dma40: fix DMA API usage for LCLA
[deliverable/linux.git] / drivers / dma / ste_dma40.c
1 /*
2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/dmaengine.h>
12 #include <linux/platform_device.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16
17 #include <plat/ste_dma40.h>
18
19 #include "ste_dma40_ll.h"
20
21 #define D40_NAME "dma40"
22
23 #define D40_PHY_CHAN -1
24
25 /* For masking out/in 2 bit channel positions */
26 #define D40_CHAN_POS(chan) (2 * (chan / 2))
27 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
28
29 /* Maximum iterations taken before giving up suspending a channel */
30 #define D40_SUSPEND_MAX_IT 500
31
32 /* Hardware requirement on LCLA alignment */
33 #define LCLA_ALIGNMENT 0x40000
34
35 /* Max number of links per event group */
36 #define D40_LCLA_LINK_PER_EVENT_GRP 128
37 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
38
39 /* Attempts before giving up to trying to get pages that are aligned */
40 #define MAX_LCLA_ALLOC_ATTEMPTS 256
41
42 /* Bit markings for allocation map */
43 #define D40_ALLOC_FREE (1 << 31)
44 #define D40_ALLOC_PHY (1 << 30)
45 #define D40_ALLOC_LOG_FREE 0
46
47 /* Hardware designer of the block */
48 #define D40_HW_DESIGNER 0x8
49
50 /**
51 * enum 40_command - The different commands and/or statuses.
52 *
53 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
54 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
55 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
56 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
57 */
58 enum d40_command {
59 D40_DMA_STOP = 0,
60 D40_DMA_RUN = 1,
61 D40_DMA_SUSPEND_REQ = 2,
62 D40_DMA_SUSPENDED = 3
63 };
64
65 /**
66 * struct d40_lli_pool - Structure for keeping LLIs in memory
67 *
68 * @base: Pointer to memory area when the pre_alloc_lli's are not large
69 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
70 * pre_alloc_lli is used.
71 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
72 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
73 * one buffer to one buffer.
74 */
75 struct d40_lli_pool {
76 void *base;
77 int size;
78 /* Space for dst and src, plus an extra for padding */
79 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
80 };
81
82 /**
83 * struct d40_desc - A descriptor is one DMA job.
84 *
85 * @lli_phy: LLI settings for physical channel. Both src and dst=
86 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
87 * lli_len equals one.
88 * @lli_log: Same as above but for logical channels.
89 * @lli_pool: The pool with two entries pre-allocated.
90 * @lli_len: Number of llis of current descriptor.
91 * @lli_current: Number of transfered llis.
92 * @lcla_alloc: Number of LCLA entries allocated.
93 * @txd: DMA engine struct. Used for among other things for communication
94 * during a transfer.
95 * @node: List entry.
96 * @is_in_client_list: true if the client owns this descriptor.
97 * the previous one.
98 *
99 * This descriptor is used for both logical and physical transfers.
100 */
101 struct d40_desc {
102 /* LLI physical */
103 struct d40_phy_lli_bidir lli_phy;
104 /* LLI logical */
105 struct d40_log_lli_bidir lli_log;
106
107 struct d40_lli_pool lli_pool;
108 int lli_len;
109 int lli_current;
110 int lcla_alloc;
111
112 struct dma_async_tx_descriptor txd;
113 struct list_head node;
114
115 bool is_in_client_list;
116 };
117
118 /**
119 * struct d40_lcla_pool - LCLA pool settings and data.
120 *
121 * @base: The virtual address of LCLA. 18 bit aligned.
122 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
123 * This pointer is only there for clean-up on error.
124 * @pages: The number of pages needed for all physical channels.
125 * Only used later for clean-up on error
126 * @lock: Lock to protect the content in this struct.
127 * @alloc_map: big map over which LCLA entry is own by which job.
128 */
129 struct d40_lcla_pool {
130 void *base;
131 dma_addr_t dma_addr;
132 void *base_unaligned;
133 int pages;
134 spinlock_t lock;
135 struct d40_desc **alloc_map;
136 };
137
138 /**
139 * struct d40_phy_res - struct for handling eventlines mapped to physical
140 * channels.
141 *
142 * @lock: A lock protection this entity.
143 * @num: The physical channel number of this entity.
144 * @allocated_src: Bit mapped to show which src event line's are mapped to
145 * this physical channel. Can also be free or physically allocated.
146 * @allocated_dst: Same as for src but is dst.
147 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
148 * event line number.
149 */
150 struct d40_phy_res {
151 spinlock_t lock;
152 int num;
153 u32 allocated_src;
154 u32 allocated_dst;
155 };
156
157 struct d40_base;
158
159 /**
160 * struct d40_chan - Struct that describes a channel.
161 *
162 * @lock: A spinlock to protect this struct.
163 * @log_num: The logical number, if any of this channel.
164 * @completed: Starts with 1, after first interrupt it is set to dma engine's
165 * current cookie.
166 * @pending_tx: The number of pending transfers. Used between interrupt handler
167 * and tasklet.
168 * @busy: Set to true when transfer is ongoing on this channel.
169 * @phy_chan: Pointer to physical channel which this instance runs on. If this
170 * point is NULL, then the channel is not allocated.
171 * @chan: DMA engine handle.
172 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
173 * transfer and call client callback.
174 * @client: Cliented owned descriptor list.
175 * @active: Active descriptor.
176 * @queue: Queued jobs.
177 * @dma_cfg: The client configuration of this dma channel.
178 * @configured: whether the dma_cfg configuration is valid
179 * @base: Pointer to the device instance struct.
180 * @src_def_cfg: Default cfg register setting for src.
181 * @dst_def_cfg: Default cfg register setting for dst.
182 * @log_def: Default logical channel settings.
183 * @lcla: Space for one dst src pair for logical channel transfers.
184 * @lcpa: Pointer to dst and src lcpa settings.
185 *
186 * This struct can either "be" a logical or a physical channel.
187 */
188 struct d40_chan {
189 spinlock_t lock;
190 int log_num;
191 /* ID of the most recent completed transfer */
192 int completed;
193 int pending_tx;
194 bool busy;
195 struct d40_phy_res *phy_chan;
196 struct dma_chan chan;
197 struct tasklet_struct tasklet;
198 struct list_head client;
199 struct list_head active;
200 struct list_head queue;
201 struct stedma40_chan_cfg dma_cfg;
202 bool configured;
203 struct d40_base *base;
204 /* Default register configurations */
205 u32 src_def_cfg;
206 u32 dst_def_cfg;
207 struct d40_def_lcsp log_def;
208 struct d40_log_lli_full *lcpa;
209 /* Runtime reconfiguration */
210 dma_addr_t runtime_addr;
211 enum dma_data_direction runtime_direction;
212 };
213
214 /**
215 * struct d40_base - The big global struct, one for each probe'd instance.
216 *
217 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
218 * @execmd_lock: Lock for execute command usage since several channels share
219 * the same physical register.
220 * @dev: The device structure.
221 * @virtbase: The virtual base address of the DMA's register.
222 * @rev: silicon revision detected.
223 * @clk: Pointer to the DMA clock structure.
224 * @phy_start: Physical memory start of the DMA registers.
225 * @phy_size: Size of the DMA register map.
226 * @irq: The IRQ number.
227 * @num_phy_chans: The number of physical channels. Read from HW. This
228 * is the number of available channels for this driver, not counting "Secure
229 * mode" allocated physical channels.
230 * @num_log_chans: The number of logical channels. Calculated from
231 * num_phy_chans.
232 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
233 * @dma_slave: dma_device channels that can do only do slave transfers.
234 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
235 * @log_chans: Room for all possible logical channels in system.
236 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
237 * to log_chans entries.
238 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
239 * to phy_chans entries.
240 * @plat_data: Pointer to provided platform_data which is the driver
241 * configuration.
242 * @phy_res: Vector containing all physical channels.
243 * @lcla_pool: lcla pool settings and data.
244 * @lcpa_base: The virtual mapped address of LCPA.
245 * @phy_lcpa: The physical address of the LCPA.
246 * @lcpa_size: The size of the LCPA area.
247 * @desc_slab: cache for descriptors.
248 */
249 struct d40_base {
250 spinlock_t interrupt_lock;
251 spinlock_t execmd_lock;
252 struct device *dev;
253 void __iomem *virtbase;
254 u8 rev:4;
255 struct clk *clk;
256 phys_addr_t phy_start;
257 resource_size_t phy_size;
258 int irq;
259 int num_phy_chans;
260 int num_log_chans;
261 struct dma_device dma_both;
262 struct dma_device dma_slave;
263 struct dma_device dma_memcpy;
264 struct d40_chan *phy_chans;
265 struct d40_chan *log_chans;
266 struct d40_chan **lookup_log_chans;
267 struct d40_chan **lookup_phy_chans;
268 struct stedma40_platform_data *plat_data;
269 /* Physical half channels */
270 struct d40_phy_res *phy_res;
271 struct d40_lcla_pool lcla_pool;
272 void *lcpa_base;
273 dma_addr_t phy_lcpa;
274 resource_size_t lcpa_size;
275 struct kmem_cache *desc_slab;
276 };
277
278 /**
279 * struct d40_interrupt_lookup - lookup table for interrupt handler
280 *
281 * @src: Interrupt mask register.
282 * @clr: Interrupt clear register.
283 * @is_error: true if this is an error interrupt.
284 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
285 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
286 */
287 struct d40_interrupt_lookup {
288 u32 src;
289 u32 clr;
290 bool is_error;
291 int offset;
292 };
293
294 /**
295 * struct d40_reg_val - simple lookup struct
296 *
297 * @reg: The register.
298 * @val: The value that belongs to the register in reg.
299 */
300 struct d40_reg_val {
301 unsigned int reg;
302 unsigned int val;
303 };
304
305 static struct device *chan2dev(struct d40_chan *d40c)
306 {
307 return &d40c->chan.dev->device;
308 }
309
310 static bool chan_is_physical(struct d40_chan *chan)
311 {
312 return chan->log_num == D40_PHY_CHAN;
313 }
314
315 static bool chan_is_logical(struct d40_chan *chan)
316 {
317 return !chan_is_physical(chan);
318 }
319
320 static void __iomem *chan_base(struct d40_chan *chan)
321 {
322 return chan->base->virtbase + D40_DREG_PCBASE +
323 chan->phy_chan->num * D40_DREG_PCDELTA;
324 }
325
326 #define d40_err(dev, format, arg...) \
327 dev_err(dev, "[%s] " format, __func__, ## arg)
328
329 #define chan_err(d40c, format, arg...) \
330 d40_err(chan2dev(d40c), format, ## arg)
331
332 static int d40_pool_lli_alloc(struct d40_desc *d40d,
333 int lli_len, bool is_log)
334 {
335 u32 align;
336 void *base;
337
338 if (is_log)
339 align = sizeof(struct d40_log_lli);
340 else
341 align = sizeof(struct d40_phy_lli);
342
343 if (lli_len == 1) {
344 base = d40d->lli_pool.pre_alloc_lli;
345 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
346 d40d->lli_pool.base = NULL;
347 } else {
348 d40d->lli_pool.size = lli_len * 2 * align;
349
350 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
351 d40d->lli_pool.base = base;
352
353 if (d40d->lli_pool.base == NULL)
354 return -ENOMEM;
355 }
356
357 if (is_log) {
358 d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
359 align);
360 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
361 } else {
362 d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
363 align);
364 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
365 }
366
367 return 0;
368 }
369
370 static void d40_pool_lli_free(struct d40_desc *d40d)
371 {
372 kfree(d40d->lli_pool.base);
373 d40d->lli_pool.base = NULL;
374 d40d->lli_pool.size = 0;
375 d40d->lli_log.src = NULL;
376 d40d->lli_log.dst = NULL;
377 d40d->lli_phy.src = NULL;
378 d40d->lli_phy.dst = NULL;
379 }
380
381 static int d40_lcla_alloc_one(struct d40_chan *d40c,
382 struct d40_desc *d40d)
383 {
384 unsigned long flags;
385 int i;
386 int ret = -EINVAL;
387 int p;
388
389 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
390
391 p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
392
393 /*
394 * Allocate both src and dst at the same time, therefore the half
395 * start on 1 since 0 can't be used since zero is used as end marker.
396 */
397 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
398 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
399 d40c->base->lcla_pool.alloc_map[p + i] = d40d;
400 d40d->lcla_alloc++;
401 ret = i;
402 break;
403 }
404 }
405
406 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
407
408 return ret;
409 }
410
411 static int d40_lcla_free_all(struct d40_chan *d40c,
412 struct d40_desc *d40d)
413 {
414 unsigned long flags;
415 int i;
416 int ret = -EINVAL;
417
418 if (chan_is_physical(d40c))
419 return 0;
420
421 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
422
423 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
424 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
425 D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
426 d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
427 D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
428 d40d->lcla_alloc--;
429 if (d40d->lcla_alloc == 0) {
430 ret = 0;
431 break;
432 }
433 }
434 }
435
436 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
437
438 return ret;
439
440 }
441
442 static void d40_desc_remove(struct d40_desc *d40d)
443 {
444 list_del(&d40d->node);
445 }
446
447 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
448 {
449 struct d40_desc *desc = NULL;
450
451 if (!list_empty(&d40c->client)) {
452 struct d40_desc *d;
453 struct d40_desc *_d;
454
455 list_for_each_entry_safe(d, _d, &d40c->client, node)
456 if (async_tx_test_ack(&d->txd)) {
457 d40_pool_lli_free(d);
458 d40_desc_remove(d);
459 desc = d;
460 memset(desc, 0, sizeof(*desc));
461 break;
462 }
463 }
464
465 if (!desc)
466 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
467
468 if (desc)
469 INIT_LIST_HEAD(&desc->node);
470
471 return desc;
472 }
473
474 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
475 {
476
477 d40_lcla_free_all(d40c, d40d);
478 kmem_cache_free(d40c->base->desc_slab, d40d);
479 }
480
481 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
482 {
483 list_add_tail(&desc->node, &d40c->active);
484 }
485
486 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
487 {
488 int curr_lcla = -EINVAL, next_lcla;
489
490 if (chan_is_physical(d40c)) {
491 d40_phy_lli_write(d40c->base->virtbase,
492 d40c->phy_chan->num,
493 d40d->lli_phy.dst,
494 d40d->lli_phy.src);
495 d40d->lli_current = d40d->lli_len;
496 } else {
497
498 if ((d40d->lli_len - d40d->lli_current) > 1)
499 curr_lcla = d40_lcla_alloc_one(d40c, d40d);
500
501 d40_log_lli_lcpa_write(d40c->lcpa,
502 &d40d->lli_log.dst[d40d->lli_current],
503 &d40d->lli_log.src[d40d->lli_current],
504 curr_lcla);
505
506 d40d->lli_current++;
507 for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
508 unsigned int lcla_offset = d40c->phy_chan->num * 1024 +
509 8 * curr_lcla * 2;
510 struct d40_lcla_pool *pool = &d40c->base->lcla_pool;
511 struct d40_log_lli *lcla = pool->base + lcla_offset;
512
513 if (d40d->lli_current + 1 < d40d->lli_len)
514 next_lcla = d40_lcla_alloc_one(d40c, d40d);
515 else
516 next_lcla = -EINVAL;
517
518 d40_log_lli_lcla_write(lcla,
519 &d40d->lli_log.dst[d40d->lli_current],
520 &d40d->lli_log.src[d40d->lli_current],
521 next_lcla);
522
523 dma_sync_single_range_for_device(d40c->base->dev,
524 pool->dma_addr, lcla_offset,
525 2 * sizeof(struct d40_log_lli),
526 DMA_TO_DEVICE);
527
528 curr_lcla = next_lcla;
529
530 if (curr_lcla == -EINVAL) {
531 d40d->lli_current++;
532 break;
533 }
534
535 }
536 }
537 }
538
539 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
540 {
541 struct d40_desc *d;
542
543 if (list_empty(&d40c->active))
544 return NULL;
545
546 d = list_first_entry(&d40c->active,
547 struct d40_desc,
548 node);
549 return d;
550 }
551
552 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
553 {
554 list_add_tail(&desc->node, &d40c->queue);
555 }
556
557 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
558 {
559 struct d40_desc *d;
560
561 if (list_empty(&d40c->queue))
562 return NULL;
563
564 d = list_first_entry(&d40c->queue,
565 struct d40_desc,
566 node);
567 return d;
568 }
569
570 static int d40_psize_2_burst_size(bool is_log, int psize)
571 {
572 if (is_log) {
573 if (psize == STEDMA40_PSIZE_LOG_1)
574 return 1;
575 } else {
576 if (psize == STEDMA40_PSIZE_PHY_1)
577 return 1;
578 }
579
580 return 2 << psize;
581 }
582
583 /*
584 * The dma only supports transmitting packages up to
585 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
586 * dma elements required to send the entire sg list
587 */
588 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
589 {
590 int dmalen;
591 u32 max_w = max(data_width1, data_width2);
592 u32 min_w = min(data_width1, data_width2);
593 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
594
595 if (seg_max > STEDMA40_MAX_SEG_SIZE)
596 seg_max -= (1 << max_w);
597
598 if (!IS_ALIGNED(size, 1 << max_w))
599 return -EINVAL;
600
601 if (size <= seg_max)
602 dmalen = 1;
603 else {
604 dmalen = size / seg_max;
605 if (dmalen * seg_max < size)
606 dmalen++;
607 }
608 return dmalen;
609 }
610
611 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
612 u32 data_width1, u32 data_width2)
613 {
614 struct scatterlist *sg;
615 int i;
616 int len = 0;
617 int ret;
618
619 for_each_sg(sgl, sg, sg_len, i) {
620 ret = d40_size_2_dmalen(sg_dma_len(sg),
621 data_width1, data_width2);
622 if (ret < 0)
623 return ret;
624 len += ret;
625 }
626 return len;
627 }
628
629 /* Support functions for logical channels */
630
631 static int d40_channel_execute_command(struct d40_chan *d40c,
632 enum d40_command command)
633 {
634 u32 status;
635 int i;
636 void __iomem *active_reg;
637 int ret = 0;
638 unsigned long flags;
639 u32 wmask;
640
641 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
642
643 if (d40c->phy_chan->num % 2 == 0)
644 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
645 else
646 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
647
648 if (command == D40_DMA_SUSPEND_REQ) {
649 status = (readl(active_reg) &
650 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
651 D40_CHAN_POS(d40c->phy_chan->num);
652
653 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
654 goto done;
655 }
656
657 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
658 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
659 active_reg);
660
661 if (command == D40_DMA_SUSPEND_REQ) {
662
663 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
664 status = (readl(active_reg) &
665 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
666 D40_CHAN_POS(d40c->phy_chan->num);
667
668 cpu_relax();
669 /*
670 * Reduce the number of bus accesses while
671 * waiting for the DMA to suspend.
672 */
673 udelay(3);
674
675 if (status == D40_DMA_STOP ||
676 status == D40_DMA_SUSPENDED)
677 break;
678 }
679
680 if (i == D40_SUSPEND_MAX_IT) {
681 chan_err(d40c,
682 "unable to suspend the chl %d (log: %d) status %x\n",
683 d40c->phy_chan->num, d40c->log_num,
684 status);
685 dump_stack();
686 ret = -EBUSY;
687 }
688
689 }
690 done:
691 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
692 return ret;
693 }
694
695 static void d40_term_all(struct d40_chan *d40c)
696 {
697 struct d40_desc *d40d;
698
699 /* Release active descriptors */
700 while ((d40d = d40_first_active_get(d40c))) {
701 d40_desc_remove(d40d);
702 d40_desc_free(d40c, d40d);
703 }
704
705 /* Release queued descriptors waiting for transfer */
706 while ((d40d = d40_first_queued(d40c))) {
707 d40_desc_remove(d40d);
708 d40_desc_free(d40c, d40d);
709 }
710
711
712 d40c->pending_tx = 0;
713 d40c->busy = false;
714 }
715
716 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
717 u32 event, int reg)
718 {
719 void __iomem *addr = chan_base(d40c) + reg;
720 int tries;
721
722 if (!enable) {
723 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
724 | ~D40_EVENTLINE_MASK(event), addr);
725 return;
726 }
727
728 /*
729 * The hardware sometimes doesn't register the enable when src and dst
730 * event lines are active on the same logical channel. Retry to ensure
731 * it does. Usually only one retry is sufficient.
732 */
733 tries = 100;
734 while (--tries) {
735 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
736 | ~D40_EVENTLINE_MASK(event), addr);
737
738 if (readl(addr) & D40_EVENTLINE_MASK(event))
739 break;
740 }
741
742 if (tries != 99)
743 dev_dbg(chan2dev(d40c),
744 "[%s] workaround enable S%cLNK (%d tries)\n",
745 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
746 100 - tries);
747
748 WARN_ON(!tries);
749 }
750
751 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
752 {
753 unsigned long flags;
754
755 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
756
757 /* Enable event line connected to device (or memcpy) */
758 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
759 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
760 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
761
762 __d40_config_set_event(d40c, do_enable, event,
763 D40_CHAN_REG_SSLNK);
764 }
765
766 if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
767 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
768
769 __d40_config_set_event(d40c, do_enable, event,
770 D40_CHAN_REG_SDLNK);
771 }
772
773 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
774 }
775
776 static u32 d40_chan_has_events(struct d40_chan *d40c)
777 {
778 void __iomem *chanbase = chan_base(d40c);
779 u32 val;
780
781 val = readl(chanbase + D40_CHAN_REG_SSLNK);
782 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
783
784 return val;
785 }
786
787 static u32 d40_get_prmo(struct d40_chan *d40c)
788 {
789 static const unsigned int phy_map[] = {
790 [STEDMA40_PCHAN_BASIC_MODE]
791 = D40_DREG_PRMO_PCHAN_BASIC,
792 [STEDMA40_PCHAN_MODULO_MODE]
793 = D40_DREG_PRMO_PCHAN_MODULO,
794 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
795 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
796 };
797 static const unsigned int log_map[] = {
798 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
799 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
800 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
801 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
802 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
803 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
804 };
805
806 if (chan_is_physical(d40c))
807 return phy_map[d40c->dma_cfg.mode_opt];
808 else
809 return log_map[d40c->dma_cfg.mode_opt];
810 }
811
812 static void d40_config_write(struct d40_chan *d40c)
813 {
814 u32 addr_base;
815 u32 var;
816
817 /* Odd addresses are even addresses + 4 */
818 addr_base = (d40c->phy_chan->num % 2) * 4;
819 /* Setup channel mode to logical or physical */
820 var = ((u32)(chan_is_logical(d40c)) + 1) <<
821 D40_CHAN_POS(d40c->phy_chan->num);
822 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
823
824 /* Setup operational mode option register */
825 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
826
827 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
828
829 if (chan_is_logical(d40c)) {
830 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
831 & D40_SREG_ELEM_LOG_LIDX_MASK;
832 void __iomem *chanbase = chan_base(d40c);
833
834 /* Set default config for CFG reg */
835 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
836 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
837
838 /* Set LIDX for lcla */
839 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
840 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
841 }
842 }
843
844 static u32 d40_residue(struct d40_chan *d40c)
845 {
846 u32 num_elt;
847
848 if (chan_is_logical(d40c))
849 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
850 >> D40_MEM_LCSP2_ECNT_POS;
851 else {
852 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
853 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
854 >> D40_SREG_ELEM_PHY_ECNT_POS;
855 }
856
857 return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
858 }
859
860 static bool d40_tx_is_linked(struct d40_chan *d40c)
861 {
862 bool is_link;
863
864 if (chan_is_logical(d40c))
865 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
866 else
867 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
868 & D40_SREG_LNK_PHYS_LNK_MASK;
869
870 return is_link;
871 }
872
873 static int d40_pause(struct dma_chan *chan)
874 {
875 struct d40_chan *d40c =
876 container_of(chan, struct d40_chan, chan);
877 int res = 0;
878 unsigned long flags;
879
880 if (!d40c->busy)
881 return 0;
882
883 spin_lock_irqsave(&d40c->lock, flags);
884
885 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
886 if (res == 0) {
887 if (chan_is_logical(d40c)) {
888 d40_config_set_event(d40c, false);
889 /* Resume the other logical channels if any */
890 if (d40_chan_has_events(d40c))
891 res = d40_channel_execute_command(d40c,
892 D40_DMA_RUN);
893 }
894 }
895
896 spin_unlock_irqrestore(&d40c->lock, flags);
897 return res;
898 }
899
900 static int d40_resume(struct dma_chan *chan)
901 {
902 struct d40_chan *d40c =
903 container_of(chan, struct d40_chan, chan);
904 int res = 0;
905 unsigned long flags;
906
907 if (!d40c->busy)
908 return 0;
909
910 spin_lock_irqsave(&d40c->lock, flags);
911
912 if (d40c->base->rev == 0)
913 if (chan_is_logical(d40c)) {
914 res = d40_channel_execute_command(d40c,
915 D40_DMA_SUSPEND_REQ);
916 goto no_suspend;
917 }
918
919 /* If bytes left to transfer or linked tx resume job */
920 if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
921
922 if (chan_is_logical(d40c))
923 d40_config_set_event(d40c, true);
924
925 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
926 }
927
928 no_suspend:
929 spin_unlock_irqrestore(&d40c->lock, flags);
930 return res;
931 }
932
933 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
934 {
935 struct d40_chan *d40c = container_of(tx->chan,
936 struct d40_chan,
937 chan);
938 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
939 unsigned long flags;
940
941 spin_lock_irqsave(&d40c->lock, flags);
942
943 d40c->chan.cookie++;
944
945 if (d40c->chan.cookie < 0)
946 d40c->chan.cookie = 1;
947
948 d40d->txd.cookie = d40c->chan.cookie;
949
950 d40_desc_queue(d40c, d40d);
951
952 spin_unlock_irqrestore(&d40c->lock, flags);
953
954 return tx->cookie;
955 }
956
957 static int d40_start(struct d40_chan *d40c)
958 {
959 if (d40c->base->rev == 0) {
960 int err;
961
962 if (chan_is_logical(d40c)) {
963 err = d40_channel_execute_command(d40c,
964 D40_DMA_SUSPEND_REQ);
965 if (err)
966 return err;
967 }
968 }
969
970 if (chan_is_logical(d40c))
971 d40_config_set_event(d40c, true);
972
973 return d40_channel_execute_command(d40c, D40_DMA_RUN);
974 }
975
976 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
977 {
978 struct d40_desc *d40d;
979 int err;
980
981 /* Start queued jobs, if any */
982 d40d = d40_first_queued(d40c);
983
984 if (d40d != NULL) {
985 d40c->busy = true;
986
987 /* Remove from queue */
988 d40_desc_remove(d40d);
989
990 /* Add to active queue */
991 d40_desc_submit(d40c, d40d);
992
993 /* Initiate DMA job */
994 d40_desc_load(d40c, d40d);
995
996 /* Start dma job */
997 err = d40_start(d40c);
998
999 if (err)
1000 return NULL;
1001 }
1002
1003 return d40d;
1004 }
1005
1006 /* called from interrupt context */
1007 static void dma_tc_handle(struct d40_chan *d40c)
1008 {
1009 struct d40_desc *d40d;
1010
1011 /* Get first active entry from list */
1012 d40d = d40_first_active_get(d40c);
1013
1014 if (d40d == NULL)
1015 return;
1016
1017 d40_lcla_free_all(d40c, d40d);
1018
1019 if (d40d->lli_current < d40d->lli_len) {
1020 d40_desc_load(d40c, d40d);
1021 /* Start dma job */
1022 (void) d40_start(d40c);
1023 return;
1024 }
1025
1026 if (d40_queue_start(d40c) == NULL)
1027 d40c->busy = false;
1028
1029 d40c->pending_tx++;
1030 tasklet_schedule(&d40c->tasklet);
1031
1032 }
1033
1034 static void dma_tasklet(unsigned long data)
1035 {
1036 struct d40_chan *d40c = (struct d40_chan *) data;
1037 struct d40_desc *d40d;
1038 unsigned long flags;
1039 dma_async_tx_callback callback;
1040 void *callback_param;
1041
1042 spin_lock_irqsave(&d40c->lock, flags);
1043
1044 /* Get first active entry from list */
1045 d40d = d40_first_active_get(d40c);
1046
1047 if (d40d == NULL)
1048 goto err;
1049
1050 d40c->completed = d40d->txd.cookie;
1051
1052 /*
1053 * If terminating a channel pending_tx is set to zero.
1054 * This prevents any finished active jobs to return to the client.
1055 */
1056 if (d40c->pending_tx == 0) {
1057 spin_unlock_irqrestore(&d40c->lock, flags);
1058 return;
1059 }
1060
1061 /* Callback to client */
1062 callback = d40d->txd.callback;
1063 callback_param = d40d->txd.callback_param;
1064
1065 if (async_tx_test_ack(&d40d->txd)) {
1066 d40_pool_lli_free(d40d);
1067 d40_desc_remove(d40d);
1068 d40_desc_free(d40c, d40d);
1069 } else {
1070 if (!d40d->is_in_client_list) {
1071 d40_desc_remove(d40d);
1072 d40_lcla_free_all(d40c, d40d);
1073 list_add_tail(&d40d->node, &d40c->client);
1074 d40d->is_in_client_list = true;
1075 }
1076 }
1077
1078 d40c->pending_tx--;
1079
1080 if (d40c->pending_tx)
1081 tasklet_schedule(&d40c->tasklet);
1082
1083 spin_unlock_irqrestore(&d40c->lock, flags);
1084
1085 if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1086 callback(callback_param);
1087
1088 return;
1089
1090 err:
1091 /* Rescue manouver if receiving double interrupts */
1092 if (d40c->pending_tx > 0)
1093 d40c->pending_tx--;
1094 spin_unlock_irqrestore(&d40c->lock, flags);
1095 }
1096
1097 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1098 {
1099 static const struct d40_interrupt_lookup il[] = {
1100 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
1101 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1102 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1103 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1104 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
1105 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
1106 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
1107 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
1108 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
1109 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
1110 };
1111
1112 int i;
1113 u32 regs[ARRAY_SIZE(il)];
1114 u32 idx;
1115 u32 row;
1116 long chan = -1;
1117 struct d40_chan *d40c;
1118 unsigned long flags;
1119 struct d40_base *base = data;
1120
1121 spin_lock_irqsave(&base->interrupt_lock, flags);
1122
1123 /* Read interrupt status of both logical and physical channels */
1124 for (i = 0; i < ARRAY_SIZE(il); i++)
1125 regs[i] = readl(base->virtbase + il[i].src);
1126
1127 for (;;) {
1128
1129 chan = find_next_bit((unsigned long *)regs,
1130 BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1131
1132 /* No more set bits found? */
1133 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1134 break;
1135
1136 row = chan / BITS_PER_LONG;
1137 idx = chan & (BITS_PER_LONG - 1);
1138
1139 /* ACK interrupt */
1140 writel(1 << idx, base->virtbase + il[row].clr);
1141
1142 if (il[row].offset == D40_PHY_CHAN)
1143 d40c = base->lookup_phy_chans[idx];
1144 else
1145 d40c = base->lookup_log_chans[il[row].offset + idx];
1146 spin_lock(&d40c->lock);
1147
1148 if (!il[row].is_error)
1149 dma_tc_handle(d40c);
1150 else
1151 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1152 chan, il[row].offset, idx);
1153
1154 spin_unlock(&d40c->lock);
1155 }
1156
1157 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1158
1159 return IRQ_HANDLED;
1160 }
1161
1162 static int d40_validate_conf(struct d40_chan *d40c,
1163 struct stedma40_chan_cfg *conf)
1164 {
1165 int res = 0;
1166 u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1167 u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1168 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1169
1170 if (!conf->dir) {
1171 chan_err(d40c, "Invalid direction.\n");
1172 res = -EINVAL;
1173 }
1174
1175 if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1176 d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1177 d40c->runtime_addr == 0) {
1178
1179 chan_err(d40c, "Invalid TX channel address (%d)\n",
1180 conf->dst_dev_type);
1181 res = -EINVAL;
1182 }
1183
1184 if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1185 d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1186 d40c->runtime_addr == 0) {
1187 chan_err(d40c, "Invalid RX channel address (%d)\n",
1188 conf->src_dev_type);
1189 res = -EINVAL;
1190 }
1191
1192 if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1193 dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1194 chan_err(d40c, "Invalid dst\n");
1195 res = -EINVAL;
1196 }
1197
1198 if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1199 src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1200 chan_err(d40c, "Invalid src\n");
1201 res = -EINVAL;
1202 }
1203
1204 if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1205 dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1206 chan_err(d40c, "No event line\n");
1207 res = -EINVAL;
1208 }
1209
1210 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1211 (src_event_group != dst_event_group)) {
1212 chan_err(d40c, "Invalid event group\n");
1213 res = -EINVAL;
1214 }
1215
1216 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1217 /*
1218 * DMAC HW supports it. Will be added to this driver,
1219 * in case any dma client requires it.
1220 */
1221 chan_err(d40c, "periph to periph not supported\n");
1222 res = -EINVAL;
1223 }
1224
1225 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1226 (1 << conf->src_info.data_width) !=
1227 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1228 (1 << conf->dst_info.data_width)) {
1229 /*
1230 * The DMAC hardware only supports
1231 * src (burst x width) == dst (burst x width)
1232 */
1233
1234 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1235 res = -EINVAL;
1236 }
1237
1238 return res;
1239 }
1240
1241 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1242 int log_event_line, bool is_log)
1243 {
1244 unsigned long flags;
1245 spin_lock_irqsave(&phy->lock, flags);
1246 if (!is_log) {
1247 /* Physical interrupts are masked per physical full channel */
1248 if (phy->allocated_src == D40_ALLOC_FREE &&
1249 phy->allocated_dst == D40_ALLOC_FREE) {
1250 phy->allocated_dst = D40_ALLOC_PHY;
1251 phy->allocated_src = D40_ALLOC_PHY;
1252 goto found;
1253 } else
1254 goto not_found;
1255 }
1256
1257 /* Logical channel */
1258 if (is_src) {
1259 if (phy->allocated_src == D40_ALLOC_PHY)
1260 goto not_found;
1261
1262 if (phy->allocated_src == D40_ALLOC_FREE)
1263 phy->allocated_src = D40_ALLOC_LOG_FREE;
1264
1265 if (!(phy->allocated_src & (1 << log_event_line))) {
1266 phy->allocated_src |= 1 << log_event_line;
1267 goto found;
1268 } else
1269 goto not_found;
1270 } else {
1271 if (phy->allocated_dst == D40_ALLOC_PHY)
1272 goto not_found;
1273
1274 if (phy->allocated_dst == D40_ALLOC_FREE)
1275 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1276
1277 if (!(phy->allocated_dst & (1 << log_event_line))) {
1278 phy->allocated_dst |= 1 << log_event_line;
1279 goto found;
1280 } else
1281 goto not_found;
1282 }
1283
1284 not_found:
1285 spin_unlock_irqrestore(&phy->lock, flags);
1286 return false;
1287 found:
1288 spin_unlock_irqrestore(&phy->lock, flags);
1289 return true;
1290 }
1291
1292 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1293 int log_event_line)
1294 {
1295 unsigned long flags;
1296 bool is_free = false;
1297
1298 spin_lock_irqsave(&phy->lock, flags);
1299 if (!log_event_line) {
1300 phy->allocated_dst = D40_ALLOC_FREE;
1301 phy->allocated_src = D40_ALLOC_FREE;
1302 is_free = true;
1303 goto out;
1304 }
1305
1306 /* Logical channel */
1307 if (is_src) {
1308 phy->allocated_src &= ~(1 << log_event_line);
1309 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1310 phy->allocated_src = D40_ALLOC_FREE;
1311 } else {
1312 phy->allocated_dst &= ~(1 << log_event_line);
1313 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1314 phy->allocated_dst = D40_ALLOC_FREE;
1315 }
1316
1317 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1318 D40_ALLOC_FREE);
1319
1320 out:
1321 spin_unlock_irqrestore(&phy->lock, flags);
1322
1323 return is_free;
1324 }
1325
1326 static int d40_allocate_channel(struct d40_chan *d40c)
1327 {
1328 int dev_type;
1329 int event_group;
1330 int event_line;
1331 struct d40_phy_res *phys;
1332 int i;
1333 int j;
1334 int log_num;
1335 bool is_src;
1336 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1337
1338 phys = d40c->base->phy_res;
1339
1340 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1341 dev_type = d40c->dma_cfg.src_dev_type;
1342 log_num = 2 * dev_type;
1343 is_src = true;
1344 } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1345 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1346 /* dst event lines are used for logical memcpy */
1347 dev_type = d40c->dma_cfg.dst_dev_type;
1348 log_num = 2 * dev_type + 1;
1349 is_src = false;
1350 } else
1351 return -EINVAL;
1352
1353 event_group = D40_TYPE_TO_GROUP(dev_type);
1354 event_line = D40_TYPE_TO_EVENT(dev_type);
1355
1356 if (!is_log) {
1357 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1358 /* Find physical half channel */
1359 for (i = 0; i < d40c->base->num_phy_chans; i++) {
1360
1361 if (d40_alloc_mask_set(&phys[i], is_src,
1362 0, is_log))
1363 goto found_phy;
1364 }
1365 } else
1366 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1367 int phy_num = j + event_group * 2;
1368 for (i = phy_num; i < phy_num + 2; i++) {
1369 if (d40_alloc_mask_set(&phys[i],
1370 is_src,
1371 0,
1372 is_log))
1373 goto found_phy;
1374 }
1375 }
1376 return -EINVAL;
1377 found_phy:
1378 d40c->phy_chan = &phys[i];
1379 d40c->log_num = D40_PHY_CHAN;
1380 goto out;
1381 }
1382 if (dev_type == -1)
1383 return -EINVAL;
1384
1385 /* Find logical channel */
1386 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1387 int phy_num = j + event_group * 2;
1388 /*
1389 * Spread logical channels across all available physical rather
1390 * than pack every logical channel at the first available phy
1391 * channels.
1392 */
1393 if (is_src) {
1394 for (i = phy_num; i < phy_num + 2; i++) {
1395 if (d40_alloc_mask_set(&phys[i], is_src,
1396 event_line, is_log))
1397 goto found_log;
1398 }
1399 } else {
1400 for (i = phy_num + 1; i >= phy_num; i--) {
1401 if (d40_alloc_mask_set(&phys[i], is_src,
1402 event_line, is_log))
1403 goto found_log;
1404 }
1405 }
1406 }
1407 return -EINVAL;
1408
1409 found_log:
1410 d40c->phy_chan = &phys[i];
1411 d40c->log_num = log_num;
1412 out:
1413
1414 if (is_log)
1415 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1416 else
1417 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1418
1419 return 0;
1420
1421 }
1422
1423 static int d40_config_memcpy(struct d40_chan *d40c)
1424 {
1425 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1426
1427 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1428 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1429 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1430 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1431 memcpy[d40c->chan.chan_id];
1432
1433 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1434 dma_has_cap(DMA_SLAVE, cap)) {
1435 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1436 } else {
1437 chan_err(d40c, "No memcpy\n");
1438 return -EINVAL;
1439 }
1440
1441 return 0;
1442 }
1443
1444
1445 static int d40_free_dma(struct d40_chan *d40c)
1446 {
1447
1448 int res = 0;
1449 u32 event;
1450 struct d40_phy_res *phy = d40c->phy_chan;
1451 bool is_src;
1452 struct d40_desc *d;
1453 struct d40_desc *_d;
1454
1455
1456 /* Terminate all queued and active transfers */
1457 d40_term_all(d40c);
1458
1459 /* Release client owned descriptors */
1460 if (!list_empty(&d40c->client))
1461 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1462 d40_pool_lli_free(d);
1463 d40_desc_remove(d);
1464 d40_desc_free(d40c, d);
1465 }
1466
1467 if (phy == NULL) {
1468 chan_err(d40c, "phy == null\n");
1469 return -EINVAL;
1470 }
1471
1472 if (phy->allocated_src == D40_ALLOC_FREE &&
1473 phy->allocated_dst == D40_ALLOC_FREE) {
1474 chan_err(d40c, "channel already free\n");
1475 return -EINVAL;
1476 }
1477
1478 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1479 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1480 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1481 is_src = false;
1482 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1483 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1484 is_src = true;
1485 } else {
1486 chan_err(d40c, "Unknown direction\n");
1487 return -EINVAL;
1488 }
1489
1490 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1491 if (res) {
1492 chan_err(d40c, "suspend failed\n");
1493 return res;
1494 }
1495
1496 if (chan_is_logical(d40c)) {
1497 /* Release logical channel, deactivate the event line */
1498
1499 d40_config_set_event(d40c, false);
1500 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1501
1502 /*
1503 * Check if there are more logical allocation
1504 * on this phy channel.
1505 */
1506 if (!d40_alloc_mask_free(phy, is_src, event)) {
1507 /* Resume the other logical channels if any */
1508 if (d40_chan_has_events(d40c)) {
1509 res = d40_channel_execute_command(d40c,
1510 D40_DMA_RUN);
1511 if (res) {
1512 chan_err(d40c,
1513 "Executing RUN command\n");
1514 return res;
1515 }
1516 }
1517 return 0;
1518 }
1519 } else {
1520 (void) d40_alloc_mask_free(phy, is_src, 0);
1521 }
1522
1523 /* Release physical channel */
1524 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1525 if (res) {
1526 chan_err(d40c, "Failed to stop channel\n");
1527 return res;
1528 }
1529 d40c->phy_chan = NULL;
1530 d40c->configured = false;
1531 d40c->base->lookup_phy_chans[phy->num] = NULL;
1532
1533 return 0;
1534 }
1535
1536 static bool d40_is_paused(struct d40_chan *d40c)
1537 {
1538 void __iomem *chanbase = chan_base(d40c);
1539 bool is_paused = false;
1540 unsigned long flags;
1541 void __iomem *active_reg;
1542 u32 status;
1543 u32 event;
1544
1545 spin_lock_irqsave(&d40c->lock, flags);
1546
1547 if (chan_is_physical(d40c)) {
1548 if (d40c->phy_chan->num % 2 == 0)
1549 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1550 else
1551 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1552
1553 status = (readl(active_reg) &
1554 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1555 D40_CHAN_POS(d40c->phy_chan->num);
1556 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1557 is_paused = true;
1558
1559 goto _exit;
1560 }
1561
1562 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1563 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1564 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1565 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1566 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1567 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1568 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1569 } else {
1570 chan_err(d40c, "Unknown direction\n");
1571 goto _exit;
1572 }
1573
1574 status = (status & D40_EVENTLINE_MASK(event)) >>
1575 D40_EVENTLINE_POS(event);
1576
1577 if (status != D40_DMA_RUN)
1578 is_paused = true;
1579 _exit:
1580 spin_unlock_irqrestore(&d40c->lock, flags);
1581 return is_paused;
1582
1583 }
1584
1585
1586 static u32 stedma40_residue(struct dma_chan *chan)
1587 {
1588 struct d40_chan *d40c =
1589 container_of(chan, struct d40_chan, chan);
1590 u32 bytes_left;
1591 unsigned long flags;
1592
1593 spin_lock_irqsave(&d40c->lock, flags);
1594 bytes_left = d40_residue(d40c);
1595 spin_unlock_irqrestore(&d40c->lock, flags);
1596
1597 return bytes_left;
1598 }
1599
1600 struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
1601 struct scatterlist *sgl_dst,
1602 struct scatterlist *sgl_src,
1603 unsigned int sgl_len,
1604 unsigned long dma_flags)
1605 {
1606 int res;
1607 struct d40_desc *d40d;
1608 struct d40_chan *d40c = container_of(chan, struct d40_chan,
1609 chan);
1610 unsigned long flags;
1611
1612 if (d40c->phy_chan == NULL) {
1613 chan_err(d40c, "Unallocated channel.\n");
1614 return ERR_PTR(-EINVAL);
1615 }
1616
1617 spin_lock_irqsave(&d40c->lock, flags);
1618 d40d = d40_desc_get(d40c);
1619
1620 if (d40d == NULL)
1621 goto err;
1622
1623 d40d->lli_len = d40_sg_2_dmalen(sgl_dst, sgl_len,
1624 d40c->dma_cfg.src_info.data_width,
1625 d40c->dma_cfg.dst_info.data_width);
1626 if (d40d->lli_len < 0) {
1627 chan_err(d40c, "Unaligned size\n");
1628 goto err;
1629 }
1630
1631 d40d->lli_current = 0;
1632 d40d->txd.flags = dma_flags;
1633
1634 if (chan_is_logical(d40c)) {
1635
1636 if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
1637 chan_err(d40c, "Out of memory\n");
1638 goto err;
1639 }
1640
1641 (void) d40_log_sg_to_lli(sgl_src,
1642 sgl_len,
1643 d40d->lli_log.src,
1644 d40c->log_def.lcsp1,
1645 d40c->dma_cfg.src_info.data_width,
1646 d40c->dma_cfg.dst_info.data_width);
1647
1648 (void) d40_log_sg_to_lli(sgl_dst,
1649 sgl_len,
1650 d40d->lli_log.dst,
1651 d40c->log_def.lcsp3,
1652 d40c->dma_cfg.dst_info.data_width,
1653 d40c->dma_cfg.src_info.data_width);
1654 } else {
1655 if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
1656 chan_err(d40c, "Out of memory\n");
1657 goto err;
1658 }
1659
1660 res = d40_phy_sg_to_lli(sgl_src,
1661 sgl_len,
1662 0,
1663 d40d->lli_phy.src,
1664 virt_to_phys(d40d->lli_phy.src),
1665 d40c->src_def_cfg,
1666 d40c->dma_cfg.src_info.data_width,
1667 d40c->dma_cfg.dst_info.data_width,
1668 d40c->dma_cfg.src_info.psize);
1669
1670 if (res < 0)
1671 goto err;
1672
1673 res = d40_phy_sg_to_lli(sgl_dst,
1674 sgl_len,
1675 0,
1676 d40d->lli_phy.dst,
1677 virt_to_phys(d40d->lli_phy.dst),
1678 d40c->dst_def_cfg,
1679 d40c->dma_cfg.dst_info.data_width,
1680 d40c->dma_cfg.src_info.data_width,
1681 d40c->dma_cfg.dst_info.psize);
1682
1683 if (res < 0)
1684 goto err;
1685
1686 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1687 d40d->lli_pool.size, DMA_TO_DEVICE);
1688 }
1689
1690 dma_async_tx_descriptor_init(&d40d->txd, chan);
1691
1692 d40d->txd.tx_submit = d40_tx_submit;
1693
1694 spin_unlock_irqrestore(&d40c->lock, flags);
1695
1696 return &d40d->txd;
1697 err:
1698 if (d40d)
1699 d40_desc_free(d40c, d40d);
1700 spin_unlock_irqrestore(&d40c->lock, flags);
1701 return NULL;
1702 }
1703 EXPORT_SYMBOL(stedma40_memcpy_sg);
1704
1705 bool stedma40_filter(struct dma_chan *chan, void *data)
1706 {
1707 struct stedma40_chan_cfg *info = data;
1708 struct d40_chan *d40c =
1709 container_of(chan, struct d40_chan, chan);
1710 int err;
1711
1712 if (data) {
1713 err = d40_validate_conf(d40c, info);
1714 if (!err)
1715 d40c->dma_cfg = *info;
1716 } else
1717 err = d40_config_memcpy(d40c);
1718
1719 if (!err)
1720 d40c->configured = true;
1721
1722 return err == 0;
1723 }
1724 EXPORT_SYMBOL(stedma40_filter);
1725
1726 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1727 {
1728 bool realtime = d40c->dma_cfg.realtime;
1729 bool highprio = d40c->dma_cfg.high_priority;
1730 u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1731 u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1732 u32 event = D40_TYPE_TO_EVENT(dev_type);
1733 u32 group = D40_TYPE_TO_GROUP(dev_type);
1734 u32 bit = 1 << event;
1735
1736 /* Destination event lines are stored in the upper halfword */
1737 if (!src)
1738 bit <<= 16;
1739
1740 writel(bit, d40c->base->virtbase + prioreg + group * 4);
1741 writel(bit, d40c->base->virtbase + rtreg + group * 4);
1742 }
1743
1744 static void d40_set_prio_realtime(struct d40_chan *d40c)
1745 {
1746 if (d40c->base->rev < 3)
1747 return;
1748
1749 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
1750 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1751 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1752
1753 if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
1754 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1755 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1756 }
1757
1758 /* DMA ENGINE functions */
1759 static int d40_alloc_chan_resources(struct dma_chan *chan)
1760 {
1761 int err;
1762 unsigned long flags;
1763 struct d40_chan *d40c =
1764 container_of(chan, struct d40_chan, chan);
1765 bool is_free_phy;
1766 spin_lock_irqsave(&d40c->lock, flags);
1767
1768 d40c->completed = chan->cookie = 1;
1769
1770 /* If no dma configuration is set use default configuration (memcpy) */
1771 if (!d40c->configured) {
1772 err = d40_config_memcpy(d40c);
1773 if (err) {
1774 chan_err(d40c, "Failed to configure memcpy channel\n");
1775 goto fail;
1776 }
1777 }
1778 is_free_phy = (d40c->phy_chan == NULL);
1779
1780 err = d40_allocate_channel(d40c);
1781 if (err) {
1782 chan_err(d40c, "Failed to allocate channel\n");
1783 goto fail;
1784 }
1785
1786 /* Fill in basic CFG register values */
1787 d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1788 &d40c->dst_def_cfg, chan_is_logical(d40c));
1789
1790 d40_set_prio_realtime(d40c);
1791
1792 if (chan_is_logical(d40c)) {
1793 d40_log_cfg(&d40c->dma_cfg,
1794 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1795
1796 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1797 d40c->lcpa = d40c->base->lcpa_base +
1798 d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1799 else
1800 d40c->lcpa = d40c->base->lcpa_base +
1801 d40c->dma_cfg.dst_dev_type *
1802 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
1803 }
1804
1805 /*
1806 * Only write channel configuration to the DMA if the physical
1807 * resource is free. In case of multiple logical channels
1808 * on the same physical resource, only the first write is necessary.
1809 */
1810 if (is_free_phy)
1811 d40_config_write(d40c);
1812 fail:
1813 spin_unlock_irqrestore(&d40c->lock, flags);
1814 return err;
1815 }
1816
1817 static void d40_free_chan_resources(struct dma_chan *chan)
1818 {
1819 struct d40_chan *d40c =
1820 container_of(chan, struct d40_chan, chan);
1821 int err;
1822 unsigned long flags;
1823
1824 if (d40c->phy_chan == NULL) {
1825 chan_err(d40c, "Cannot free unallocated channel\n");
1826 return;
1827 }
1828
1829
1830 spin_lock_irqsave(&d40c->lock, flags);
1831
1832 err = d40_free_dma(d40c);
1833
1834 if (err)
1835 chan_err(d40c, "Failed to free channel\n");
1836 spin_unlock_irqrestore(&d40c->lock, flags);
1837 }
1838
1839 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1840 dma_addr_t dst,
1841 dma_addr_t src,
1842 size_t size,
1843 unsigned long dma_flags)
1844 {
1845 struct d40_desc *d40d;
1846 struct d40_chan *d40c = container_of(chan, struct d40_chan,
1847 chan);
1848 unsigned long flags;
1849
1850 if (d40c->phy_chan == NULL) {
1851 chan_err(d40c, "Channel is not allocated.\n");
1852 return ERR_PTR(-EINVAL);
1853 }
1854
1855 spin_lock_irqsave(&d40c->lock, flags);
1856 d40d = d40_desc_get(d40c);
1857
1858 if (d40d == NULL) {
1859 chan_err(d40c, "Descriptor is NULL\n");
1860 goto err;
1861 }
1862
1863 d40d->txd.flags = dma_flags;
1864 d40d->lli_len = d40_size_2_dmalen(size,
1865 d40c->dma_cfg.src_info.data_width,
1866 d40c->dma_cfg.dst_info.data_width);
1867 if (d40d->lli_len < 0) {
1868 chan_err(d40c, "Unaligned size\n");
1869 goto err;
1870 }
1871
1872
1873 dma_async_tx_descriptor_init(&d40d->txd, chan);
1874
1875 d40d->txd.tx_submit = d40_tx_submit;
1876
1877 if (chan_is_logical(d40c)) {
1878
1879 if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
1880 chan_err(d40c, "Out of memory\n");
1881 goto err;
1882 }
1883 d40d->lli_current = 0;
1884
1885 if (d40_log_buf_to_lli(d40d->lli_log.src,
1886 src,
1887 size,
1888 d40c->log_def.lcsp1,
1889 d40c->dma_cfg.src_info.data_width,
1890 d40c->dma_cfg.dst_info.data_width,
1891 true) == NULL)
1892 goto err;
1893
1894 if (d40_log_buf_to_lli(d40d->lli_log.dst,
1895 dst,
1896 size,
1897 d40c->log_def.lcsp3,
1898 d40c->dma_cfg.dst_info.data_width,
1899 d40c->dma_cfg.src_info.data_width,
1900 true) == NULL)
1901 goto err;
1902
1903 } else {
1904
1905 if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
1906 chan_err(d40c, "Out of memory\n");
1907 goto err;
1908 }
1909
1910 if (d40_phy_buf_to_lli(d40d->lli_phy.src,
1911 src,
1912 size,
1913 d40c->dma_cfg.src_info.psize,
1914 0,
1915 d40c->src_def_cfg,
1916 true,
1917 d40c->dma_cfg.src_info.data_width,
1918 d40c->dma_cfg.dst_info.data_width,
1919 false) == NULL)
1920 goto err;
1921
1922 if (d40_phy_buf_to_lli(d40d->lli_phy.dst,
1923 dst,
1924 size,
1925 d40c->dma_cfg.dst_info.psize,
1926 0,
1927 d40c->dst_def_cfg,
1928 true,
1929 d40c->dma_cfg.dst_info.data_width,
1930 d40c->dma_cfg.src_info.data_width,
1931 false) == NULL)
1932 goto err;
1933
1934 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1935 d40d->lli_pool.size, DMA_TO_DEVICE);
1936 }
1937
1938 spin_unlock_irqrestore(&d40c->lock, flags);
1939 return &d40d->txd;
1940
1941 err:
1942 if (d40d)
1943 d40_desc_free(d40c, d40d);
1944 spin_unlock_irqrestore(&d40c->lock, flags);
1945 return NULL;
1946 }
1947
1948 static struct dma_async_tx_descriptor *
1949 d40_prep_sg(struct dma_chan *chan,
1950 struct scatterlist *dst_sg, unsigned int dst_nents,
1951 struct scatterlist *src_sg, unsigned int src_nents,
1952 unsigned long dma_flags)
1953 {
1954 if (dst_nents != src_nents)
1955 return NULL;
1956
1957 return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
1958 }
1959
1960 static int d40_prep_slave_sg_log(struct d40_desc *d40d,
1961 struct d40_chan *d40c,
1962 struct scatterlist *sgl,
1963 unsigned int sg_len,
1964 enum dma_data_direction direction,
1965 unsigned long dma_flags)
1966 {
1967 dma_addr_t dev_addr = 0;
1968 int total_size;
1969
1970 d40d->lli_len = d40_sg_2_dmalen(sgl, sg_len,
1971 d40c->dma_cfg.src_info.data_width,
1972 d40c->dma_cfg.dst_info.data_width);
1973 if (d40d->lli_len < 0) {
1974 chan_err(d40c, "Unaligned size\n");
1975 return -EINVAL;
1976 }
1977
1978 if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
1979 chan_err(d40c, "Out of memory\n");
1980 return -ENOMEM;
1981 }
1982
1983 d40d->lli_current = 0;
1984
1985 if (direction == DMA_FROM_DEVICE)
1986 if (d40c->runtime_addr)
1987 dev_addr = d40c->runtime_addr;
1988 else
1989 dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1990 else if (direction == DMA_TO_DEVICE)
1991 if (d40c->runtime_addr)
1992 dev_addr = d40c->runtime_addr;
1993 else
1994 dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1995
1996 else
1997 return -EINVAL;
1998
1999 total_size = d40_log_sg_to_dev(sgl, sg_len,
2000 &d40d->lli_log,
2001 &d40c->log_def,
2002 d40c->dma_cfg.src_info.data_width,
2003 d40c->dma_cfg.dst_info.data_width,
2004 direction,
2005 dev_addr);
2006
2007 if (total_size < 0)
2008 return -EINVAL;
2009
2010 return 0;
2011 }
2012
2013 static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
2014 struct d40_chan *d40c,
2015 struct scatterlist *sgl,
2016 unsigned int sgl_len,
2017 enum dma_data_direction direction,
2018 unsigned long dma_flags)
2019 {
2020 dma_addr_t src_dev_addr;
2021 dma_addr_t dst_dev_addr;
2022 int res;
2023
2024 d40d->lli_len = d40_sg_2_dmalen(sgl, sgl_len,
2025 d40c->dma_cfg.src_info.data_width,
2026 d40c->dma_cfg.dst_info.data_width);
2027 if (d40d->lli_len < 0) {
2028 chan_err(d40c, "Unaligned size\n");
2029 return -EINVAL;
2030 }
2031
2032 if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
2033 chan_err(d40c, "Out of memory\n");
2034 return -ENOMEM;
2035 }
2036
2037 d40d->lli_current = 0;
2038
2039 if (direction == DMA_FROM_DEVICE) {
2040 dst_dev_addr = 0;
2041 if (d40c->runtime_addr)
2042 src_dev_addr = d40c->runtime_addr;
2043 else
2044 src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2045 } else if (direction == DMA_TO_DEVICE) {
2046 if (d40c->runtime_addr)
2047 dst_dev_addr = d40c->runtime_addr;
2048 else
2049 dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
2050 src_dev_addr = 0;
2051 } else
2052 return -EINVAL;
2053
2054 res = d40_phy_sg_to_lli(sgl,
2055 sgl_len,
2056 src_dev_addr,
2057 d40d->lli_phy.src,
2058 virt_to_phys(d40d->lli_phy.src),
2059 d40c->src_def_cfg,
2060 d40c->dma_cfg.src_info.data_width,
2061 d40c->dma_cfg.dst_info.data_width,
2062 d40c->dma_cfg.src_info.psize);
2063 if (res < 0)
2064 return res;
2065
2066 res = d40_phy_sg_to_lli(sgl,
2067 sgl_len,
2068 dst_dev_addr,
2069 d40d->lli_phy.dst,
2070 virt_to_phys(d40d->lli_phy.dst),
2071 d40c->dst_def_cfg,
2072 d40c->dma_cfg.dst_info.data_width,
2073 d40c->dma_cfg.src_info.data_width,
2074 d40c->dma_cfg.dst_info.psize);
2075 if (res < 0)
2076 return res;
2077
2078 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
2079 d40d->lli_pool.size, DMA_TO_DEVICE);
2080 return 0;
2081 }
2082
2083 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2084 struct scatterlist *sgl,
2085 unsigned int sg_len,
2086 enum dma_data_direction direction,
2087 unsigned long dma_flags)
2088 {
2089 struct d40_desc *d40d;
2090 struct d40_chan *d40c = container_of(chan, struct d40_chan,
2091 chan);
2092 unsigned long flags;
2093 int err;
2094
2095 if (d40c->phy_chan == NULL) {
2096 chan_err(d40c, "Cannot prepare unallocated channel\n");
2097 return ERR_PTR(-EINVAL);
2098 }
2099
2100 spin_lock_irqsave(&d40c->lock, flags);
2101 d40d = d40_desc_get(d40c);
2102
2103 if (d40d == NULL)
2104 goto err;
2105
2106 if (chan_is_logical(d40c))
2107 err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2108 direction, dma_flags);
2109 else
2110 err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2111 direction, dma_flags);
2112 if (err) {
2113 chan_err(d40c, "Failed to prepare %s slave sg job: %d\n",
2114 chan_is_logical(d40c) ? "log" : "phy", err);
2115 goto err;
2116 }
2117
2118 d40d->txd.flags = dma_flags;
2119
2120 dma_async_tx_descriptor_init(&d40d->txd, chan);
2121
2122 d40d->txd.tx_submit = d40_tx_submit;
2123
2124 spin_unlock_irqrestore(&d40c->lock, flags);
2125 return &d40d->txd;
2126
2127 err:
2128 if (d40d)
2129 d40_desc_free(d40c, d40d);
2130 spin_unlock_irqrestore(&d40c->lock, flags);
2131 return NULL;
2132 }
2133
2134 static enum dma_status d40_tx_status(struct dma_chan *chan,
2135 dma_cookie_t cookie,
2136 struct dma_tx_state *txstate)
2137 {
2138 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2139 dma_cookie_t last_used;
2140 dma_cookie_t last_complete;
2141 int ret;
2142
2143 if (d40c->phy_chan == NULL) {
2144 chan_err(d40c, "Cannot read status of unallocated channel\n");
2145 return -EINVAL;
2146 }
2147
2148 last_complete = d40c->completed;
2149 last_used = chan->cookie;
2150
2151 if (d40_is_paused(d40c))
2152 ret = DMA_PAUSED;
2153 else
2154 ret = dma_async_is_complete(cookie, last_complete, last_used);
2155
2156 dma_set_tx_state(txstate, last_complete, last_used,
2157 stedma40_residue(chan));
2158
2159 return ret;
2160 }
2161
2162 static void d40_issue_pending(struct dma_chan *chan)
2163 {
2164 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2165 unsigned long flags;
2166
2167 if (d40c->phy_chan == NULL) {
2168 chan_err(d40c, "Channel is not allocated!\n");
2169 return;
2170 }
2171
2172 spin_lock_irqsave(&d40c->lock, flags);
2173
2174 /* Busy means that pending jobs are already being processed */
2175 if (!d40c->busy)
2176 (void) d40_queue_start(d40c);
2177
2178 spin_unlock_irqrestore(&d40c->lock, flags);
2179 }
2180
2181 /* Runtime reconfiguration extension */
2182 static void d40_set_runtime_config(struct dma_chan *chan,
2183 struct dma_slave_config *config)
2184 {
2185 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2186 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2187 enum dma_slave_buswidth config_addr_width;
2188 dma_addr_t config_addr;
2189 u32 config_maxburst;
2190 enum stedma40_periph_data_width addr_width;
2191 int psize;
2192
2193 if (config->direction == DMA_FROM_DEVICE) {
2194 dma_addr_t dev_addr_rx =
2195 d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2196
2197 config_addr = config->src_addr;
2198 if (dev_addr_rx)
2199 dev_dbg(d40c->base->dev,
2200 "channel has a pre-wired RX address %08x "
2201 "overriding with %08x\n",
2202 dev_addr_rx, config_addr);
2203 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2204 dev_dbg(d40c->base->dev,
2205 "channel was not configured for peripheral "
2206 "to memory transfer (%d) overriding\n",
2207 cfg->dir);
2208 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2209
2210 config_addr_width = config->src_addr_width;
2211 config_maxburst = config->src_maxburst;
2212
2213 } else if (config->direction == DMA_TO_DEVICE) {
2214 dma_addr_t dev_addr_tx =
2215 d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2216
2217 config_addr = config->dst_addr;
2218 if (dev_addr_tx)
2219 dev_dbg(d40c->base->dev,
2220 "channel has a pre-wired TX address %08x "
2221 "overriding with %08x\n",
2222 dev_addr_tx, config_addr);
2223 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2224 dev_dbg(d40c->base->dev,
2225 "channel was not configured for memory "
2226 "to peripheral transfer (%d) overriding\n",
2227 cfg->dir);
2228 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2229
2230 config_addr_width = config->dst_addr_width;
2231 config_maxburst = config->dst_maxburst;
2232
2233 } else {
2234 dev_err(d40c->base->dev,
2235 "unrecognized channel direction %d\n",
2236 config->direction);
2237 return;
2238 }
2239
2240 switch (config_addr_width) {
2241 case DMA_SLAVE_BUSWIDTH_1_BYTE:
2242 addr_width = STEDMA40_BYTE_WIDTH;
2243 break;
2244 case DMA_SLAVE_BUSWIDTH_2_BYTES:
2245 addr_width = STEDMA40_HALFWORD_WIDTH;
2246 break;
2247 case DMA_SLAVE_BUSWIDTH_4_BYTES:
2248 addr_width = STEDMA40_WORD_WIDTH;
2249 break;
2250 case DMA_SLAVE_BUSWIDTH_8_BYTES:
2251 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2252 break;
2253 default:
2254 dev_err(d40c->base->dev,
2255 "illegal peripheral address width "
2256 "requested (%d)\n",
2257 config->src_addr_width);
2258 return;
2259 }
2260
2261 if (chan_is_logical(d40c)) {
2262 if (config_maxburst >= 16)
2263 psize = STEDMA40_PSIZE_LOG_16;
2264 else if (config_maxburst >= 8)
2265 psize = STEDMA40_PSIZE_LOG_8;
2266 else if (config_maxburst >= 4)
2267 psize = STEDMA40_PSIZE_LOG_4;
2268 else
2269 psize = STEDMA40_PSIZE_LOG_1;
2270 } else {
2271 if (config_maxburst >= 16)
2272 psize = STEDMA40_PSIZE_PHY_16;
2273 else if (config_maxburst >= 8)
2274 psize = STEDMA40_PSIZE_PHY_8;
2275 else if (config_maxburst >= 4)
2276 psize = STEDMA40_PSIZE_PHY_4;
2277 else if (config_maxburst >= 2)
2278 psize = STEDMA40_PSIZE_PHY_2;
2279 else
2280 psize = STEDMA40_PSIZE_PHY_1;
2281 }
2282
2283 /* Set up all the endpoint configs */
2284 cfg->src_info.data_width = addr_width;
2285 cfg->src_info.psize = psize;
2286 cfg->src_info.big_endian = false;
2287 cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2288 cfg->dst_info.data_width = addr_width;
2289 cfg->dst_info.psize = psize;
2290 cfg->dst_info.big_endian = false;
2291 cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2292
2293 /* Fill in register values */
2294 if (chan_is_logical(d40c))
2295 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2296 else
2297 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2298 &d40c->dst_def_cfg, false);
2299
2300 /* These settings will take precedence later */
2301 d40c->runtime_addr = config_addr;
2302 d40c->runtime_direction = config->direction;
2303 dev_dbg(d40c->base->dev,
2304 "configured channel %s for %s, data width %d, "
2305 "maxburst %d bytes, LE, no flow control\n",
2306 dma_chan_name(chan),
2307 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2308 config_addr_width,
2309 config_maxburst);
2310 }
2311
2312 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2313 unsigned long arg)
2314 {
2315 unsigned long flags;
2316 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2317
2318 if (d40c->phy_chan == NULL) {
2319 chan_err(d40c, "Channel is not allocated!\n");
2320 return -EINVAL;
2321 }
2322
2323 switch (cmd) {
2324 case DMA_TERMINATE_ALL:
2325 spin_lock_irqsave(&d40c->lock, flags);
2326 d40_term_all(d40c);
2327 spin_unlock_irqrestore(&d40c->lock, flags);
2328 return 0;
2329 case DMA_PAUSE:
2330 return d40_pause(chan);
2331 case DMA_RESUME:
2332 return d40_resume(chan);
2333 case DMA_SLAVE_CONFIG:
2334 d40_set_runtime_config(chan,
2335 (struct dma_slave_config *) arg);
2336 return 0;
2337 default:
2338 break;
2339 }
2340
2341 /* Other commands are unimplemented */
2342 return -ENXIO;
2343 }
2344
2345 /* Initialization functions */
2346
2347 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2348 struct d40_chan *chans, int offset,
2349 int num_chans)
2350 {
2351 int i = 0;
2352 struct d40_chan *d40c;
2353
2354 INIT_LIST_HEAD(&dma->channels);
2355
2356 for (i = offset; i < offset + num_chans; i++) {
2357 d40c = &chans[i];
2358 d40c->base = base;
2359 d40c->chan.device = dma;
2360
2361 spin_lock_init(&d40c->lock);
2362
2363 d40c->log_num = D40_PHY_CHAN;
2364
2365 INIT_LIST_HEAD(&d40c->active);
2366 INIT_LIST_HEAD(&d40c->queue);
2367 INIT_LIST_HEAD(&d40c->client);
2368
2369 tasklet_init(&d40c->tasklet, dma_tasklet,
2370 (unsigned long) d40c);
2371
2372 list_add_tail(&d40c->chan.device_node,
2373 &dma->channels);
2374 }
2375 }
2376
2377 static int __init d40_dmaengine_init(struct d40_base *base,
2378 int num_reserved_chans)
2379 {
2380 int err ;
2381
2382 d40_chan_init(base, &base->dma_slave, base->log_chans,
2383 0, base->num_log_chans);
2384
2385 dma_cap_zero(base->dma_slave.cap_mask);
2386 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2387
2388 base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2389 base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2390 base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2391 base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2392 base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2393 base->dma_slave.device_tx_status = d40_tx_status;
2394 base->dma_slave.device_issue_pending = d40_issue_pending;
2395 base->dma_slave.device_control = d40_control;
2396 base->dma_slave.dev = base->dev;
2397
2398 err = dma_async_device_register(&base->dma_slave);
2399
2400 if (err) {
2401 d40_err(base->dev, "Failed to register slave channels\n");
2402 goto failure1;
2403 }
2404
2405 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2406 base->num_log_chans, base->plat_data->memcpy_len);
2407
2408 dma_cap_zero(base->dma_memcpy.cap_mask);
2409 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2410 dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2411
2412 base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2413 base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2414 base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2415 base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2416 base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2417 base->dma_memcpy.device_tx_status = d40_tx_status;
2418 base->dma_memcpy.device_issue_pending = d40_issue_pending;
2419 base->dma_memcpy.device_control = d40_control;
2420 base->dma_memcpy.dev = base->dev;
2421 /*
2422 * This controller can only access address at even
2423 * 32bit boundaries, i.e. 2^2
2424 */
2425 base->dma_memcpy.copy_align = 2;
2426
2427 err = dma_async_device_register(&base->dma_memcpy);
2428
2429 if (err) {
2430 d40_err(base->dev,
2431 "Failed to regsiter memcpy only channels\n");
2432 goto failure2;
2433 }
2434
2435 d40_chan_init(base, &base->dma_both, base->phy_chans,
2436 0, num_reserved_chans);
2437
2438 dma_cap_zero(base->dma_both.cap_mask);
2439 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2440 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2441 dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2442
2443 base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2444 base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2445 base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2446 base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2447 base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2448 base->dma_both.device_tx_status = d40_tx_status;
2449 base->dma_both.device_issue_pending = d40_issue_pending;
2450 base->dma_both.device_control = d40_control;
2451 base->dma_both.dev = base->dev;
2452 base->dma_both.copy_align = 2;
2453 err = dma_async_device_register(&base->dma_both);
2454
2455 if (err) {
2456 d40_err(base->dev,
2457 "Failed to register logical and physical capable channels\n");
2458 goto failure3;
2459 }
2460 return 0;
2461 failure3:
2462 dma_async_device_unregister(&base->dma_memcpy);
2463 failure2:
2464 dma_async_device_unregister(&base->dma_slave);
2465 failure1:
2466 return err;
2467 }
2468
2469 /* Initialization functions. */
2470
2471 static int __init d40_phy_res_init(struct d40_base *base)
2472 {
2473 int i;
2474 int num_phy_chans_avail = 0;
2475 u32 val[2];
2476 int odd_even_bit = -2;
2477
2478 val[0] = readl(base->virtbase + D40_DREG_PRSME);
2479 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2480
2481 for (i = 0; i < base->num_phy_chans; i++) {
2482 base->phy_res[i].num = i;
2483 odd_even_bit += 2 * ((i % 2) == 0);
2484 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2485 /* Mark security only channels as occupied */
2486 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2487 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2488 } else {
2489 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2490 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2491 num_phy_chans_avail++;
2492 }
2493 spin_lock_init(&base->phy_res[i].lock);
2494 }
2495
2496 /* Mark disabled channels as occupied */
2497 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2498 int chan = base->plat_data->disabled_channels[i];
2499
2500 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2501 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2502 num_phy_chans_avail--;
2503 }
2504
2505 dev_info(base->dev, "%d of %d physical DMA channels available\n",
2506 num_phy_chans_avail, base->num_phy_chans);
2507
2508 /* Verify settings extended vs standard */
2509 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2510
2511 for (i = 0; i < base->num_phy_chans; i++) {
2512
2513 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2514 (val[0] & 0x3) != 1)
2515 dev_info(base->dev,
2516 "[%s] INFO: channel %d is misconfigured (%d)\n",
2517 __func__, i, val[0] & 0x3);
2518
2519 val[0] = val[0] >> 2;
2520 }
2521
2522 return num_phy_chans_avail;
2523 }
2524
2525 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2526 {
2527 static const struct d40_reg_val dma_id_regs[] = {
2528 /* Peripheral Id */
2529 { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2530 { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2531 /*
2532 * D40_DREG_PERIPHID2 Depends on HW revision:
2533 * DB8500ed has 0x0008,
2534 * ? has 0x0018,
2535 * DB8500v1 has 0x0028
2536 * DB8500v2 has 0x0038
2537 */
2538 { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2539
2540 /* PCell Id */
2541 { .reg = D40_DREG_CELLID0, .val = 0x000d},
2542 { .reg = D40_DREG_CELLID1, .val = 0x00f0},
2543 { .reg = D40_DREG_CELLID2, .val = 0x0005},
2544 { .reg = D40_DREG_CELLID3, .val = 0x00b1}
2545 };
2546 struct stedma40_platform_data *plat_data;
2547 struct clk *clk = NULL;
2548 void __iomem *virtbase = NULL;
2549 struct resource *res = NULL;
2550 struct d40_base *base = NULL;
2551 int num_log_chans = 0;
2552 int num_phy_chans;
2553 int i;
2554 u32 val;
2555 u32 rev;
2556
2557 clk = clk_get(&pdev->dev, NULL);
2558
2559 if (IS_ERR(clk)) {
2560 d40_err(&pdev->dev, "No matching clock found\n");
2561 goto failure;
2562 }
2563
2564 clk_enable(clk);
2565
2566 /* Get IO for DMAC base address */
2567 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2568 if (!res)
2569 goto failure;
2570
2571 if (request_mem_region(res->start, resource_size(res),
2572 D40_NAME " I/O base") == NULL)
2573 goto failure;
2574
2575 virtbase = ioremap(res->start, resource_size(res));
2576 if (!virtbase)
2577 goto failure;
2578
2579 /* HW version check */
2580 for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2581 if (dma_id_regs[i].val !=
2582 readl(virtbase + dma_id_regs[i].reg)) {
2583 d40_err(&pdev->dev,
2584 "Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2585 dma_id_regs[i].val,
2586 dma_id_regs[i].reg,
2587 readl(virtbase + dma_id_regs[i].reg));
2588 goto failure;
2589 }
2590 }
2591
2592 /* Get silicon revision and designer */
2593 val = readl(virtbase + D40_DREG_PERIPHID2);
2594
2595 if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
2596 D40_HW_DESIGNER) {
2597 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2598 val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2599 D40_HW_DESIGNER);
2600 goto failure;
2601 }
2602
2603 rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
2604 D40_DREG_PERIPHID2_REV_POS;
2605
2606 /* The number of physical channels on this HW */
2607 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2608
2609 dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2610 rev, res->start);
2611
2612 plat_data = pdev->dev.platform_data;
2613
2614 /* Count the number of logical channels in use */
2615 for (i = 0; i < plat_data->dev_len; i++)
2616 if (plat_data->dev_rx[i] != 0)
2617 num_log_chans++;
2618
2619 for (i = 0; i < plat_data->dev_len; i++)
2620 if (plat_data->dev_tx[i] != 0)
2621 num_log_chans++;
2622
2623 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2624 (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2625 sizeof(struct d40_chan), GFP_KERNEL);
2626
2627 if (base == NULL) {
2628 d40_err(&pdev->dev, "Out of memory\n");
2629 goto failure;
2630 }
2631
2632 base->rev = rev;
2633 base->clk = clk;
2634 base->num_phy_chans = num_phy_chans;
2635 base->num_log_chans = num_log_chans;
2636 base->phy_start = res->start;
2637 base->phy_size = resource_size(res);
2638 base->virtbase = virtbase;
2639 base->plat_data = plat_data;
2640 base->dev = &pdev->dev;
2641 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2642 base->log_chans = &base->phy_chans[num_phy_chans];
2643
2644 base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2645 GFP_KERNEL);
2646 if (!base->phy_res)
2647 goto failure;
2648
2649 base->lookup_phy_chans = kzalloc(num_phy_chans *
2650 sizeof(struct d40_chan *),
2651 GFP_KERNEL);
2652 if (!base->lookup_phy_chans)
2653 goto failure;
2654
2655 if (num_log_chans + plat_data->memcpy_len) {
2656 /*
2657 * The max number of logical channels are event lines for all
2658 * src devices and dst devices
2659 */
2660 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2661 sizeof(struct d40_chan *),
2662 GFP_KERNEL);
2663 if (!base->lookup_log_chans)
2664 goto failure;
2665 }
2666
2667 base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2668 sizeof(struct d40_desc *) *
2669 D40_LCLA_LINK_PER_EVENT_GRP,
2670 GFP_KERNEL);
2671 if (!base->lcla_pool.alloc_map)
2672 goto failure;
2673
2674 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2675 0, SLAB_HWCACHE_ALIGN,
2676 NULL);
2677 if (base->desc_slab == NULL)
2678 goto failure;
2679
2680 return base;
2681
2682 failure:
2683 if (!IS_ERR(clk)) {
2684 clk_disable(clk);
2685 clk_put(clk);
2686 }
2687 if (virtbase)
2688 iounmap(virtbase);
2689 if (res)
2690 release_mem_region(res->start,
2691 resource_size(res));
2692 if (virtbase)
2693 iounmap(virtbase);
2694
2695 if (base) {
2696 kfree(base->lcla_pool.alloc_map);
2697 kfree(base->lookup_log_chans);
2698 kfree(base->lookup_phy_chans);
2699 kfree(base->phy_res);
2700 kfree(base);
2701 }
2702
2703 return NULL;
2704 }
2705
2706 static void __init d40_hw_init(struct d40_base *base)
2707 {
2708
2709 static const struct d40_reg_val dma_init_reg[] = {
2710 /* Clock every part of the DMA block from start */
2711 { .reg = D40_DREG_GCC, .val = 0x0000ff01},
2712
2713 /* Interrupts on all logical channels */
2714 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2715 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2716 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2717 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2718 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2719 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2720 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2721 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2722 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2723 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2724 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2725 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2726 };
2727 int i;
2728 u32 prmseo[2] = {0, 0};
2729 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2730 u32 pcmis = 0;
2731 u32 pcicr = 0;
2732
2733 for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2734 writel(dma_init_reg[i].val,
2735 base->virtbase + dma_init_reg[i].reg);
2736
2737 /* Configure all our dma channels to default settings */
2738 for (i = 0; i < base->num_phy_chans; i++) {
2739
2740 activeo[i % 2] = activeo[i % 2] << 2;
2741
2742 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2743 == D40_ALLOC_PHY) {
2744 activeo[i % 2] |= 3;
2745 continue;
2746 }
2747
2748 /* Enable interrupt # */
2749 pcmis = (pcmis << 1) | 1;
2750
2751 /* Clear interrupt # */
2752 pcicr = (pcicr << 1) | 1;
2753
2754 /* Set channel to physical mode */
2755 prmseo[i % 2] = prmseo[i % 2] << 2;
2756 prmseo[i % 2] |= 1;
2757
2758 }
2759
2760 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2761 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2762 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2763 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2764
2765 /* Write which interrupt to enable */
2766 writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2767
2768 /* Write which interrupt to clear */
2769 writel(pcicr, base->virtbase + D40_DREG_PCICR);
2770
2771 }
2772
2773 static int __init d40_lcla_allocate(struct d40_base *base)
2774 {
2775 struct d40_lcla_pool *pool = &base->lcla_pool;
2776 unsigned long *page_list;
2777 int i, j;
2778 int ret = 0;
2779
2780 /*
2781 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2782 * To full fill this hardware requirement without wasting 256 kb
2783 * we allocate pages until we get an aligned one.
2784 */
2785 page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2786 GFP_KERNEL);
2787
2788 if (!page_list) {
2789 ret = -ENOMEM;
2790 goto failure;
2791 }
2792
2793 /* Calculating how many pages that are required */
2794 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2795
2796 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2797 page_list[i] = __get_free_pages(GFP_KERNEL,
2798 base->lcla_pool.pages);
2799 if (!page_list[i]) {
2800
2801 d40_err(base->dev, "Failed to allocate %d pages.\n",
2802 base->lcla_pool.pages);
2803
2804 for (j = 0; j < i; j++)
2805 free_pages(page_list[j], base->lcla_pool.pages);
2806 goto failure;
2807 }
2808
2809 if ((virt_to_phys((void *)page_list[i]) &
2810 (LCLA_ALIGNMENT - 1)) == 0)
2811 break;
2812 }
2813
2814 for (j = 0; j < i; j++)
2815 free_pages(page_list[j], base->lcla_pool.pages);
2816
2817 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2818 base->lcla_pool.base = (void *)page_list[i];
2819 } else {
2820 /*
2821 * After many attempts and no succees with finding the correct
2822 * alignment, try with allocating a big buffer.
2823 */
2824 dev_warn(base->dev,
2825 "[%s] Failed to get %d pages @ 18 bit align.\n",
2826 __func__, base->lcla_pool.pages);
2827 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2828 base->num_phy_chans +
2829 LCLA_ALIGNMENT,
2830 GFP_KERNEL);
2831 if (!base->lcla_pool.base_unaligned) {
2832 ret = -ENOMEM;
2833 goto failure;
2834 }
2835
2836 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2837 LCLA_ALIGNMENT);
2838 }
2839
2840 pool->dma_addr = dma_map_single(base->dev, pool->base,
2841 SZ_1K * base->num_phy_chans,
2842 DMA_TO_DEVICE);
2843 if (dma_mapping_error(base->dev, pool->dma_addr)) {
2844 pool->dma_addr = 0;
2845 ret = -ENOMEM;
2846 goto failure;
2847 }
2848
2849 writel(virt_to_phys(base->lcla_pool.base),
2850 base->virtbase + D40_DREG_LCLA);
2851 failure:
2852 kfree(page_list);
2853 return ret;
2854 }
2855
2856 static int __init d40_probe(struct platform_device *pdev)
2857 {
2858 int err;
2859 int ret = -ENOENT;
2860 struct d40_base *base;
2861 struct resource *res = NULL;
2862 int num_reserved_chans;
2863 u32 val;
2864
2865 base = d40_hw_detect_init(pdev);
2866
2867 if (!base)
2868 goto failure;
2869
2870 num_reserved_chans = d40_phy_res_init(base);
2871
2872 platform_set_drvdata(pdev, base);
2873
2874 spin_lock_init(&base->interrupt_lock);
2875 spin_lock_init(&base->execmd_lock);
2876
2877 /* Get IO for logical channel parameter address */
2878 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2879 if (!res) {
2880 ret = -ENOENT;
2881 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2882 goto failure;
2883 }
2884 base->lcpa_size = resource_size(res);
2885 base->phy_lcpa = res->start;
2886
2887 if (request_mem_region(res->start, resource_size(res),
2888 D40_NAME " I/O lcpa") == NULL) {
2889 ret = -EBUSY;
2890 d40_err(&pdev->dev,
2891 "Failed to request LCPA region 0x%x-0x%x\n",
2892 res->start, res->end);
2893 goto failure;
2894 }
2895
2896 /* We make use of ESRAM memory for this. */
2897 val = readl(base->virtbase + D40_DREG_LCPA);
2898 if (res->start != val && val != 0) {
2899 dev_warn(&pdev->dev,
2900 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2901 __func__, val, res->start);
2902 } else
2903 writel(res->start, base->virtbase + D40_DREG_LCPA);
2904
2905 base->lcpa_base = ioremap(res->start, resource_size(res));
2906 if (!base->lcpa_base) {
2907 ret = -ENOMEM;
2908 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2909 goto failure;
2910 }
2911
2912 ret = d40_lcla_allocate(base);
2913 if (ret) {
2914 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2915 goto failure;
2916 }
2917
2918 spin_lock_init(&base->lcla_pool.lock);
2919
2920 base->irq = platform_get_irq(pdev, 0);
2921
2922 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2923 if (ret) {
2924 d40_err(&pdev->dev, "No IRQ defined\n");
2925 goto failure;
2926 }
2927
2928 err = d40_dmaengine_init(base, num_reserved_chans);
2929 if (err)
2930 goto failure;
2931
2932 d40_hw_init(base);
2933
2934 dev_info(base->dev, "initialized\n");
2935 return 0;
2936
2937 failure:
2938 if (base) {
2939 if (base->desc_slab)
2940 kmem_cache_destroy(base->desc_slab);
2941 if (base->virtbase)
2942 iounmap(base->virtbase);
2943
2944 if (base->lcla_pool.dma_addr)
2945 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2946 SZ_1K * base->num_phy_chans,
2947 DMA_TO_DEVICE);
2948
2949 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2950 free_pages((unsigned long)base->lcla_pool.base,
2951 base->lcla_pool.pages);
2952
2953 kfree(base->lcla_pool.base_unaligned);
2954
2955 if (base->phy_lcpa)
2956 release_mem_region(base->phy_lcpa,
2957 base->lcpa_size);
2958 if (base->phy_start)
2959 release_mem_region(base->phy_start,
2960 base->phy_size);
2961 if (base->clk) {
2962 clk_disable(base->clk);
2963 clk_put(base->clk);
2964 }
2965
2966 kfree(base->lcla_pool.alloc_map);
2967 kfree(base->lookup_log_chans);
2968 kfree(base->lookup_phy_chans);
2969 kfree(base->phy_res);
2970 kfree(base);
2971 }
2972
2973 d40_err(&pdev->dev, "probe failed\n");
2974 return ret;
2975 }
2976
2977 static struct platform_driver d40_driver = {
2978 .driver = {
2979 .owner = THIS_MODULE,
2980 .name = D40_NAME,
2981 },
2982 };
2983
2984 static int __init stedma40_init(void)
2985 {
2986 return platform_driver_probe(&d40_driver, d40_probe);
2987 }
2988 arch_initcall(stedma40_init);
This page took 0.220373 seconds and 6 git commands to generate.