)(struct sirfsoc_dma_desc *sdesc,
134 int cid, int burst_mode, void __iomem *base);
135 int type;
136 };
137
138 enum sirfsoc_dma_chain_flag {
139 SIRFSOC_DMA_CHAIN_NORMAL = 0x01,
140 SIRFSOC_DMA_CHAIN_PAUSE = 0x02,
141 SIRFSOC_DMA_CHAIN_LOOP = 0x03,
142 SIRFSOC_DMA_CHAIN_END = 0x04
143 };
144
145 #define DRV_NAME "sirfsoc_dma"
146
147 static int sirfsoc_dma_runtime_suspend(struct device *dev);
148
149 /* Convert struct dma_chan to struct sirfsoc_dma_chan */
150 static inline
151 struct sirfsoc_dma_chan *dma_chan_to_sirfsoc_dma_chan(struct dma_chan *c)
152 {
153 return container_of(c, struct sirfsoc_dma_chan, chan);
154 }
155
156 /* Convert struct dma_chan to struct sirfsoc_dma */
157 static inline struct sirfsoc_dma *dma_chan_to_sirfsoc_dma(struct dma_chan *c)
158 {
159 struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(c);
160 return container_of(schan, struct sirfsoc_dma, channels[c->chan_id]);
161 }
162
163 static void sirfsoc_dma_execute_hw_a7v2(struct sirfsoc_dma_desc *sdesc,
164 int cid, int burst_mode, void __iomem *base)
165 {
166 if (sdesc->chain) {
167 /* DMA v2 HW chain mode */
168 writel_relaxed((sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT_ATLAS7) |
169 (sdesc->chain <<
170 SIRFSOC_DMA_CHAIN_CTRL_BIT_ATLAS7) |
171 (0x8 << SIRFSOC_DMA_TAB_NUM_ATLAS7) | 0x3,
172 base + SIRFSOC_DMA_CH_CTRL);
173 } else {
174 /* DMA v2 legacy mode */
175 writel_relaxed(sdesc->xlen, base + SIRFSOC_DMA_CH_XLEN);
176 writel_relaxed(sdesc->ylen, base + SIRFSOC_DMA_CH_YLEN);
177 writel_relaxed(sdesc->width, base + SIRFSOC_DMA_WIDTH_ATLAS7);
178 writel_relaxed((sdesc->width*((sdesc->ylen+1)>>1)),
179 base + SIRFSOC_DMA_MUL_ATLAS7);
180 writel_relaxed((sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT_ATLAS7) |
181 (sdesc->chain <<
182 SIRFSOC_DMA_CHAIN_CTRL_BIT_ATLAS7) |
183 0x3, base + SIRFSOC_DMA_CH_CTRL);
184 }
185 writel_relaxed(sdesc->chain ? SIRFSOC_DMA_INT_END_INT_ATLAS7 :
186 (SIRFSOC_DMA_INT_FINI_INT_ATLAS7 |
187 SIRFSOC_DMA_INT_LOOP_INT_ATLAS7),
188 base + SIRFSOC_DMA_INT_EN_ATLAS7);
189 writel(sdesc->addr, base + SIRFSOC_DMA_CH_ADDR);
190 if (sdesc->cyclic)
191 writel(0x10001, base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
192 }
193
194 static void sirfsoc_dma_execute_hw_a7v1(struct sirfsoc_dma_desc *sdesc,
195 int cid, int burst_mode, void __iomem *base)
196 {
197 writel_relaxed(1, base + SIRFSOC_DMA_IOBG_SCMD_EN);
198 writel_relaxed((1 << cid), base + SIRFSOC_DMA_EARLY_RESP_SET);
199 writel_relaxed(sdesc->width, base + SIRFSOC_DMA_WIDTH_0 + cid * 4);
200 writel_relaxed(cid | (burst_mode << SIRFSOC_DMA_MODE_CTRL_BIT) |
201 (sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT),
202 base + cid * 0x10 + SIRFSOC_DMA_CH_CTRL);
203 writel_relaxed(sdesc->xlen, base + cid * 0x10 + SIRFSOC_DMA_CH_XLEN);
204 writel_relaxed(sdesc->ylen, base + cid * 0x10 + SIRFSOC_DMA_CH_YLEN);
205 writel_relaxed(readl_relaxed(base + SIRFSOC_DMA_INT_EN) |
206 (1 << cid), base + SIRFSOC_DMA_INT_EN);
207 writel(sdesc->addr >> 2, base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR);
208 if (sdesc->cyclic) {
209 writel((1 << cid) | 1 << (cid + 16) |
210 readl_relaxed(base + SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7),
211 base + SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7);
212 }
213
214 }
215
216 static void sirfsoc_dma_execute_hw_a6(struct sirfsoc_dma_desc *sdesc,
217 int cid, int burst_mode, void __iomem *base)
218 {
219 writel_relaxed(sdesc->width, base + SIRFSOC_DMA_WIDTH_0 + cid * 4);
220 writel_relaxed(cid | (burst_mode << SIRFSOC_DMA_MODE_CTRL_BIT) |
221 (sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT),
222 base + cid * 0x10 + SIRFSOC_DMA_CH_CTRL);
223 writel_relaxed(sdesc->xlen, base + cid * 0x10 + SIRFSOC_DMA_CH_XLEN);
224 writel_relaxed(sdesc->ylen, base + cid * 0x10 + SIRFSOC_DMA_CH_YLEN);
225 writel_relaxed(readl_relaxed(base + SIRFSOC_DMA_INT_EN) |
226 (1 << cid), base + SIRFSOC_DMA_INT_EN);
227 writel(sdesc->addr >> 2, base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR);
228 if (sdesc->cyclic) {
229 writel((1 << cid) | 1 << (cid + 16) |
230 readl_relaxed(base + SIRFSOC_DMA_CH_LOOP_CTRL),
231 base + SIRFSOC_DMA_CH_LOOP_CTRL);
232 }
233
234 }
235
236 /* Execute all queued DMA descriptors */
237 static void sirfsoc_dma_execute(struct sirfsoc_dma_chan *schan)
238 {
239 struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
240 int cid = schan->chan.chan_id;
241 struct sirfsoc_dma_desc *sdesc = NULL;
242 void __iomem *base;
243
244 /*
245 * lock has been held by functions calling this, so we don't hold
246 * lock again
247 */
248 base = sdma->base;
249 sdesc = list_first_entry(&schan->queued, struct sirfsoc_dma_desc,
250 node);
251 /* Move the first queued descriptor to active list */
252 list_move_tail(&sdesc->node, &schan->active);
253
254 if (sdma->type == SIRFSOC_DMA_VER_A7V2)
255 cid = 0;
256
257 /* Start the DMA transfer */
258 sdma->exec_desc(sdesc, cid, schan->mode, base);
259
260 if (sdesc->cyclic)
261 schan->happened_cyclic = schan->completed_cyclic = 0;
262 }
263
264 /* Interrupt handler */
265 static irqreturn_t sirfsoc_dma_irq(int irq, void *data)
266 {
267 struct sirfsoc_dma *sdma = data;
268 struct sirfsoc_dma_chan *schan;
269 struct sirfsoc_dma_desc *sdesc = NULL;
270 u32 is;
271 bool chain;
272 int ch;
273 void __iomem *reg;
274
275 switch (sdma->type) {
276 case SIRFSOC_DMA_VER_A6:
277 case SIRFSOC_DMA_VER_A7V1:
278 is = readl(sdma->base + SIRFSOC_DMA_CH_INT);
279 reg = sdma->base + SIRFSOC_DMA_CH_INT;
280 while ((ch = fls(is) - 1) >= 0) {
281 is &= ~(1 << ch);
282 writel_relaxed(1 << ch, reg);
283 schan = &sdma->channels[ch];
284 spin_lock(&schan->lock);
285 sdesc = list_first_entry(&schan->active,
286 struct sirfsoc_dma_desc, node);
287 if (!sdesc->cyclic) {
288 /* Execute queued descriptors */
289 list_splice_tail_init(&schan->active,
290 &schan->completed);
291 dma_cookie_complete(&sdesc->desc);
292 if (!list_empty(&schan->queued))
293 sirfsoc_dma_execute(schan);
294 } else
295 schan->happened_cyclic++;
296 spin_unlock(&schan->lock);
297 }
298 break;
299
300 case SIRFSOC_DMA_VER_A7V2:
301 is = readl(sdma->base + SIRFSOC_DMA_INT_ATLAS7);
302
303 reg = sdma->base + SIRFSOC_DMA_INT_ATLAS7;
304 writel_relaxed(SIRFSOC_DMA_INT_ALL_ATLAS7, reg);
305 schan = &sdma->channels[0];
306 spin_lock(&schan->lock);
307 sdesc = list_first_entry(&schan->active,
308 struct sirfsoc_dma_desc, node);
309 if (!sdesc->cyclic) {
310 chain = sdesc->chain;
311 if ((chain && (is & SIRFSOC_DMA_INT_END_INT_ATLAS7)) ||
312 (!chain &&
313 (is & SIRFSOC_DMA_INT_FINI_INT_ATLAS7))) {
314 /* Execute queued descriptors */
315 list_splice_tail_init(&schan->active,
316 &schan->completed);
317 dma_cookie_complete(&sdesc->desc);
318 if (!list_empty(&schan->queued))
319 sirfsoc_dma_execute(schan);
320 }
321 } else if (sdesc->cyclic && (is &
322 SIRFSOC_DMA_INT_LOOP_INT_ATLAS7))
323 schan->happened_cyclic++;
324
325 spin_unlock(&schan->lock);
326 break;
327
328 default:
329 break;
330 }
331
332 /* Schedule tasklet */
333 tasklet_schedule(&sdma->tasklet);
334
335 return IRQ_HANDLED;
336 }
337
338 /* process completed descriptors */
339 static void sirfsoc_dma_process_completed(struct sirfsoc_dma *sdma)
340 {
341 dma_cookie_t last_cookie = 0;
342 struct sirfsoc_dma_chan *schan;
343 struct sirfsoc_dma_desc *sdesc;
344 struct dma_async_tx_descriptor *desc;
345 unsigned long flags;
346 unsigned long happened_cyclic;
347 LIST_HEAD(list);
348 int i;
349
350 for (i = 0; i < sdma->dma.chancnt; i++) {
351 schan = &sdma->channels[i];
352
353 /* Get all completed descriptors */
354 spin_lock_irqsave(&schan->lock, flags);
355 if (!list_empty(&schan->completed)) {
356 list_splice_tail_init(&schan->completed, &list);
357 spin_unlock_irqrestore(&schan->lock, flags);
358
359 /* Execute callbacks and run dependencies */
360 list_for_each_entry(sdesc, &list, node) {
361 desc = &sdesc->desc;
362
363 if (desc->callback)
364 desc->callback(desc->callback_param);
365
366 last_cookie = desc->cookie;
367 dma_run_dependencies(desc);
368 }
369
370 /* Free descriptors */
371 spin_lock_irqsave(&schan->lock, flags);
372 list_splice_tail_init(&list, &schan->free);
373 schan->chan.completed_cookie = last_cookie;
374 spin_unlock_irqrestore(&schan->lock, flags);
375 } else {
376 if (list_empty(&schan->active)) {
377 spin_unlock_irqrestore(&schan->lock, flags);
378 continue;
379 }
380
381 /* for cyclic channel, desc is always in active list */
382 sdesc = list_first_entry(&schan->active,
383 struct sirfsoc_dma_desc, node);
384
385 /* cyclic DMA */
386 happened_cyclic = schan->happened_cyclic;
387 spin_unlock_irqrestore(&schan->lock, flags);
388
389 desc = &sdesc->desc;
390 while (happened_cyclic != schan->completed_cyclic) {
391 if (desc->callback)
392 desc->callback(desc->callback_param);
393 schan->completed_cyclic++;
394 }
395 }
396 }
397 }
398
399 /* DMA Tasklet */
400 static void sirfsoc_dma_tasklet(unsigned long data)
401 {
402 struct sirfsoc_dma *sdma = (void *)data;
403
404 sirfsoc_dma_process_completed(sdma);
405 }
406
407 /* Submit descriptor to hardware */
408 static dma_cookie_t sirfsoc_dma_tx_submit(struct dma_async_tx_descriptor *txd)
409 {
410 struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(txd->chan);
411 struct sirfsoc_dma_desc *sdesc;
412 unsigned long flags;
413 dma_cookie_t cookie;
414
415 sdesc = container_of(txd, struct sirfsoc_dma_desc, desc);
416
417 spin_lock_irqsave(&schan->lock, flags);
418
419 /* Move descriptor to queue */
420 list_move_tail(&sdesc->node, &schan->queued);
421
422 cookie = dma_cookie_assign(txd);
423
424 spin_unlock_irqrestore(&schan->lock, flags);
425
426 return cookie;
427 }
428
429 static int sirfsoc_dma_slave_config(struct dma_chan *chan,
430 struct dma_slave_config *config)
431 {
432 struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
433 unsigned long flags;
434
435 if ((config->src_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES) ||
436 (config->dst_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES))
437 return -EINVAL;
438
439 spin_lock_irqsave(&schan->lock, flags);
440 schan->mode = (config->src_maxburst == 4 ? 1 : 0);
441 spin_unlock_irqrestore(&schan->lock, flags);
442
443 return 0;
444 }
445
446 static int sirfsoc_dma_terminate_all(struct dma_chan *chan)
447 {
448 struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
449 struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
450 int cid = schan->chan.chan_id;
451 unsigned long flags;
452
453 spin_lock_irqsave(&schan->lock, flags);
454
455 switch (sdma->type) {
456 case SIRFSOC_DMA_VER_A7V1:
457 writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_INT_EN_CLR);
458 writel_relaxed((1 << cid) | 1 << (cid + 16),
459 sdma->base +
460 SIRFSOC_DMA_CH_LOOP_CTRL_CLR_ATLAS7);
461 writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_VALID);
462 break;
463 case SIRFSOC_DMA_VER_A7V2:
464 writel_relaxed(0, sdma->base + SIRFSOC_DMA_INT_EN_ATLAS7);
465 writel_relaxed(0, sdma->base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
466 writel_relaxed(0, sdma->base + SIRFSOC_DMA_VALID_ATLAS7);
467 break;
468 case SIRFSOC_DMA_VER_A6:
469 writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_INT_EN) &
470 ~(1 << cid), sdma->base + SIRFSOC_DMA_INT_EN);
471 writel_relaxed(readl_relaxed(sdma->base +
472 SIRFSOC_DMA_CH_LOOP_CTRL) &
473 ~((1 << cid) | 1 << (cid + 16)),
474 sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
475 writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_VALID);
476 break;
477 default:
478 break;
479 }
480
481 list_splice_tail_init(&schan->active, &schan->free);
482 list_splice_tail_init(&schan->queued, &schan->free);
483
484 spin_unlock_irqrestore(&schan->lock, flags);
485
486 return 0;
487 }
488
489 static int sirfsoc_dma_pause_chan(struct dma_chan *chan)
490 {
491 struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
492 struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
493 int cid = schan->chan.chan_id;
494 unsigned long flags;
495
496 spin_lock_irqsave(&schan->lock, flags);
497
498 switch (sdma->type) {
499 case SIRFSOC_DMA_VER_A7V1:
500 writel_relaxed((1 << cid) | 1 << (cid + 16),
501 sdma->base +
502 SIRFSOC_DMA_CH_LOOP_CTRL_CLR_ATLAS7);
503 break;
504 case SIRFSOC_DMA_VER_A7V2:
505 writel_relaxed(0, sdma->base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
506 break;
507 case SIRFSOC_DMA_VER_A6:
508 writel_relaxed(readl_relaxed(sdma->base +
509 SIRFSOC_DMA_CH_LOOP_CTRL) &
510 ~((1 << cid) | 1 << (cid + 16)),
511 sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
512 break;
513
514 default:
515 break;
516 }
517
518 spin_unlock_irqrestore(&schan->lock, flags);
519
520 return 0;
521 }
522
523 static int sirfsoc_dma_resume_chan(struct dma_chan *chan)
524 {
525 struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
526 struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan);
527 int cid = schan->chan.chan_id;
528 unsigned long flags;
529
530 spin_lock_irqsave(&schan->lock, flags);
531 switch (sdma->type) {
532 case SIRFSOC_DMA_VER_A7V1:
533 writel_relaxed((1 << cid) | 1 << (cid + 16),
534 sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7);
535 break;
536 case SIRFSOC_DMA_VER_A7V2:
537 writel_relaxed(0x10001,
538 sdma->base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7);
539 break;
540 case SIRFSOC_DMA_VER_A6:
541 writel_relaxed(readl_relaxed(sdma->base +
542 SIRFSOC_DMA_CH_LOOP_CTRL) |
543 ((1 << cid) | 1 << (cid + 16)),
544 sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL);
545 break;
546
547 default:
548 break;
549 }
550
551 spin_unlock_irqrestore(&schan->lock, flags);
552
553 return 0;
554 }
555
556 /* Alloc channel resources */
557 static int sirfsoc_dma_alloc_chan_resources(struct dma_chan *chan)
558 {
559 struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
560 struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
561 struct sirfsoc_dma_desc *sdesc;
562 unsigned long flags;
563 LIST_HEAD(descs);
564 int i;
565
566 pm_runtime_get_sync(sdma->dma.dev);
567
568 /* Alloc descriptors for this channel */
569 for (i = 0; i < SIRFSOC_DMA_DESCRIPTORS; i++) {
570 sdesc = kzalloc(sizeof(*sdesc), GFP_KERNEL);
571 if (!sdesc) {
572 dev_notice(sdma->dma.dev, "Memory allocation error. "
573 "Allocated only %u descriptors\n", i);
574 break;
575 }
576
577 dma_async_tx_descriptor_init(&sdesc->desc, chan);
578 sdesc->desc.flags = DMA_CTRL_ACK;
579 sdesc->desc.tx_submit = sirfsoc_dma_tx_submit;
580
581 list_add_tail(&sdesc->node, &descs);
582 }
583
584 /* Return error only if no descriptors were allocated */
585 if (i == 0)
586 return -ENOMEM;
587
588 spin_lock_irqsave(&schan->lock, flags);
589
590 list_splice_tail_init(&descs, &schan->free);
591 spin_unlock_irqrestore(&schan->lock, flags);
592
593 return i;
594 }
595
596 /* Free channel resources */
597 static void sirfsoc_dma_free_chan_resources(struct dma_chan *chan)
598 {
599 struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
600 struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
601 struct sirfsoc_dma_desc *sdesc, *tmp;
602 unsigned long flags;
603 LIST_HEAD(descs);
604
605 spin_lock_irqsave(&schan->lock, flags);
606
607 /* Channel must be idle */
608 BUG_ON(!list_empty(&schan->prepared));
609 BUG_ON(!list_empty(&schan->queued));
610 BUG_ON(!list_empty(&schan->active));
611 BUG_ON(!list_empty(&schan->completed));
612
613 /* Move data */
614 list_splice_tail_init(&schan->free, &descs);
615
616 spin_unlock_irqrestore(&schan->lock, flags);
617
618 /* Free descriptors */
619 list_for_each_entry_safe(sdesc, tmp, &descs, node)
620 kfree(sdesc);
621
622 pm_runtime_put(sdma->dma.dev);
623 }
624
625 /* Send pending descriptor to hardware */
626 static void sirfsoc_dma_issue_pending(struct dma_chan *chan)
627 {
628 struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
629 unsigned long flags;
630
631 spin_lock_irqsave(&schan->lock, flags);
632
633 if (list_empty(&schan->active) && !list_empty(&schan->queued))
634 sirfsoc_dma_execute(schan);
635
636 spin_unlock_irqrestore(&schan->lock, flags);
637 }
638
639 /* Check request completion status */
640 static enum dma_status
641 sirfsoc_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
642 struct dma_tx_state *txstate)
643 {
644 struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
645 struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
646 unsigned long flags;
647 enum dma_status ret;
648 struct sirfsoc_dma_desc *sdesc;
649 int cid = schan->chan.chan_id;
650 unsigned long dma_pos;
651 unsigned long dma_request_bytes;
652 unsigned long residue;
653
654 spin_lock_irqsave(&schan->lock, flags);
655
656 if (list_empty(&schan->active)) {
657 ret = dma_cookie_status(chan, cookie, txstate);
658 dma_set_residue(txstate, 0);
659 spin_unlock_irqrestore(&schan->lock, flags);
660 return ret;
661 }
662 sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc, node);
663 if (sdesc->cyclic)
664 dma_request_bytes = (sdesc->xlen + 1) * (sdesc->ylen + 1) *
665 (sdesc->width * SIRFSOC_DMA_WORD_LEN);
666 else
667 dma_request_bytes = sdesc->xlen * SIRFSOC_DMA_WORD_LEN;
668
669 ret = dma_cookie_status(chan, cookie, txstate);
670
671 if (sdma->type == SIRFSOC_DMA_VER_A7V2)
672 cid = 0;
673
674 if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
675 dma_pos = readl_relaxed(sdma->base + SIRFSOC_DMA_CUR_DATA_ADDR);
676 } else {
677 dma_pos = readl_relaxed(
678 sdma->base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR) << 2;
679 }
680
681 residue = dma_request_bytes - (dma_pos - sdesc->addr);
682 dma_set_residue(txstate, residue);
683
684 spin_unlock_irqrestore(&schan->lock, flags);
685
686 return ret;
687 }
688
689 static struct dma_async_tx_descriptor *sirfsoc_dma_prep_interleaved(
690 struct dma_chan *chan, struct dma_interleaved_template *xt,
691 unsigned long flags)
692 {
693 struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan);
694 struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
695 struct sirfsoc_dma_desc *sdesc = NULL;
696 unsigned long iflags;
697 int ret;
698
699 if ((xt->dir != DMA_MEM_TO_DEV) && (xt->dir != DMA_DEV_TO_MEM)) {
700 ret = -EINVAL;
701 goto err_dir;
702 }
703
704 /* Get free descriptor */
705 spin_lock_irqsave(&schan->lock, iflags);
706 if (!list_empty(&schan->free)) {
707 sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc,
708 node);
709 list_del(&sdesc->node);
710 }
711 spin_unlock_irqrestore(&schan->lock, iflags);
712
713 if (!sdesc) {
714 /* try to free completed descriptors */
715 sirfsoc_dma_process_completed(sdma);
716 ret = 0;
717 goto no_desc;
718 }
719
720 /* Place descriptor in prepared list */
721 spin_lock_irqsave(&schan->lock, iflags);
722
723 /*
724 * Number of chunks in a frame can only be 1 for prima2
725 * and ylen (number of frame - 1) must be at least 0
726 */
727 if ((xt->frame_size == 1) && (xt->numf > 0)) {
728 sdesc->cyclic = 0;
729 sdesc->xlen = xt->sgl[0].size / SIRFSOC_DMA_WORD_LEN;
730 sdesc->width = (xt->sgl[0].size + xt->sgl[0].icg) /
731 SIRFSOC_DMA_WORD_LEN;
732 sdesc->ylen = xt->numf - 1;
733 if (xt->dir == DMA_MEM_TO_DEV) {
734 sdesc->addr = xt->src_start;
735 sdesc->dir = 1;
736 } else {
737 sdesc->addr = xt->dst_start;
738 sdesc->dir = 0;
739 }
740
741 list_add_tail(&sdesc->node, &schan->prepared);
742 } else {
743 pr_err("sirfsoc DMA Invalid xfer\n");
744 ret = -EINVAL;
745 goto err_xfer;
746 }
747 spin_unlock_irqrestore(&schan->lock, iflags);
748
749 return &sdesc->desc;
750 err_xfer:
751 spin_unlock_irqrestore(&schan->lock, iflags);
752 no_desc:
753 err_dir:
754 return ERR_PTR(ret);
755 }
756
757 static struct dma_async_tx_descriptor *
758 sirfsoc_dma_prep_cyclic(struct dma_chan *chan, dma_addr_t addr,
759 size_t buf_len, size_t period_len,
760 enum dma_transfer_direction direction, unsigned long flags)
761 {
762 struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan);
763 struct sirfsoc_dma_desc *sdesc = NULL;
764 unsigned long iflags;
765
766 /*
767 * we only support cycle transfer with 2 period
768 * If the X-length is set to 0, it would be the loop mode.
769 * The DMA address keeps increasing until reaching the end of a loop
770 * area whose size is defined by (DMA_WIDTH x (Y_LENGTH + 1)). Then
771 * the DMA address goes back to the beginning of this area.
772 * In loop mode, the DMA data region is divided into two parts, BUFA
773 * and BUFB. DMA controller generates interrupts twice in each loop:
774 * when the DMA address reaches the end of BUFA or the end of the
775 * BUFB
776 */
777 if (buf_len != 2 * period_len)
778 return ERR_PTR(-EINVAL);
779
780 /* Get free descriptor */
781 spin_lock_irqsave(&schan->lock, iflags);
782 if (!list_empty(&schan->free)) {
783 sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc,
784 node);
785 list_del(&sdesc->node);
786 }
787 spin_unlock_irqrestore(&schan->lock, iflags);
788
789 if (!sdesc)
790 return NULL;
791
792 /* Place descriptor in prepared list */
793 spin_lock_irqsave(&schan->lock, iflags);
794 sdesc->addr = addr;
795 sdesc->cyclic = 1;
796 sdesc->xlen = 0;
797 sdesc->ylen = buf_len / SIRFSOC_DMA_WORD_LEN - 1;
798 sdesc->width = 1;
799 list_add_tail(&sdesc->node, &schan->prepared);
800 spin_unlock_irqrestore(&schan->lock, iflags);
801
802 return &sdesc->desc;
803 }
804
805 /*
806 * The DMA controller consists of 16 independent DMA channels.
807 * Each channel is allocated to a different function
808 */
809 bool sirfsoc_dma_filter_id(struct dma_chan *chan, void *chan_id)
810 {
811 unsigned int ch_nr = (unsigned int) chan_id;
812
813 if (ch_nr == chan->chan_id +
814 chan->device->dev_id * SIRFSOC_DMA_CHANNELS)
815 return true;
816
817 return false;
818 }
819 EXPORT_SYMBOL(sirfsoc_dma_filter_id);
820
821 #define SIRFSOC_DMA_BUSWIDTHS \
822 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
823 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
824 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
825 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
826 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
827
828 static struct dma_chan *of_dma_sirfsoc_xlate(struct of_phandle_args *dma_spec,
829 struct of_dma *ofdma)
830 {
831 struct sirfsoc_dma *sdma = ofdma->of_dma_data;
832 unsigned int request = dma_spec->args[0];
833
834 if (request >= SIRFSOC_DMA_CHANNELS)
835 return NULL;
836
837 return dma_get_slave_channel(&sdma->channels[request].chan);
838 }
839
840 static int sirfsoc_dma_probe(struct platform_device *op)
841 {
842 struct device_node *dn = op->dev.of_node;
843 struct device *dev = &op->dev;
844 struct dma_device *dma;
845 struct sirfsoc_dma *sdma;
846 struct sirfsoc_dma_chan *schan;
847 struct sirfsoc_dmadata *data;
848 struct resource res;
849 ulong regs_start, regs_size;
850 u32 id;
851 int ret, i;
852
853 sdma = devm_kzalloc(dev, sizeof(*sdma), GFP_KERNEL);
854 if (!sdma) {
855 dev_err(dev, "Memory exhausted!\n");
856 return -ENOMEM;
857 }
858 data = (struct sirfsoc_dmadata *)
859 (of_match_device(op->dev.driver->of_match_table,
860 &op->dev)->data);
861 sdma->exec_desc = data->exec;
862 sdma->type = data->type;
863
864 if (of_property_read_u32(dn, "cell-index", &id)) {
865 dev_err(dev, "Fail to get DMAC index\n");
866 return -ENODEV;
867 }
868
869 sdma->irq = irq_of_parse_and_map(dn, 0);
870 if (sdma->irq == NO_IRQ) {
871 dev_err(dev, "Error mapping IRQ!\n");
872 return -EINVAL;
873 }
874
875 sdma->clk = devm_clk_get(dev, NULL);
876 if (IS_ERR(sdma->clk)) {
877 dev_err(dev, "failed to get a clock.\n");
878 return PTR_ERR(sdma->clk);
879 }
880
881 ret = of_address_to_resource(dn, 0, &res);
882 if (ret) {
883 dev_err(dev, "Error parsing memory region!\n");
884 goto irq_dispose;
885 }
886
887 regs_start = res.start;
888 regs_size = resource_size(&res);
889
890 sdma->base = devm_ioremap(dev, regs_start, regs_size);
891 if (!sdma->base) {
892 dev_err(dev, "Error mapping memory region!\n");
893 ret = -ENOMEM;
894 goto irq_dispose;
895 }
896
897 ret = request_irq(sdma->irq, &sirfsoc_dma_irq, 0, DRV_NAME, sdma);
898 if (ret) {
899 dev_err(dev, "Error requesting IRQ!\n");
900 ret = -EINVAL;
901 goto irq_dispose;
902 }
903
904 dma = &sdma->dma;
905 dma->dev = dev;
906
907 dma->device_alloc_chan_resources = sirfsoc_dma_alloc_chan_resources;
908 dma->device_free_chan_resources = sirfsoc_dma_free_chan_resources;
909 dma->device_issue_pending = sirfsoc_dma_issue_pending;
910 dma->device_config = sirfsoc_dma_slave_config;
911 dma->device_pause = sirfsoc_dma_pause_chan;
912 dma->device_resume = sirfsoc_dma_resume_chan;
913 dma->device_terminate_all = sirfsoc_dma_terminate_all;
914 dma->device_tx_status = sirfsoc_dma_tx_status;
915 dma->device_prep_interleaved_dma = sirfsoc_dma_prep_interleaved;
916 dma->device_prep_dma_cyclic = sirfsoc_dma_prep_cyclic;
917 dma->src_addr_widths = SIRFSOC_DMA_BUSWIDTHS;
918 dma->dst_addr_widths = SIRFSOC_DMA_BUSWIDTHS;
919 dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
920
921 INIT_LIST_HEAD(&dma->channels);
922 dma_cap_set(DMA_SLAVE, dma->cap_mask);
923 dma_cap_set(DMA_CYCLIC, dma->cap_mask);
924 dma_cap_set(DMA_INTERLEAVE, dma->cap_mask);
925 dma_cap_set(DMA_PRIVATE, dma->cap_mask);
926
927 for (i = 0; i < SIRFSOC_DMA_CHANNELS; i++) {
928 schan = &sdma->channels[i];
929
930 schan->chan.device = dma;
931 dma_cookie_init(&schan->chan);
932
933 INIT_LIST_HEAD(&schan->free);
934 INIT_LIST_HEAD(&schan->prepared);
935 INIT_LIST_HEAD(&schan->queued);
936 INIT_LIST_HEAD(&schan->active);
937 INIT_LIST_HEAD(&schan->completed);
938
939 spin_lock_init(&schan->lock);
940 list_add_tail(&schan->chan.device_node, &dma->channels);
941 }
942
943 tasklet_init(&sdma->tasklet, sirfsoc_dma_tasklet, (unsigned long)sdma);
944
945 /* Register DMA engine */
946 dev_set_drvdata(dev, sdma);
947
948 ret = dma_async_device_register(dma);
949 if (ret)
950 goto free_irq;
951
952 /* Device-tree DMA controller registration */
953 ret = of_dma_controller_register(dn, of_dma_sirfsoc_xlate, sdma);
954 if (ret) {
955 dev_err(dev, "failed to register DMA controller\n");
956 goto unreg_dma_dev;
957 }
958
959 pm_runtime_enable(&op->dev);
960 dev_info(dev, "initialized SIRFSOC DMAC driver\n");
961
962 return 0;
963
964 unreg_dma_dev:
965 dma_async_device_unregister(dma);
966 free_irq:
967 free_irq(sdma->irq, sdma);
968 irq_dispose:
969 irq_dispose_mapping(sdma->irq);
970 return ret;
971 }
972
973 static int sirfsoc_dma_remove(struct platform_device *op)
974 {
975 struct device *dev = &op->dev;
976 struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
977
978 of_dma_controller_free(op->dev.of_node);
979 dma_async_device_unregister(&sdma->dma);
980 free_irq(sdma->irq, sdma);
981 irq_dispose_mapping(sdma->irq);
982 pm_runtime_disable(&op->dev);
983 if (!pm_runtime_status_suspended(&op->dev))
984 sirfsoc_dma_runtime_suspend(&op->dev);
985
986 return 0;
987 }
988
989 static int sirfsoc_dma_runtime_suspend(struct device *dev)
990 {
991 struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
992
993 clk_disable_unprepare(sdma->clk);
994 return 0;
995 }
996
997 static int sirfsoc_dma_runtime_resume(struct device *dev)
998 {
999 struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
1000 int ret;
1001
1002 ret = clk_prepare_enable(sdma->clk);
1003 if (ret < 0) {
1004 dev_err(dev, "clk_enable failed: %d\n", ret);
1005 return ret;
1006 }
1007 return 0;
1008 }
1009
1010 #ifdef CONFIG_PM_SLEEP
1011 static int sirfsoc_dma_pm_suspend(struct device *dev)
1012 {
1013 struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
1014 struct sirfsoc_dma_regs *save = &sdma->regs_save;
1015 struct sirfsoc_dma_desc *sdesc;
1016 struct sirfsoc_dma_chan *schan;
1017 int ch;
1018 int ret;
1019 int count;
1020 u32 int_offset;
1021
1022 /*
1023 * if we were runtime-suspended before, resume to enable clock
1024 * before accessing register
1025 */
1026 if (pm_runtime_status_suspended(dev)) {
1027 ret = sirfsoc_dma_runtime_resume(dev);
1028 if (ret < 0)
1029 return ret;
1030 }
1031
1032 if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
1033 count = 1;
1034 int_offset = SIRFSOC_DMA_INT_EN_ATLAS7;
1035 } else {
1036 count = SIRFSOC_DMA_CHANNELS;
1037 int_offset = SIRFSOC_DMA_INT_EN;
1038 }
1039
1040 /*
1041 * DMA controller will lose all registers while suspending
1042 * so we need to save registers for active channels
1043 */
1044 for (ch = 0; ch < count; ch++) {
1045 schan = &sdma->channels[ch];
1046 if (list_empty(&schan->active))
1047 continue;
1048 sdesc = list_first_entry(&schan->active,
1049 struct sirfsoc_dma_desc,
1050 node);
1051 save->ctrl[ch] = readl_relaxed(sdma->base +
1052 ch * 0x10 + SIRFSOC_DMA_CH_CTRL);
1053 }
1054 save->interrupt_en = readl_relaxed(sdma->base + int_offset);
1055
1056 /* Disable clock */
1057 sirfsoc_dma_runtime_suspend(dev);
1058
1059 return 0;
1060 }
1061
1062 static int sirfsoc_dma_pm_resume(struct device *dev)
1063 {
1064 struct sirfsoc_dma *sdma = dev_get_drvdata(dev);
1065 struct sirfsoc_dma_regs *save = &sdma->regs_save;
1066 struct sirfsoc_dma_desc *sdesc;
1067 struct sirfsoc_dma_chan *schan;
1068 int ch;
1069 int ret;
1070 int count;
1071 u32 int_offset;
1072 u32 width_offset;
1073
1074 /* Enable clock before accessing register */
1075 ret = sirfsoc_dma_runtime_resume(dev);
1076 if (ret < 0)
1077 return ret;
1078
1079 if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
1080 count = 1;
1081 int_offset = SIRFSOC_DMA_INT_EN_ATLAS7;
1082 width_offset = SIRFSOC_DMA_WIDTH_ATLAS7;
1083 } else {
1084 count = SIRFSOC_DMA_CHANNELS;
1085 int_offset = SIRFSOC_DMA_INT_EN;
1086 width_offset = SIRFSOC_DMA_WIDTH_0;
1087 }
1088
1089 writel_relaxed(save->interrupt_en, sdma->base + int_offset);
1090 for (ch = 0; ch < count; ch++) {
1091 schan = &sdma->channels[ch];
1092 if (list_empty(&schan->active))
1093 continue;
1094 sdesc = list_first_entry(&schan->active,
1095 struct sirfsoc_dma_desc,
1096 node);
1097 writel_relaxed(sdesc->width,
1098 sdma->base + width_offset + ch * 4);
1099 writel_relaxed(sdesc->xlen,
1100 sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_XLEN);
1101 writel_relaxed(sdesc->ylen,
1102 sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_YLEN);
1103 writel_relaxed(save->ctrl[ch],
1104 sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_CTRL);
1105 if (sdma->type == SIRFSOC_DMA_VER_A7V2) {
1106 writel_relaxed(sdesc->addr,
1107 sdma->base + SIRFSOC_DMA_CH_ADDR);
1108 } else {
1109 writel_relaxed(sdesc->addr >> 2,
1110 sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_ADDR);
1111
1112 }
1113 }
1114
1115 /* if we were runtime-suspended before, suspend again */
1116 if (pm_runtime_status_suspended(dev))
1117 sirfsoc_dma_runtime_suspend(dev);
1118
1119 return 0;
1120 }
1121 #endif
1122
1123 static const struct dev_pm_ops sirfsoc_dma_pm_ops = {
1124 SET_RUNTIME_PM_OPS(sirfsoc_dma_runtime_suspend, sirfsoc_dma_runtime_resume, NULL)
1125 SET_SYSTEM_SLEEP_PM_OPS(sirfsoc_dma_pm_suspend, sirfsoc_dma_pm_resume)
1126 };
1127
1128 struct sirfsoc_dmadata sirfsoc_dmadata_a6 = {
1129 .exec = sirfsoc_dma_execute_hw_a6,
1130 .type = SIRFSOC_DMA_VER_A6,
1131 };
1132
1133 struct sirfsoc_dmadata sirfsoc_dmadata_a7v1 = {
1134 .exec = sirfsoc_dma_execute_hw_a7v1,
1135 .type = SIRFSOC_DMA_VER_A7V1,
1136 };
1137
1138 struct sirfsoc_dmadata sirfsoc_dmadata_a7v2 = {
1139 .exec = sirfsoc_dma_execute_hw_a7v2,
1140 .type = SIRFSOC_DMA_VER_A7V2,
1141 };
1142
1143 static const struct of_device_id sirfsoc_dma_match[] = {
1144 { .compatible = "sirf,prima2-dmac", .data = &sirfsoc_dmadata_a6,},
1145 { .compatible = "sirf,atlas7-dmac", .data = &sirfsoc_dmadata_a7v1,},
1146 { .compatible = "sirf,atlas7-dmac-v2", .data = &sirfsoc_dmadata_a7v2,},
1147 {},
1148 };
1149
1150 static struct platform_driver sirfsoc_dma_driver = {
1151 .probe = sirfsoc_dma_probe,
1152 .remove = sirfsoc_dma_remove,
1153 .driver = {
1154 .name = DRV_NAME,
1155 .pm = &sirfsoc_dma_pm_ops,
1156 .of_match_table = sirfsoc_dma_match,
1157 },
1158 };
1159
1160 static __init int sirfsoc_dma_init(void)
1161 {
1162 return platform_driver_register(&sirfsoc_dma_driver);
1163 }
1164
1165 static void __exit sirfsoc_dma_exit(void)
1166 {
1167 platform_driver_unregister(&sirfsoc_dma_driver);
1168 }
1169
1170 subsys_initcall(sirfsoc_dma_init);
1171 module_exit(sirfsoc_dma_exit);
1172
1173 MODULE_AUTHOR("Rongjun Ying <rongjun.ying@csr.com>");
1174 MODULE_AUTHOR("Barry Song <baohua.song@csr.com>");
1175 MODULE_DESCRIPTION("SIRFSOC DMA control driver");
1176 MODULE_LICENSE("GPL v2");
This page took 0.07397 seconds and 5 git commands to generate.