amd64_edac: Fix type usage in NB IDs and memory ranges
[deliverable/linux.git] / drivers / edac / amd64_edac.c
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26
27 /*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
34 static const struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61 };
62
63 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65 {
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74 }
75
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78 {
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87 }
88
89 /*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104 {
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109 }
110
111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113 {
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115 }
116
117 /*
118 * Select DCT to which PCI cfg accesses are routed
119 */
120 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121 {
122 u32 reg = 0;
123
124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 reg &= 0xfffffffe;
126 reg |= dct;
127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128 }
129
130 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 const char *func)
132 {
133 u8 dct = 0;
134
135 if (addr >= 0x140 && addr <= 0x1a0) {
136 dct = 1;
137 addr -= 0x100;
138 }
139
140 f15h_select_dct(pvt, dct);
141
142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143 }
144
145 /*
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149 * functionality.
150 *
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
154 *
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
157 */
158
159 /*
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
162 */
163 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
164 {
165 u32 scrubval;
166 int i;
167
168 /*
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
173 *
174 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
175 * by falling back to the last element in scrubrates[].
176 */
177 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
178 /*
179 * skip scrub rates which aren't recommended
180 * (see F10 BKDG, F3x58)
181 */
182 if (scrubrates[i].scrubval < min_rate)
183 continue;
184
185 if (scrubrates[i].bandwidth <= new_bw)
186 break;
187 }
188
189 scrubval = scrubrates[i].scrubval;
190
191 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
192
193 if (scrubval)
194 return scrubrates[i].bandwidth;
195
196 return 0;
197 }
198
199 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
200 {
201 struct amd64_pvt *pvt = mci->pvt_info;
202 u32 min_scrubrate = 0x5;
203
204 if (boot_cpu_data.x86 == 0xf)
205 min_scrubrate = 0x0;
206
207 /* F15h Erratum #505 */
208 if (boot_cpu_data.x86 == 0x15)
209 f15h_select_dct(pvt, 0);
210
211 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
212 }
213
214 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
215 {
216 struct amd64_pvt *pvt = mci->pvt_info;
217 u32 scrubval = 0;
218 int i, retval = -EINVAL;
219
220 /* F15h Erratum #505 */
221 if (boot_cpu_data.x86 == 0x15)
222 f15h_select_dct(pvt, 0);
223
224 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
225
226 scrubval = scrubval & 0x001F;
227
228 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
229 if (scrubrates[i].scrubval == scrubval) {
230 retval = scrubrates[i].bandwidth;
231 break;
232 }
233 }
234 return retval;
235 }
236
237 /*
238 * returns true if the SysAddr given by sys_addr matches the
239 * DRAM base/limit associated with node_id
240 */
241 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
242 u8 nid)
243 {
244 u64 addr;
245
246 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
247 * all ones if the most significant implemented address bit is 1.
248 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
249 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
250 * Application Programming.
251 */
252 addr = sys_addr & 0x000000ffffffffffull;
253
254 return ((addr >= get_dram_base(pvt, nid)) &&
255 (addr <= get_dram_limit(pvt, nid)));
256 }
257
258 /*
259 * Attempt to map a SysAddr to a node. On success, return a pointer to the
260 * mem_ctl_info structure for the node that the SysAddr maps to.
261 *
262 * On failure, return NULL.
263 */
264 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
265 u64 sys_addr)
266 {
267 struct amd64_pvt *pvt;
268 u8 node_id;
269 u32 intlv_en, bits;
270
271 /*
272 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
273 * 3.4.4.2) registers to map the SysAddr to a node ID.
274 */
275 pvt = mci->pvt_info;
276
277 /*
278 * The value of this field should be the same for all DRAM Base
279 * registers. Therefore we arbitrarily choose to read it from the
280 * register for node 0.
281 */
282 intlv_en = dram_intlv_en(pvt, 0);
283
284 if (intlv_en == 0) {
285 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
286 if (amd64_base_limit_match(pvt, sys_addr, node_id))
287 goto found;
288 }
289 goto err_no_match;
290 }
291
292 if (unlikely((intlv_en != 0x01) &&
293 (intlv_en != 0x03) &&
294 (intlv_en != 0x07))) {
295 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
296 return NULL;
297 }
298
299 bits = (((u32) sys_addr) >> 12) & intlv_en;
300
301 for (node_id = 0; ; ) {
302 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
303 break; /* intlv_sel field matches */
304
305 if (++node_id >= DRAM_RANGES)
306 goto err_no_match;
307 }
308
309 /* sanity test for sys_addr */
310 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
311 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
312 "range for node %d with node interleaving enabled.\n",
313 __func__, sys_addr, node_id);
314 return NULL;
315 }
316
317 found:
318 return edac_mc_find((int)node_id);
319
320 err_no_match:
321 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
322 (unsigned long)sys_addr);
323
324 return NULL;
325 }
326
327 /*
328 * compute the CS base address of the @csrow on the DRAM controller @dct.
329 * For details see F2x[5C:40] in the processor's BKDG
330 */
331 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
332 u64 *base, u64 *mask)
333 {
334 u64 csbase, csmask, base_bits, mask_bits;
335 u8 addr_shift;
336
337 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
338 csbase = pvt->csels[dct].csbases[csrow];
339 csmask = pvt->csels[dct].csmasks[csrow];
340 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
341 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
342 addr_shift = 4;
343 } else {
344 csbase = pvt->csels[dct].csbases[csrow];
345 csmask = pvt->csels[dct].csmasks[csrow >> 1];
346 addr_shift = 8;
347
348 if (boot_cpu_data.x86 == 0x15)
349 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
350 else
351 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
352 }
353
354 *base = (csbase & base_bits) << addr_shift;
355
356 *mask = ~0ULL;
357 /* poke holes for the csmask */
358 *mask &= ~(mask_bits << addr_shift);
359 /* OR them in */
360 *mask |= (csmask & mask_bits) << addr_shift;
361 }
362
363 #define for_each_chip_select(i, dct, pvt) \
364 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
365
366 #define chip_select_base(i, dct, pvt) \
367 pvt->csels[dct].csbases[i]
368
369 #define for_each_chip_select_mask(i, dct, pvt) \
370 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
371
372 /*
373 * @input_addr is an InputAddr associated with the node given by mci. Return the
374 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
375 */
376 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
377 {
378 struct amd64_pvt *pvt;
379 int csrow;
380 u64 base, mask;
381
382 pvt = mci->pvt_info;
383
384 for_each_chip_select(csrow, 0, pvt) {
385 if (!csrow_enabled(csrow, 0, pvt))
386 continue;
387
388 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
389
390 mask = ~mask;
391
392 if ((input_addr & mask) == (base & mask)) {
393 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
394 (unsigned long)input_addr, csrow,
395 pvt->mc_node_id);
396
397 return csrow;
398 }
399 }
400 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 (unsigned long)input_addr, pvt->mc_node_id);
402
403 return -1;
404 }
405
406 /*
407 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
408 * for the node represented by mci. Info is passed back in *hole_base,
409 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
410 * info is invalid. Info may be invalid for either of the following reasons:
411 *
412 * - The revision of the node is not E or greater. In this case, the DRAM Hole
413 * Address Register does not exist.
414 *
415 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
416 * indicating that its contents are not valid.
417 *
418 * The values passed back in *hole_base, *hole_offset, and *hole_size are
419 * complete 32-bit values despite the fact that the bitfields in the DHAR
420 * only represent bits 31-24 of the base and offset values.
421 */
422 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
423 u64 *hole_offset, u64 *hole_size)
424 {
425 struct amd64_pvt *pvt = mci->pvt_info;
426
427 /* only revE and later have the DRAM Hole Address Register */
428 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
429 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
430 pvt->ext_model, pvt->mc_node_id);
431 return 1;
432 }
433
434 /* valid for Fam10h and above */
435 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
436 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
437 return 1;
438 }
439
440 if (!dhar_valid(pvt)) {
441 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
442 pvt->mc_node_id);
443 return 1;
444 }
445
446 /* This node has Memory Hoisting */
447
448 /* +------------------+--------------------+--------------------+-----
449 * | memory | DRAM hole | relocated |
450 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
451 * | | | DRAM hole |
452 * | | | [0x100000000, |
453 * | | | (0x100000000+ |
454 * | | | (0xffffffff-x))] |
455 * +------------------+--------------------+--------------------+-----
456 *
457 * Above is a diagram of physical memory showing the DRAM hole and the
458 * relocated addresses from the DRAM hole. As shown, the DRAM hole
459 * starts at address x (the base address) and extends through address
460 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
461 * addresses in the hole so that they start at 0x100000000.
462 */
463
464 *hole_base = dhar_base(pvt);
465 *hole_size = (1ULL << 32) - *hole_base;
466
467 if (boot_cpu_data.x86 > 0xf)
468 *hole_offset = f10_dhar_offset(pvt);
469 else
470 *hole_offset = k8_dhar_offset(pvt);
471
472 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
473 pvt->mc_node_id, (unsigned long)*hole_base,
474 (unsigned long)*hole_offset, (unsigned long)*hole_size);
475
476 return 0;
477 }
478 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
479
480 /*
481 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
482 * assumed that sys_addr maps to the node given by mci.
483 *
484 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
485 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
486 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
487 * then it is also involved in translating a SysAddr to a DramAddr. Sections
488 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
489 * These parts of the documentation are unclear. I interpret them as follows:
490 *
491 * When node n receives a SysAddr, it processes the SysAddr as follows:
492 *
493 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
494 * Limit registers for node n. If the SysAddr is not within the range
495 * specified by the base and limit values, then node n ignores the Sysaddr
496 * (since it does not map to node n). Otherwise continue to step 2 below.
497 *
498 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
499 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
500 * the range of relocated addresses (starting at 0x100000000) from the DRAM
501 * hole. If not, skip to step 3 below. Else get the value of the
502 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
503 * offset defined by this value from the SysAddr.
504 *
505 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
506 * Base register for node n. To obtain the DramAddr, subtract the base
507 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
508 */
509 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
510 {
511 struct amd64_pvt *pvt = mci->pvt_info;
512 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
513 int ret;
514
515 dram_base = get_dram_base(pvt, pvt->mc_node_id);
516
517 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
518 &hole_size);
519 if (!ret) {
520 if ((sys_addr >= (1ULL << 32)) &&
521 (sys_addr < ((1ULL << 32) + hole_size))) {
522 /* use DHAR to translate SysAddr to DramAddr */
523 dram_addr = sys_addr - hole_offset;
524
525 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
526 (unsigned long)sys_addr,
527 (unsigned long)dram_addr);
528
529 return dram_addr;
530 }
531 }
532
533 /*
534 * Translate the SysAddr to a DramAddr as shown near the start of
535 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
536 * only deals with 40-bit values. Therefore we discard bits 63-40 of
537 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
538 * discard are all 1s. Otherwise the bits we discard are all 0s. See
539 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
540 * Programmer's Manual Volume 1 Application Programming.
541 */
542 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
543
544 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
545 (unsigned long)sys_addr, (unsigned long)dram_addr);
546 return dram_addr;
547 }
548
549 /*
550 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
551 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
552 * for node interleaving.
553 */
554 static int num_node_interleave_bits(unsigned intlv_en)
555 {
556 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
557 int n;
558
559 BUG_ON(intlv_en > 7);
560 n = intlv_shift_table[intlv_en];
561 return n;
562 }
563
564 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
565 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
566 {
567 struct amd64_pvt *pvt;
568 int intlv_shift;
569 u64 input_addr;
570
571 pvt = mci->pvt_info;
572
573 /*
574 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
575 * concerning translating a DramAddr to an InputAddr.
576 */
577 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
578 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
579 (dram_addr & 0xfff);
580
581 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
582 intlv_shift, (unsigned long)dram_addr,
583 (unsigned long)input_addr);
584
585 return input_addr;
586 }
587
588 /*
589 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
590 * assumed that @sys_addr maps to the node given by mci.
591 */
592 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
593 {
594 u64 input_addr;
595
596 input_addr =
597 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
598
599 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
600 (unsigned long)sys_addr, (unsigned long)input_addr);
601
602 return input_addr;
603 }
604
605
606 /*
607 * @input_addr is an InputAddr associated with the node represented by mci.
608 * Translate @input_addr to a DramAddr and return the result.
609 */
610 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
611 {
612 struct amd64_pvt *pvt;
613 unsigned node_id, intlv_shift;
614 u64 bits, dram_addr;
615 u32 intlv_sel;
616
617 /*
618 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
619 * shows how to translate a DramAddr to an InputAddr. Here we reverse
620 * this procedure. When translating from a DramAddr to an InputAddr, the
621 * bits used for node interleaving are discarded. Here we recover these
622 * bits from the IntlvSel field of the DRAM Limit register (section
623 * 3.4.4.2) for the node that input_addr is associated with.
624 */
625 pvt = mci->pvt_info;
626 node_id = pvt->mc_node_id;
627
628 BUG_ON(node_id > 7);
629
630 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
631 if (intlv_shift == 0) {
632 edac_dbg(1, " InputAddr 0x%lx translates to DramAddr of same value\n",
633 (unsigned long)input_addr);
634
635 return input_addr;
636 }
637
638 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
639 (input_addr & 0xfff);
640
641 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
642 dram_addr = bits + (intlv_sel << 12);
643
644 edac_dbg(1, "InputAddr 0x%lx translates to DramAddr 0x%lx (%d node interleave bits)\n",
645 (unsigned long)input_addr,
646 (unsigned long)dram_addr, intlv_shift);
647
648 return dram_addr;
649 }
650
651 /*
652 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
653 * @dram_addr to a SysAddr.
654 */
655 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
656 {
657 struct amd64_pvt *pvt = mci->pvt_info;
658 u64 hole_base, hole_offset, hole_size, base, sys_addr;
659 int ret = 0;
660
661 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
662 &hole_size);
663 if (!ret) {
664 if ((dram_addr >= hole_base) &&
665 (dram_addr < (hole_base + hole_size))) {
666 sys_addr = dram_addr + hole_offset;
667
668 edac_dbg(1, "using DHAR to translate DramAddr 0x%lx to SysAddr 0x%lx\n",
669 (unsigned long)dram_addr,
670 (unsigned long)sys_addr);
671
672 return sys_addr;
673 }
674 }
675
676 base = get_dram_base(pvt, pvt->mc_node_id);
677 sys_addr = dram_addr + base;
678
679 /*
680 * The sys_addr we have computed up to this point is a 40-bit value
681 * because the k8 deals with 40-bit values. However, the value we are
682 * supposed to return is a full 64-bit physical address. The AMD
683 * x86-64 architecture specifies that the most significant implemented
684 * address bit through bit 63 of a physical address must be either all
685 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
686 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
687 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
688 * Programming.
689 */
690 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
691
692 edac_dbg(1, " Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
693 pvt->mc_node_id, (unsigned long)dram_addr,
694 (unsigned long)sys_addr);
695
696 return sys_addr;
697 }
698
699 /*
700 * @input_addr is an InputAddr associated with the node given by mci. Translate
701 * @input_addr to a SysAddr.
702 */
703 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
704 u64 input_addr)
705 {
706 return dram_addr_to_sys_addr(mci,
707 input_addr_to_dram_addr(mci, input_addr));
708 }
709
710 /* Map the Error address to a PAGE and PAGE OFFSET. */
711 static inline void error_address_to_page_and_offset(u64 error_address,
712 struct err_info *err)
713 {
714 err->page = (u32) (error_address >> PAGE_SHIFT);
715 err->offset = ((u32) error_address) & ~PAGE_MASK;
716 }
717
718 /*
719 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
720 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
721 * of a node that detected an ECC memory error. mci represents the node that
722 * the error address maps to (possibly different from the node that detected
723 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
724 * error.
725 */
726 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
727 {
728 int csrow;
729
730 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
731
732 if (csrow == -1)
733 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
734 "address 0x%lx\n", (unsigned long)sys_addr);
735 return csrow;
736 }
737
738 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
739
740 /*
741 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
742 * are ECC capable.
743 */
744 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
745 {
746 u8 bit;
747 unsigned long edac_cap = EDAC_FLAG_NONE;
748
749 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
750 ? 19
751 : 17;
752
753 if (pvt->dclr0 & BIT(bit))
754 edac_cap = EDAC_FLAG_SECDED;
755
756 return edac_cap;
757 }
758
759 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
760
761 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
762 {
763 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
764
765 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
766 (dclr & BIT(16)) ? "un" : "",
767 (dclr & BIT(19)) ? "yes" : "no");
768
769 edac_dbg(1, " PAR/ERR parity: %s\n",
770 (dclr & BIT(8)) ? "enabled" : "disabled");
771
772 if (boot_cpu_data.x86 == 0x10)
773 edac_dbg(1, " DCT 128bit mode width: %s\n",
774 (dclr & BIT(11)) ? "128b" : "64b");
775
776 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
777 (dclr & BIT(12)) ? "yes" : "no",
778 (dclr & BIT(13)) ? "yes" : "no",
779 (dclr & BIT(14)) ? "yes" : "no",
780 (dclr & BIT(15)) ? "yes" : "no");
781 }
782
783 /* Display and decode various NB registers for debug purposes. */
784 static void dump_misc_regs(struct amd64_pvt *pvt)
785 {
786 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
787
788 edac_dbg(1, " NB two channel DRAM capable: %s\n",
789 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
790
791 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
792 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
793 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
794
795 amd64_dump_dramcfg_low(pvt->dclr0, 0);
796
797 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
798
799 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
800 pvt->dhar, dhar_base(pvt),
801 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
802 : f10_dhar_offset(pvt));
803
804 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
805
806 amd64_debug_display_dimm_sizes(pvt, 0);
807
808 /* everything below this point is Fam10h and above */
809 if (boot_cpu_data.x86 == 0xf)
810 return;
811
812 amd64_debug_display_dimm_sizes(pvt, 1);
813
814 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
815
816 /* Only if NOT ganged does dclr1 have valid info */
817 if (!dct_ganging_enabled(pvt))
818 amd64_dump_dramcfg_low(pvt->dclr1, 1);
819 }
820
821 /*
822 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
823 */
824 static void prep_chip_selects(struct amd64_pvt *pvt)
825 {
826 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
827 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
828 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
829 } else {
830 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
831 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
832 }
833 }
834
835 /*
836 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
837 */
838 static void read_dct_base_mask(struct amd64_pvt *pvt)
839 {
840 int cs;
841
842 prep_chip_selects(pvt);
843
844 for_each_chip_select(cs, 0, pvt) {
845 int reg0 = DCSB0 + (cs * 4);
846 int reg1 = DCSB1 + (cs * 4);
847 u32 *base0 = &pvt->csels[0].csbases[cs];
848 u32 *base1 = &pvt->csels[1].csbases[cs];
849
850 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
851 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
852 cs, *base0, reg0);
853
854 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
855 continue;
856
857 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
858 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
859 cs, *base1, reg1);
860 }
861
862 for_each_chip_select_mask(cs, 0, pvt) {
863 int reg0 = DCSM0 + (cs * 4);
864 int reg1 = DCSM1 + (cs * 4);
865 u32 *mask0 = &pvt->csels[0].csmasks[cs];
866 u32 *mask1 = &pvt->csels[1].csmasks[cs];
867
868 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
869 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
870 cs, *mask0, reg0);
871
872 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
873 continue;
874
875 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
876 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
877 cs, *mask1, reg1);
878 }
879 }
880
881 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
882 {
883 enum mem_type type;
884
885 /* F15h supports only DDR3 */
886 if (boot_cpu_data.x86 >= 0x15)
887 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
888 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
889 if (pvt->dchr0 & DDR3_MODE)
890 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
891 else
892 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
893 } else {
894 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
895 }
896
897 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
898
899 return type;
900 }
901
902 /* Get the number of DCT channels the memory controller is using. */
903 static int k8_early_channel_count(struct amd64_pvt *pvt)
904 {
905 int flag;
906
907 if (pvt->ext_model >= K8_REV_F)
908 /* RevF (NPT) and later */
909 flag = pvt->dclr0 & WIDTH_128;
910 else
911 /* RevE and earlier */
912 flag = pvt->dclr0 & REVE_WIDTH_128;
913
914 /* not used */
915 pvt->dclr1 = 0;
916
917 return (flag) ? 2 : 1;
918 }
919
920 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
921 static u64 get_error_address(struct mce *m)
922 {
923 struct cpuinfo_x86 *c = &boot_cpu_data;
924 u64 addr;
925 u8 start_bit = 1;
926 u8 end_bit = 47;
927
928 if (c->x86 == 0xf) {
929 start_bit = 3;
930 end_bit = 39;
931 }
932
933 addr = m->addr & GENMASK(start_bit, end_bit);
934
935 /*
936 * Erratum 637 workaround
937 */
938 if (c->x86 == 0x15) {
939 struct amd64_pvt *pvt;
940 u64 cc6_base, tmp_addr;
941 u32 tmp;
942 u16 mce_nid;
943 u8 intlv_en;
944
945 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
946 return addr;
947
948 mce_nid = amd_get_nb_id(m->extcpu);
949 pvt = mcis[mce_nid]->pvt_info;
950
951 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
952 intlv_en = tmp >> 21 & 0x7;
953
954 /* add [47:27] + 3 trailing bits */
955 cc6_base = (tmp & GENMASK(0, 20)) << 3;
956
957 /* reverse and add DramIntlvEn */
958 cc6_base |= intlv_en ^ 0x7;
959
960 /* pin at [47:24] */
961 cc6_base <<= 24;
962
963 if (!intlv_en)
964 return cc6_base | (addr & GENMASK(0, 23));
965
966 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
967
968 /* faster log2 */
969 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
970
971 /* OR DramIntlvSel into bits [14:12] */
972 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
973
974 /* add remaining [11:0] bits from original MC4_ADDR */
975 tmp_addr |= addr & GENMASK(0, 11);
976
977 return cc6_base | tmp_addr;
978 }
979
980 return addr;
981 }
982
983 static struct pci_dev *pci_get_related_function(unsigned int vendor,
984 unsigned int device,
985 struct pci_dev *related)
986 {
987 struct pci_dev *dev = NULL;
988
989 while ((dev = pci_get_device(vendor, device, dev))) {
990 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
991 (dev->bus->number == related->bus->number) &&
992 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
993 break;
994 }
995
996 return dev;
997 }
998
999 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1000 {
1001 struct amd_northbridge *nb;
1002 struct pci_dev *misc, *f1 = NULL;
1003 struct cpuinfo_x86 *c = &boot_cpu_data;
1004 int off = range << 3;
1005 u32 llim;
1006
1007 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
1008 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1009
1010 if (c->x86 == 0xf)
1011 return;
1012
1013 if (!dram_rw(pvt, range))
1014 return;
1015
1016 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1017 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1018
1019 /* F15h: factor in CC6 save area by reading dst node's limit reg */
1020 if (c->x86 != 0x15)
1021 return;
1022
1023 nb = node_to_amd_nb(dram_dst_node(pvt, range));
1024 if (WARN_ON(!nb))
1025 return;
1026
1027 misc = nb->misc;
1028 f1 = pci_get_related_function(misc->vendor, PCI_DEVICE_ID_AMD_15H_NB_F1, misc);
1029 if (WARN_ON(!f1))
1030 return;
1031
1032 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1033
1034 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1035
1036 /* {[39:27],111b} */
1037 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1038
1039 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1040
1041 /* [47:40] */
1042 pvt->ranges[range].lim.hi |= llim >> 13;
1043
1044 pci_dev_put(f1);
1045 }
1046
1047 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1048 struct err_info *err)
1049 {
1050 struct amd64_pvt *pvt = mci->pvt_info;
1051
1052 error_address_to_page_and_offset(sys_addr, err);
1053
1054 /*
1055 * Find out which node the error address belongs to. This may be
1056 * different from the node that detected the error.
1057 */
1058 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
1059 if (!err->src_mci) {
1060 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1061 (unsigned long)sys_addr);
1062 err->err_code = ERR_NODE;
1063 return;
1064 }
1065
1066 /* Now map the sys_addr to a CSROW */
1067 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
1068 if (err->csrow < 0) {
1069 err->err_code = ERR_CSROW;
1070 return;
1071 }
1072
1073 /* CHIPKILL enabled */
1074 if (pvt->nbcfg & NBCFG_CHIPKILL) {
1075 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1076 if (err->channel < 0) {
1077 /*
1078 * Syndrome didn't map, so we don't know which of the
1079 * 2 DIMMs is in error. So we need to ID 'both' of them
1080 * as suspect.
1081 */
1082 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1083 "possible error reporting race\n",
1084 err->syndrome);
1085 err->err_code = ERR_CHANNEL;
1086 return;
1087 }
1088 } else {
1089 /*
1090 * non-chipkill ecc mode
1091 *
1092 * The k8 documentation is unclear about how to determine the
1093 * channel number when using non-chipkill memory. This method
1094 * was obtained from email communication with someone at AMD.
1095 * (Wish the email was placed in this comment - norsk)
1096 */
1097 err->channel = ((sys_addr & BIT(3)) != 0);
1098 }
1099 }
1100
1101 static int ddr2_cs_size(unsigned i, bool dct_width)
1102 {
1103 unsigned shift = 0;
1104
1105 if (i <= 2)
1106 shift = i;
1107 else if (!(i & 0x1))
1108 shift = i >> 1;
1109 else
1110 shift = (i + 1) >> 1;
1111
1112 return 128 << (shift + !!dct_width);
1113 }
1114
1115 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1116 unsigned cs_mode)
1117 {
1118 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1119
1120 if (pvt->ext_model >= K8_REV_F) {
1121 WARN_ON(cs_mode > 11);
1122 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1123 }
1124 else if (pvt->ext_model >= K8_REV_D) {
1125 unsigned diff;
1126 WARN_ON(cs_mode > 10);
1127
1128 /*
1129 * the below calculation, besides trying to win an obfuscated C
1130 * contest, maps cs_mode values to DIMM chip select sizes. The
1131 * mappings are:
1132 *
1133 * cs_mode CS size (mb)
1134 * ======= ============
1135 * 0 32
1136 * 1 64
1137 * 2 128
1138 * 3 128
1139 * 4 256
1140 * 5 512
1141 * 6 256
1142 * 7 512
1143 * 8 1024
1144 * 9 1024
1145 * 10 2048
1146 *
1147 * Basically, it calculates a value with which to shift the
1148 * smallest CS size of 32MB.
1149 *
1150 * ddr[23]_cs_size have a similar purpose.
1151 */
1152 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1153
1154 return 32 << (cs_mode - diff);
1155 }
1156 else {
1157 WARN_ON(cs_mode > 6);
1158 return 32 << cs_mode;
1159 }
1160 }
1161
1162 /*
1163 * Get the number of DCT channels in use.
1164 *
1165 * Return:
1166 * number of Memory Channels in operation
1167 * Pass back:
1168 * contents of the DCL0_LOW register
1169 */
1170 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1171 {
1172 int i, j, channels = 0;
1173
1174 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1175 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1176 return 2;
1177
1178 /*
1179 * Need to check if in unganged mode: In such, there are 2 channels,
1180 * but they are not in 128 bit mode and thus the above 'dclr0' status
1181 * bit will be OFF.
1182 *
1183 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1184 * their CSEnable bit on. If so, then SINGLE DIMM case.
1185 */
1186 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1187
1188 /*
1189 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1190 * is more than just one DIMM present in unganged mode. Need to check
1191 * both controllers since DIMMs can be placed in either one.
1192 */
1193 for (i = 0; i < 2; i++) {
1194 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1195
1196 for (j = 0; j < 4; j++) {
1197 if (DBAM_DIMM(j, dbam) > 0) {
1198 channels++;
1199 break;
1200 }
1201 }
1202 }
1203
1204 if (channels > 2)
1205 channels = 2;
1206
1207 amd64_info("MCT channel count: %d\n", channels);
1208
1209 return channels;
1210 }
1211
1212 static int ddr3_cs_size(unsigned i, bool dct_width)
1213 {
1214 unsigned shift = 0;
1215 int cs_size = 0;
1216
1217 if (i == 0 || i == 3 || i == 4)
1218 cs_size = -1;
1219 else if (i <= 2)
1220 shift = i;
1221 else if (i == 12)
1222 shift = 7;
1223 else if (!(i & 0x1))
1224 shift = i >> 1;
1225 else
1226 shift = (i + 1) >> 1;
1227
1228 if (cs_size != -1)
1229 cs_size = (128 * (1 << !!dct_width)) << shift;
1230
1231 return cs_size;
1232 }
1233
1234 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1235 unsigned cs_mode)
1236 {
1237 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1238
1239 WARN_ON(cs_mode > 11);
1240
1241 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1242 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1243 else
1244 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1245 }
1246
1247 /*
1248 * F15h supports only 64bit DCT interfaces
1249 */
1250 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1251 unsigned cs_mode)
1252 {
1253 WARN_ON(cs_mode > 12);
1254
1255 return ddr3_cs_size(cs_mode, false);
1256 }
1257
1258 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1259 {
1260
1261 if (boot_cpu_data.x86 == 0xf)
1262 return;
1263
1264 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1265 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1266 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1267
1268 edac_dbg(0, " DCTs operate in %s mode\n",
1269 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1270
1271 if (!dct_ganging_enabled(pvt))
1272 edac_dbg(0, " Address range split per DCT: %s\n",
1273 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1274
1275 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1276 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1277 (dct_memory_cleared(pvt) ? "yes" : "no"));
1278
1279 edac_dbg(0, " channel interleave: %s, "
1280 "interleave bits selector: 0x%x\n",
1281 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1282 dct_sel_interleave_addr(pvt));
1283 }
1284
1285 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1286 }
1287
1288 /*
1289 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1290 * Interleaving Modes.
1291 */
1292 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1293 bool hi_range_sel, u8 intlv_en)
1294 {
1295 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1296
1297 if (dct_ganging_enabled(pvt))
1298 return 0;
1299
1300 if (hi_range_sel)
1301 return dct_sel_high;
1302
1303 /*
1304 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1305 */
1306 if (dct_interleave_enabled(pvt)) {
1307 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1308
1309 /* return DCT select function: 0=DCT0, 1=DCT1 */
1310 if (!intlv_addr)
1311 return sys_addr >> 6 & 1;
1312
1313 if (intlv_addr & 0x2) {
1314 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1315 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1316
1317 return ((sys_addr >> shift) & 1) ^ temp;
1318 }
1319
1320 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1321 }
1322
1323 if (dct_high_range_enabled(pvt))
1324 return ~dct_sel_high & 1;
1325
1326 return 0;
1327 }
1328
1329 /* Convert the sys_addr to the normalized DCT address */
1330 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1331 u64 sys_addr, bool hi_rng,
1332 u32 dct_sel_base_addr)
1333 {
1334 u64 chan_off;
1335 u64 dram_base = get_dram_base(pvt, range);
1336 u64 hole_off = f10_dhar_offset(pvt);
1337 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1338
1339 if (hi_rng) {
1340 /*
1341 * if
1342 * base address of high range is below 4Gb
1343 * (bits [47:27] at [31:11])
1344 * DRAM address space on this DCT is hoisted above 4Gb &&
1345 * sys_addr > 4Gb
1346 *
1347 * remove hole offset from sys_addr
1348 * else
1349 * remove high range offset from sys_addr
1350 */
1351 if ((!(dct_sel_base_addr >> 16) ||
1352 dct_sel_base_addr < dhar_base(pvt)) &&
1353 dhar_valid(pvt) &&
1354 (sys_addr >= BIT_64(32)))
1355 chan_off = hole_off;
1356 else
1357 chan_off = dct_sel_base_off;
1358 } else {
1359 /*
1360 * if
1361 * we have a valid hole &&
1362 * sys_addr > 4Gb
1363 *
1364 * remove hole
1365 * else
1366 * remove dram base to normalize to DCT address
1367 */
1368 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1369 chan_off = hole_off;
1370 else
1371 chan_off = dram_base;
1372 }
1373
1374 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1375 }
1376
1377 /*
1378 * checks if the csrow passed in is marked as SPARED, if so returns the new
1379 * spare row
1380 */
1381 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1382 {
1383 int tmp_cs;
1384
1385 if (online_spare_swap_done(pvt, dct) &&
1386 csrow == online_spare_bad_dramcs(pvt, dct)) {
1387
1388 for_each_chip_select(tmp_cs, dct, pvt) {
1389 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1390 csrow = tmp_cs;
1391 break;
1392 }
1393 }
1394 }
1395 return csrow;
1396 }
1397
1398 /*
1399 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1400 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1401 *
1402 * Return:
1403 * -EINVAL: NOT FOUND
1404 * 0..csrow = Chip-Select Row
1405 */
1406 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1407 {
1408 struct mem_ctl_info *mci;
1409 struct amd64_pvt *pvt;
1410 u64 cs_base, cs_mask;
1411 int cs_found = -EINVAL;
1412 int csrow;
1413
1414 mci = mcis[nid];
1415 if (!mci)
1416 return cs_found;
1417
1418 pvt = mci->pvt_info;
1419
1420 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1421
1422 for_each_chip_select(csrow, dct, pvt) {
1423 if (!csrow_enabled(csrow, dct, pvt))
1424 continue;
1425
1426 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1427
1428 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1429 csrow, cs_base, cs_mask);
1430
1431 cs_mask = ~cs_mask;
1432
1433 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1434 (in_addr & cs_mask), (cs_base & cs_mask));
1435
1436 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1437 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1438
1439 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1440 break;
1441 }
1442 }
1443 return cs_found;
1444 }
1445
1446 /*
1447 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1448 * swapped with a region located at the bottom of memory so that the GPU can use
1449 * the interleaved region and thus two channels.
1450 */
1451 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1452 {
1453 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1454
1455 if (boot_cpu_data.x86 == 0x10) {
1456 /* only revC3 and revE have that feature */
1457 if (boot_cpu_data.x86_model < 4 ||
1458 (boot_cpu_data.x86_model < 0xa &&
1459 boot_cpu_data.x86_mask < 3))
1460 return sys_addr;
1461 }
1462
1463 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1464
1465 if (!(swap_reg & 0x1))
1466 return sys_addr;
1467
1468 swap_base = (swap_reg >> 3) & 0x7f;
1469 swap_limit = (swap_reg >> 11) & 0x7f;
1470 rgn_size = (swap_reg >> 20) & 0x7f;
1471 tmp_addr = sys_addr >> 27;
1472
1473 if (!(sys_addr >> 34) &&
1474 (((tmp_addr >= swap_base) &&
1475 (tmp_addr <= swap_limit)) ||
1476 (tmp_addr < rgn_size)))
1477 return sys_addr ^ (u64)swap_base << 27;
1478
1479 return sys_addr;
1480 }
1481
1482 /* For a given @dram_range, check if @sys_addr falls within it. */
1483 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1484 u64 sys_addr, int *chan_sel)
1485 {
1486 int cs_found = -EINVAL;
1487 u64 chan_addr;
1488 u32 dct_sel_base;
1489 u8 channel;
1490 bool high_range = false;
1491
1492 u8 node_id = dram_dst_node(pvt, range);
1493 u8 intlv_en = dram_intlv_en(pvt, range);
1494 u32 intlv_sel = dram_intlv_sel(pvt, range);
1495
1496 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1497 range, sys_addr, get_dram_limit(pvt, range));
1498
1499 if (dhar_valid(pvt) &&
1500 dhar_base(pvt) <= sys_addr &&
1501 sys_addr < BIT_64(32)) {
1502 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1503 sys_addr);
1504 return -EINVAL;
1505 }
1506
1507 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1508 return -EINVAL;
1509
1510 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1511
1512 dct_sel_base = dct_sel_baseaddr(pvt);
1513
1514 /*
1515 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1516 * select between DCT0 and DCT1.
1517 */
1518 if (dct_high_range_enabled(pvt) &&
1519 !dct_ganging_enabled(pvt) &&
1520 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1521 high_range = true;
1522
1523 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1524
1525 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1526 high_range, dct_sel_base);
1527
1528 /* Remove node interleaving, see F1x120 */
1529 if (intlv_en)
1530 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1531 (chan_addr & 0xfff);
1532
1533 /* remove channel interleave */
1534 if (dct_interleave_enabled(pvt) &&
1535 !dct_high_range_enabled(pvt) &&
1536 !dct_ganging_enabled(pvt)) {
1537
1538 if (dct_sel_interleave_addr(pvt) != 1) {
1539 if (dct_sel_interleave_addr(pvt) == 0x3)
1540 /* hash 9 */
1541 chan_addr = ((chan_addr >> 10) << 9) |
1542 (chan_addr & 0x1ff);
1543 else
1544 /* A[6] or hash 6 */
1545 chan_addr = ((chan_addr >> 7) << 6) |
1546 (chan_addr & 0x3f);
1547 } else
1548 /* A[12] */
1549 chan_addr = ((chan_addr >> 13) << 12) |
1550 (chan_addr & 0xfff);
1551 }
1552
1553 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1554
1555 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1556
1557 if (cs_found >= 0)
1558 *chan_sel = channel;
1559
1560 return cs_found;
1561 }
1562
1563 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1564 int *chan_sel)
1565 {
1566 int cs_found = -EINVAL;
1567 unsigned range;
1568
1569 for (range = 0; range < DRAM_RANGES; range++) {
1570
1571 if (!dram_rw(pvt, range))
1572 continue;
1573
1574 if ((get_dram_base(pvt, range) <= sys_addr) &&
1575 (get_dram_limit(pvt, range) >= sys_addr)) {
1576
1577 cs_found = f1x_match_to_this_node(pvt, range,
1578 sys_addr, chan_sel);
1579 if (cs_found >= 0)
1580 break;
1581 }
1582 }
1583 return cs_found;
1584 }
1585
1586 /*
1587 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1588 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1589 *
1590 * The @sys_addr is usually an error address received from the hardware
1591 * (MCX_ADDR).
1592 */
1593 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1594 struct err_info *err)
1595 {
1596 struct amd64_pvt *pvt = mci->pvt_info;
1597
1598 error_address_to_page_and_offset(sys_addr, err);
1599
1600 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1601 if (err->csrow < 0) {
1602 err->err_code = ERR_CSROW;
1603 return;
1604 }
1605
1606 /*
1607 * We need the syndromes for channel detection only when we're
1608 * ganged. Otherwise @chan should already contain the channel at
1609 * this point.
1610 */
1611 if (dct_ganging_enabled(pvt))
1612 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1613 }
1614
1615 /*
1616 * debug routine to display the memory sizes of all logical DIMMs and its
1617 * CSROWs
1618 */
1619 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1620 {
1621 int dimm, size0, size1;
1622 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1623 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1624
1625 if (boot_cpu_data.x86 == 0xf) {
1626 /* K8 families < revF not supported yet */
1627 if (pvt->ext_model < K8_REV_F)
1628 return;
1629 else
1630 WARN_ON(ctrl != 0);
1631 }
1632
1633 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1634 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1635 : pvt->csels[0].csbases;
1636
1637 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1638 ctrl, dbam);
1639
1640 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1641
1642 /* Dump memory sizes for DIMM and its CSROWs */
1643 for (dimm = 0; dimm < 4; dimm++) {
1644
1645 size0 = 0;
1646 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1647 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1648 DBAM_DIMM(dimm, dbam));
1649
1650 size1 = 0;
1651 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1652 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1653 DBAM_DIMM(dimm, dbam));
1654
1655 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1656 dimm * 2, size0,
1657 dimm * 2 + 1, size1);
1658 }
1659 }
1660
1661 static struct amd64_family_type amd64_family_types[] = {
1662 [K8_CPUS] = {
1663 .ctl_name = "K8",
1664 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1665 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1666 .ops = {
1667 .early_channel_count = k8_early_channel_count,
1668 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1669 .dbam_to_cs = k8_dbam_to_chip_select,
1670 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1671 }
1672 },
1673 [F10_CPUS] = {
1674 .ctl_name = "F10h",
1675 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1676 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1677 .ops = {
1678 .early_channel_count = f1x_early_channel_count,
1679 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1680 .dbam_to_cs = f10_dbam_to_chip_select,
1681 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1682 }
1683 },
1684 [F15_CPUS] = {
1685 .ctl_name = "F15h",
1686 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1687 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1688 .ops = {
1689 .early_channel_count = f1x_early_channel_count,
1690 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1691 .dbam_to_cs = f15_dbam_to_chip_select,
1692 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1693 }
1694 },
1695 };
1696
1697 /*
1698 * These are tables of eigenvectors (one per line) which can be used for the
1699 * construction of the syndrome tables. The modified syndrome search algorithm
1700 * uses those to find the symbol in error and thus the DIMM.
1701 *
1702 * Algorithm courtesy of Ross LaFetra from AMD.
1703 */
1704 static const u16 x4_vectors[] = {
1705 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1706 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1707 0x0001, 0x0002, 0x0004, 0x0008,
1708 0x1013, 0x3032, 0x4044, 0x8088,
1709 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1710 0x4857, 0xc4fe, 0x13cc, 0x3288,
1711 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1712 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1713 0x15c1, 0x2a42, 0x89ac, 0x4758,
1714 0x2b03, 0x1602, 0x4f0c, 0xca08,
1715 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1716 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1717 0x2b87, 0x164e, 0x642c, 0xdc18,
1718 0x40b9, 0x80de, 0x1094, 0x20e8,
1719 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1720 0x11c1, 0x2242, 0x84ac, 0x4c58,
1721 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1722 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1723 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1724 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1725 0x16b3, 0x3d62, 0x4f34, 0x8518,
1726 0x1e2f, 0x391a, 0x5cac, 0xf858,
1727 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1728 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1729 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1730 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1731 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1732 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1733 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1734 0x185d, 0x2ca6, 0x7914, 0x9e28,
1735 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1736 0x4199, 0x82ee, 0x19f4, 0x2e58,
1737 0x4807, 0xc40e, 0x130c, 0x3208,
1738 0x1905, 0x2e0a, 0x5804, 0xac08,
1739 0x213f, 0x132a, 0xadfc, 0x5ba8,
1740 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1741 };
1742
1743 static const u16 x8_vectors[] = {
1744 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1745 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1746 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1747 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1748 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1749 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1750 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1751 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1752 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1753 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1754 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1755 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1756 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1757 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1758 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1759 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1760 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1761 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1762 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1763 };
1764
1765 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
1766 unsigned v_dim)
1767 {
1768 unsigned int i, err_sym;
1769
1770 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1771 u16 s = syndrome;
1772 unsigned v_idx = err_sym * v_dim;
1773 unsigned v_end = (err_sym + 1) * v_dim;
1774
1775 /* walk over all 16 bits of the syndrome */
1776 for (i = 1; i < (1U << 16); i <<= 1) {
1777
1778 /* if bit is set in that eigenvector... */
1779 if (v_idx < v_end && vectors[v_idx] & i) {
1780 u16 ev_comp = vectors[v_idx++];
1781
1782 /* ... and bit set in the modified syndrome, */
1783 if (s & i) {
1784 /* remove it. */
1785 s ^= ev_comp;
1786
1787 if (!s)
1788 return err_sym;
1789 }
1790
1791 } else if (s & i)
1792 /* can't get to zero, move to next symbol */
1793 break;
1794 }
1795 }
1796
1797 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
1798 return -1;
1799 }
1800
1801 static int map_err_sym_to_channel(int err_sym, int sym_size)
1802 {
1803 if (sym_size == 4)
1804 switch (err_sym) {
1805 case 0x20:
1806 case 0x21:
1807 return 0;
1808 break;
1809 case 0x22:
1810 case 0x23:
1811 return 1;
1812 break;
1813 default:
1814 return err_sym >> 4;
1815 break;
1816 }
1817 /* x8 symbols */
1818 else
1819 switch (err_sym) {
1820 /* imaginary bits not in a DIMM */
1821 case 0x10:
1822 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1823 err_sym);
1824 return -1;
1825 break;
1826
1827 case 0x11:
1828 return 0;
1829 break;
1830 case 0x12:
1831 return 1;
1832 break;
1833 default:
1834 return err_sym >> 3;
1835 break;
1836 }
1837 return -1;
1838 }
1839
1840 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1841 {
1842 struct amd64_pvt *pvt = mci->pvt_info;
1843 int err_sym = -1;
1844
1845 if (pvt->ecc_sym_sz == 8)
1846 err_sym = decode_syndrome(syndrome, x8_vectors,
1847 ARRAY_SIZE(x8_vectors),
1848 pvt->ecc_sym_sz);
1849 else if (pvt->ecc_sym_sz == 4)
1850 err_sym = decode_syndrome(syndrome, x4_vectors,
1851 ARRAY_SIZE(x4_vectors),
1852 pvt->ecc_sym_sz);
1853 else {
1854 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1855 return err_sym;
1856 }
1857
1858 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1859 }
1860
1861 static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
1862 u8 ecc_type)
1863 {
1864 enum hw_event_mc_err_type err_type;
1865 const char *string;
1866
1867 if (ecc_type == 2)
1868 err_type = HW_EVENT_ERR_CORRECTED;
1869 else if (ecc_type == 1)
1870 err_type = HW_EVENT_ERR_UNCORRECTED;
1871 else {
1872 WARN(1, "Something is rotten in the state of Denmark.\n");
1873 return;
1874 }
1875
1876 switch (err->err_code) {
1877 case DECODE_OK:
1878 string = "";
1879 break;
1880 case ERR_NODE:
1881 string = "Failed to map error addr to a node";
1882 break;
1883 case ERR_CSROW:
1884 string = "Failed to map error addr to a csrow";
1885 break;
1886 case ERR_CHANNEL:
1887 string = "unknown syndrome - possible error reporting race";
1888 break;
1889 default:
1890 string = "WTF error";
1891 break;
1892 }
1893
1894 edac_mc_handle_error(err_type, mci, 1,
1895 err->page, err->offset, err->syndrome,
1896 err->csrow, err->channel, -1,
1897 string, "");
1898 }
1899
1900 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1901 struct mce *m)
1902 {
1903 struct amd64_pvt *pvt = mci->pvt_info;
1904 u8 ecc_type = (m->status >> 45) & 0x3;
1905 u8 xec = XEC(m->status, 0x1f);
1906 u16 ec = EC(m->status);
1907 u64 sys_addr;
1908 struct err_info err;
1909
1910 /* Bail out early if this was an 'observed' error */
1911 if (PP(ec) == NBSL_PP_OBS)
1912 return;
1913
1914 /* Do only ECC errors */
1915 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1916 return;
1917
1918 memset(&err, 0, sizeof(err));
1919
1920 sys_addr = get_error_address(m);
1921
1922 if (ecc_type == 2)
1923 err.syndrome = extract_syndrome(m->status);
1924
1925 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
1926
1927 __log_bus_error(mci, &err, ecc_type);
1928 }
1929
1930 void amd64_decode_bus_error(int node_id, struct mce *m)
1931 {
1932 __amd64_decode_bus_error(mcis[node_id], m);
1933 }
1934
1935 /*
1936 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1937 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1938 */
1939 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1940 {
1941 /* Reserve the ADDRESS MAP Device */
1942 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1943 if (!pvt->F1) {
1944 amd64_err("error address map device not found: "
1945 "vendor %x device 0x%x (broken BIOS?)\n",
1946 PCI_VENDOR_ID_AMD, f1_id);
1947 return -ENODEV;
1948 }
1949
1950 /* Reserve the MISC Device */
1951 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1952 if (!pvt->F3) {
1953 pci_dev_put(pvt->F1);
1954 pvt->F1 = NULL;
1955
1956 amd64_err("error F3 device not found: "
1957 "vendor %x device 0x%x (broken BIOS?)\n",
1958 PCI_VENDOR_ID_AMD, f3_id);
1959
1960 return -ENODEV;
1961 }
1962 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
1963 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
1964 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
1965
1966 return 0;
1967 }
1968
1969 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1970 {
1971 pci_dev_put(pvt->F1);
1972 pci_dev_put(pvt->F3);
1973 }
1974
1975 /*
1976 * Retrieve the hardware registers of the memory controller (this includes the
1977 * 'Address Map' and 'Misc' device regs)
1978 */
1979 static void read_mc_regs(struct amd64_pvt *pvt)
1980 {
1981 struct cpuinfo_x86 *c = &boot_cpu_data;
1982 u64 msr_val;
1983 u32 tmp;
1984 unsigned range;
1985
1986 /*
1987 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1988 * those are Read-As-Zero
1989 */
1990 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1991 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
1992
1993 /* check first whether TOP_MEM2 is enabled */
1994 rdmsrl(MSR_K8_SYSCFG, msr_val);
1995 if (msr_val & (1U << 21)) {
1996 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1997 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
1998 } else
1999 edac_dbg(0, " TOP_MEM2 disabled\n");
2000
2001 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2002
2003 read_dram_ctl_register(pvt);
2004
2005 for (range = 0; range < DRAM_RANGES; range++) {
2006 u8 rw;
2007
2008 /* read settings for this DRAM range */
2009 read_dram_base_limit_regs(pvt, range);
2010
2011 rw = dram_rw(pvt, range);
2012 if (!rw)
2013 continue;
2014
2015 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2016 range,
2017 get_dram_base(pvt, range),
2018 get_dram_limit(pvt, range));
2019
2020 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2021 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2022 (rw & 0x1) ? "R" : "-",
2023 (rw & 0x2) ? "W" : "-",
2024 dram_intlv_sel(pvt, range),
2025 dram_dst_node(pvt, range));
2026 }
2027
2028 read_dct_base_mask(pvt);
2029
2030 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2031 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2032
2033 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2034
2035 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2036 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2037
2038 if (!dct_ganging_enabled(pvt)) {
2039 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2040 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2041 }
2042
2043 pvt->ecc_sym_sz = 4;
2044
2045 if (c->x86 >= 0x10) {
2046 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2047 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2048
2049 /* F10h, revD and later can do x8 ECC too */
2050 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2051 pvt->ecc_sym_sz = 8;
2052 }
2053 dump_misc_regs(pvt);
2054 }
2055
2056 /*
2057 * NOTE: CPU Revision Dependent code
2058 *
2059 * Input:
2060 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2061 * k8 private pointer to -->
2062 * DRAM Bank Address mapping register
2063 * node_id
2064 * DCL register where dual_channel_active is
2065 *
2066 * The DBAM register consists of 4 sets of 4 bits each definitions:
2067 *
2068 * Bits: CSROWs
2069 * 0-3 CSROWs 0 and 1
2070 * 4-7 CSROWs 2 and 3
2071 * 8-11 CSROWs 4 and 5
2072 * 12-15 CSROWs 6 and 7
2073 *
2074 * Values range from: 0 to 15
2075 * The meaning of the values depends on CPU revision and dual-channel state,
2076 * see relevant BKDG more info.
2077 *
2078 * The memory controller provides for total of only 8 CSROWs in its current
2079 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2080 * single channel or two (2) DIMMs in dual channel mode.
2081 *
2082 * The following code logic collapses the various tables for CSROW based on CPU
2083 * revision.
2084 *
2085 * Returns:
2086 * The number of PAGE_SIZE pages on the specified CSROW number it
2087 * encompasses
2088 *
2089 */
2090 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2091 {
2092 u32 cs_mode, nr_pages;
2093 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2094
2095
2096 /*
2097 * The math on this doesn't look right on the surface because x/2*4 can
2098 * be simplified to x*2 but this expression makes use of the fact that
2099 * it is integral math where 1/2=0. This intermediate value becomes the
2100 * number of bits to shift the DBAM register to extract the proper CSROW
2101 * field.
2102 */
2103 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2104
2105 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2106
2107 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2108 csrow_nr, dct, cs_mode);
2109 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2110
2111 return nr_pages;
2112 }
2113
2114 /*
2115 * Initialize the array of csrow attribute instances, based on the values
2116 * from pci config hardware registers.
2117 */
2118 static int init_csrows(struct mem_ctl_info *mci)
2119 {
2120 struct amd64_pvt *pvt = mci->pvt_info;
2121 struct csrow_info *csrow;
2122 struct dimm_info *dimm;
2123 enum edac_type edac_mode;
2124 enum mem_type mtype;
2125 int i, j, empty = 1;
2126 int nr_pages = 0;
2127 u32 val;
2128
2129 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2130
2131 pvt->nbcfg = val;
2132
2133 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2134 pvt->mc_node_id, val,
2135 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2136
2137 /*
2138 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2139 */
2140 for_each_chip_select(i, 0, pvt) {
2141 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2142 bool row_dct1 = false;
2143
2144 if (boot_cpu_data.x86 != 0xf)
2145 row_dct1 = !!csrow_enabled(i, 1, pvt);
2146
2147 if (!row_dct0 && !row_dct1)
2148 continue;
2149
2150 csrow = mci->csrows[i];
2151 empty = 0;
2152
2153 edac_dbg(1, "MC node: %d, csrow: %d\n",
2154 pvt->mc_node_id, i);
2155
2156 if (row_dct0)
2157 nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2158
2159 /* K8 has only one DCT */
2160 if (boot_cpu_data.x86 != 0xf && row_dct1)
2161 nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
2162
2163 mtype = amd64_determine_memory_type(pvt, i);
2164
2165 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2166
2167 /*
2168 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2169 */
2170 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2171 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2172 EDAC_S4ECD4ED : EDAC_SECDED;
2173 else
2174 edac_mode = EDAC_NONE;
2175
2176 for (j = 0; j < pvt->channel_count; j++) {
2177 dimm = csrow->channels[j]->dimm;
2178 dimm->mtype = mtype;
2179 dimm->edac_mode = edac_mode;
2180 dimm->nr_pages = nr_pages;
2181 }
2182 csrow->nr_pages = nr_pages;
2183 }
2184
2185 return empty;
2186 }
2187
2188 /* get all cores on this DCT */
2189 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2190 {
2191 int cpu;
2192
2193 for_each_online_cpu(cpu)
2194 if (amd_get_nb_id(cpu) == nid)
2195 cpumask_set_cpu(cpu, mask);
2196 }
2197
2198 /* check MCG_CTL on all the cpus on this node */
2199 static bool amd64_nb_mce_bank_enabled_on_node(u16 nid)
2200 {
2201 cpumask_var_t mask;
2202 int cpu, nbe;
2203 bool ret = false;
2204
2205 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2206 amd64_warn("%s: Error allocating mask\n", __func__);
2207 return false;
2208 }
2209
2210 get_cpus_on_this_dct_cpumask(mask, nid);
2211
2212 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2213
2214 for_each_cpu(cpu, mask) {
2215 struct msr *reg = per_cpu_ptr(msrs, cpu);
2216 nbe = reg->l & MSR_MCGCTL_NBE;
2217
2218 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2219 cpu, reg->q,
2220 (nbe ? "enabled" : "disabled"));
2221
2222 if (!nbe)
2223 goto out;
2224 }
2225 ret = true;
2226
2227 out:
2228 free_cpumask_var(mask);
2229 return ret;
2230 }
2231
2232 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2233 {
2234 cpumask_var_t cmask;
2235 int cpu;
2236
2237 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2238 amd64_warn("%s: error allocating mask\n", __func__);
2239 return false;
2240 }
2241
2242 get_cpus_on_this_dct_cpumask(cmask, nid);
2243
2244 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2245
2246 for_each_cpu(cpu, cmask) {
2247
2248 struct msr *reg = per_cpu_ptr(msrs, cpu);
2249
2250 if (on) {
2251 if (reg->l & MSR_MCGCTL_NBE)
2252 s->flags.nb_mce_enable = 1;
2253
2254 reg->l |= MSR_MCGCTL_NBE;
2255 } else {
2256 /*
2257 * Turn off NB MCE reporting only when it was off before
2258 */
2259 if (!s->flags.nb_mce_enable)
2260 reg->l &= ~MSR_MCGCTL_NBE;
2261 }
2262 }
2263 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2264
2265 free_cpumask_var(cmask);
2266
2267 return 0;
2268 }
2269
2270 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2271 struct pci_dev *F3)
2272 {
2273 bool ret = true;
2274 u32 value, mask = 0x3; /* UECC/CECC enable */
2275
2276 if (toggle_ecc_err_reporting(s, nid, ON)) {
2277 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2278 return false;
2279 }
2280
2281 amd64_read_pci_cfg(F3, NBCTL, &value);
2282
2283 s->old_nbctl = value & mask;
2284 s->nbctl_valid = true;
2285
2286 value |= mask;
2287 amd64_write_pci_cfg(F3, NBCTL, value);
2288
2289 amd64_read_pci_cfg(F3, NBCFG, &value);
2290
2291 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2292 nid, value, !!(value & NBCFG_ECC_ENABLE));
2293
2294 if (!(value & NBCFG_ECC_ENABLE)) {
2295 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2296
2297 s->flags.nb_ecc_prev = 0;
2298
2299 /* Attempt to turn on DRAM ECC Enable */
2300 value |= NBCFG_ECC_ENABLE;
2301 amd64_write_pci_cfg(F3, NBCFG, value);
2302
2303 amd64_read_pci_cfg(F3, NBCFG, &value);
2304
2305 if (!(value & NBCFG_ECC_ENABLE)) {
2306 amd64_warn("Hardware rejected DRAM ECC enable,"
2307 "check memory DIMM configuration.\n");
2308 ret = false;
2309 } else {
2310 amd64_info("Hardware accepted DRAM ECC Enable\n");
2311 }
2312 } else {
2313 s->flags.nb_ecc_prev = 1;
2314 }
2315
2316 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2317 nid, value, !!(value & NBCFG_ECC_ENABLE));
2318
2319 return ret;
2320 }
2321
2322 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2323 struct pci_dev *F3)
2324 {
2325 u32 value, mask = 0x3; /* UECC/CECC enable */
2326
2327
2328 if (!s->nbctl_valid)
2329 return;
2330
2331 amd64_read_pci_cfg(F3, NBCTL, &value);
2332 value &= ~mask;
2333 value |= s->old_nbctl;
2334
2335 amd64_write_pci_cfg(F3, NBCTL, value);
2336
2337 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2338 if (!s->flags.nb_ecc_prev) {
2339 amd64_read_pci_cfg(F3, NBCFG, &value);
2340 value &= ~NBCFG_ECC_ENABLE;
2341 amd64_write_pci_cfg(F3, NBCFG, value);
2342 }
2343
2344 /* restore the NB Enable MCGCTL bit */
2345 if (toggle_ecc_err_reporting(s, nid, OFF))
2346 amd64_warn("Error restoring NB MCGCTL settings!\n");
2347 }
2348
2349 /*
2350 * EDAC requires that the BIOS have ECC enabled before
2351 * taking over the processing of ECC errors. A command line
2352 * option allows to force-enable hardware ECC later in
2353 * enable_ecc_error_reporting().
2354 */
2355 static const char *ecc_msg =
2356 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2357 " Either enable ECC checking or force module loading by setting "
2358 "'ecc_enable_override'.\n"
2359 " (Note that use of the override may cause unknown side effects.)\n";
2360
2361 static bool ecc_enabled(struct pci_dev *F3, u16 nid)
2362 {
2363 u32 value;
2364 u8 ecc_en = 0;
2365 bool nb_mce_en = false;
2366
2367 amd64_read_pci_cfg(F3, NBCFG, &value);
2368
2369 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2370 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2371
2372 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2373 if (!nb_mce_en)
2374 amd64_notice("NB MCE bank disabled, set MSR "
2375 "0x%08x[4] on node %d to enable.\n",
2376 MSR_IA32_MCG_CTL, nid);
2377
2378 if (!ecc_en || !nb_mce_en) {
2379 amd64_notice("%s", ecc_msg);
2380 return false;
2381 }
2382 return true;
2383 }
2384
2385 static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2386 {
2387 int rc;
2388
2389 rc = amd64_create_sysfs_dbg_files(mci);
2390 if (rc < 0)
2391 return rc;
2392
2393 if (boot_cpu_data.x86 >= 0x10) {
2394 rc = amd64_create_sysfs_inject_files(mci);
2395 if (rc < 0)
2396 return rc;
2397 }
2398
2399 return 0;
2400 }
2401
2402 static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2403 {
2404 amd64_remove_sysfs_dbg_files(mci);
2405
2406 if (boot_cpu_data.x86 >= 0x10)
2407 amd64_remove_sysfs_inject_files(mci);
2408 }
2409
2410 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2411 struct amd64_family_type *fam)
2412 {
2413 struct amd64_pvt *pvt = mci->pvt_info;
2414
2415 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2416 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2417
2418 if (pvt->nbcap & NBCAP_SECDED)
2419 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2420
2421 if (pvt->nbcap & NBCAP_CHIPKILL)
2422 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2423
2424 mci->edac_cap = amd64_determine_edac_cap(pvt);
2425 mci->mod_name = EDAC_MOD_STR;
2426 mci->mod_ver = EDAC_AMD64_VERSION;
2427 mci->ctl_name = fam->ctl_name;
2428 mci->dev_name = pci_name(pvt->F2);
2429 mci->ctl_page_to_phys = NULL;
2430
2431 /* memory scrubber interface */
2432 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2433 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2434 }
2435
2436 /*
2437 * returns a pointer to the family descriptor on success, NULL otherwise.
2438 */
2439 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2440 {
2441 u8 fam = boot_cpu_data.x86;
2442 struct amd64_family_type *fam_type = NULL;
2443
2444 switch (fam) {
2445 case 0xf:
2446 fam_type = &amd64_family_types[K8_CPUS];
2447 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2448 break;
2449
2450 case 0x10:
2451 fam_type = &amd64_family_types[F10_CPUS];
2452 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2453 break;
2454
2455 case 0x15:
2456 fam_type = &amd64_family_types[F15_CPUS];
2457 pvt->ops = &amd64_family_types[F15_CPUS].ops;
2458 break;
2459
2460 default:
2461 amd64_err("Unsupported family!\n");
2462 return NULL;
2463 }
2464
2465 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2466
2467 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2468 (fam == 0xf ?
2469 (pvt->ext_model >= K8_REV_F ? "revF or later "
2470 : "revE or earlier ")
2471 : ""), pvt->mc_node_id);
2472 return fam_type;
2473 }
2474
2475 static int amd64_init_one_instance(struct pci_dev *F2)
2476 {
2477 struct amd64_pvt *pvt = NULL;
2478 struct amd64_family_type *fam_type = NULL;
2479 struct mem_ctl_info *mci = NULL;
2480 struct edac_mc_layer layers[2];
2481 int err = 0, ret;
2482 u16 nid = amd_get_node_id(F2);
2483
2484 ret = -ENOMEM;
2485 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2486 if (!pvt)
2487 goto err_ret;
2488
2489 pvt->mc_node_id = nid;
2490 pvt->F2 = F2;
2491
2492 ret = -EINVAL;
2493 fam_type = amd64_per_family_init(pvt);
2494 if (!fam_type)
2495 goto err_free;
2496
2497 ret = -ENODEV;
2498 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2499 if (err)
2500 goto err_free;
2501
2502 read_mc_regs(pvt);
2503
2504 /*
2505 * We need to determine how many memory channels there are. Then use
2506 * that information for calculating the size of the dynamic instance
2507 * tables in the 'mci' structure.
2508 */
2509 ret = -EINVAL;
2510 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2511 if (pvt->channel_count < 0)
2512 goto err_siblings;
2513
2514 ret = -ENOMEM;
2515 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2516 layers[0].size = pvt->csels[0].b_cnt;
2517 layers[0].is_virt_csrow = true;
2518 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2519 layers[1].size = pvt->channel_count;
2520 layers[1].is_virt_csrow = false;
2521 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2522 if (!mci)
2523 goto err_siblings;
2524
2525 mci->pvt_info = pvt;
2526 mci->pdev = &pvt->F2->dev;
2527 mci->csbased = 1;
2528
2529 setup_mci_misc_attrs(mci, fam_type);
2530
2531 if (init_csrows(mci))
2532 mci->edac_cap = EDAC_FLAG_NONE;
2533
2534 ret = -ENODEV;
2535 if (edac_mc_add_mc(mci)) {
2536 edac_dbg(1, "failed edac_mc_add_mc()\n");
2537 goto err_add_mc;
2538 }
2539 if (set_mc_sysfs_attrs(mci)) {
2540 edac_dbg(1, "failed edac_mc_add_mc()\n");
2541 goto err_add_sysfs;
2542 }
2543
2544 /* register stuff with EDAC MCE */
2545 if (report_gart_errors)
2546 amd_report_gart_errors(true);
2547
2548 amd_register_ecc_decoder(amd64_decode_bus_error);
2549
2550 mcis[nid] = mci;
2551
2552 atomic_inc(&drv_instances);
2553
2554 return 0;
2555
2556 err_add_sysfs:
2557 edac_mc_del_mc(mci->pdev);
2558 err_add_mc:
2559 edac_mc_free(mci);
2560
2561 err_siblings:
2562 free_mc_sibling_devs(pvt);
2563
2564 err_free:
2565 kfree(pvt);
2566
2567 err_ret:
2568 return ret;
2569 }
2570
2571 static int amd64_probe_one_instance(struct pci_dev *pdev,
2572 const struct pci_device_id *mc_type)
2573 {
2574 u16 nid = amd_get_node_id(pdev);
2575 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2576 struct ecc_settings *s;
2577 int ret = 0;
2578
2579 ret = pci_enable_device(pdev);
2580 if (ret < 0) {
2581 edac_dbg(0, "ret=%d\n", ret);
2582 return -EIO;
2583 }
2584
2585 ret = -ENOMEM;
2586 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2587 if (!s)
2588 goto err_out;
2589
2590 ecc_stngs[nid] = s;
2591
2592 if (!ecc_enabled(F3, nid)) {
2593 ret = -ENODEV;
2594
2595 if (!ecc_enable_override)
2596 goto err_enable;
2597
2598 amd64_warn("Forcing ECC on!\n");
2599
2600 if (!enable_ecc_error_reporting(s, nid, F3))
2601 goto err_enable;
2602 }
2603
2604 ret = amd64_init_one_instance(pdev);
2605 if (ret < 0) {
2606 amd64_err("Error probing instance: %d\n", nid);
2607 restore_ecc_error_reporting(s, nid, F3);
2608 }
2609
2610 return ret;
2611
2612 err_enable:
2613 kfree(s);
2614 ecc_stngs[nid] = NULL;
2615
2616 err_out:
2617 return ret;
2618 }
2619
2620 static void amd64_remove_one_instance(struct pci_dev *pdev)
2621 {
2622 struct mem_ctl_info *mci;
2623 struct amd64_pvt *pvt;
2624 u16 nid = amd_get_node_id(pdev);
2625 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2626 struct ecc_settings *s = ecc_stngs[nid];
2627
2628 mci = find_mci_by_dev(&pdev->dev);
2629 del_mc_sysfs_attrs(mci);
2630 /* Remove from EDAC CORE tracking list */
2631 mci = edac_mc_del_mc(&pdev->dev);
2632 if (!mci)
2633 return;
2634
2635 pvt = mci->pvt_info;
2636
2637 restore_ecc_error_reporting(s, nid, F3);
2638
2639 free_mc_sibling_devs(pvt);
2640
2641 /* unregister from EDAC MCE */
2642 amd_report_gart_errors(false);
2643 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2644
2645 kfree(ecc_stngs[nid]);
2646 ecc_stngs[nid] = NULL;
2647
2648 /* Free the EDAC CORE resources */
2649 mci->pvt_info = NULL;
2650 mcis[nid] = NULL;
2651
2652 kfree(pvt);
2653 edac_mc_free(mci);
2654 }
2655
2656 /*
2657 * This table is part of the interface for loading drivers for PCI devices. The
2658 * PCI core identifies what devices are on a system during boot, and then
2659 * inquiry this table to see if this driver is for a given device found.
2660 */
2661 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2662 {
2663 .vendor = PCI_VENDOR_ID_AMD,
2664 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2665 .subvendor = PCI_ANY_ID,
2666 .subdevice = PCI_ANY_ID,
2667 .class = 0,
2668 .class_mask = 0,
2669 },
2670 {
2671 .vendor = PCI_VENDOR_ID_AMD,
2672 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2673 .subvendor = PCI_ANY_ID,
2674 .subdevice = PCI_ANY_ID,
2675 .class = 0,
2676 .class_mask = 0,
2677 },
2678 {
2679 .vendor = PCI_VENDOR_ID_AMD,
2680 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2681 .subvendor = PCI_ANY_ID,
2682 .subdevice = PCI_ANY_ID,
2683 .class = 0,
2684 .class_mask = 0,
2685 },
2686
2687 {0, }
2688 };
2689 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2690
2691 static struct pci_driver amd64_pci_driver = {
2692 .name = EDAC_MOD_STR,
2693 .probe = amd64_probe_one_instance,
2694 .remove = amd64_remove_one_instance,
2695 .id_table = amd64_pci_table,
2696 };
2697
2698 static void setup_pci_device(void)
2699 {
2700 struct mem_ctl_info *mci;
2701 struct amd64_pvt *pvt;
2702
2703 if (amd64_ctl_pci)
2704 return;
2705
2706 mci = mcis[0];
2707 if (mci) {
2708
2709 pvt = mci->pvt_info;
2710 amd64_ctl_pci =
2711 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2712
2713 if (!amd64_ctl_pci) {
2714 pr_warning("%s(): Unable to create PCI control\n",
2715 __func__);
2716
2717 pr_warning("%s(): PCI error report via EDAC not set\n",
2718 __func__);
2719 }
2720 }
2721 }
2722
2723 static int __init amd64_edac_init(void)
2724 {
2725 int err = -ENODEV;
2726
2727 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2728
2729 opstate_init();
2730
2731 if (amd_cache_northbridges() < 0)
2732 goto err_ret;
2733
2734 err = -ENOMEM;
2735 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2736 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2737 if (!(mcis && ecc_stngs))
2738 goto err_free;
2739
2740 msrs = msrs_alloc();
2741 if (!msrs)
2742 goto err_free;
2743
2744 err = pci_register_driver(&amd64_pci_driver);
2745 if (err)
2746 goto err_pci;
2747
2748 err = -ENODEV;
2749 if (!atomic_read(&drv_instances))
2750 goto err_no_instances;
2751
2752 setup_pci_device();
2753 return 0;
2754
2755 err_no_instances:
2756 pci_unregister_driver(&amd64_pci_driver);
2757
2758 err_pci:
2759 msrs_free(msrs);
2760 msrs = NULL;
2761
2762 err_free:
2763 kfree(mcis);
2764 mcis = NULL;
2765
2766 kfree(ecc_stngs);
2767 ecc_stngs = NULL;
2768
2769 err_ret:
2770 return err;
2771 }
2772
2773 static void __exit amd64_edac_exit(void)
2774 {
2775 if (amd64_ctl_pci)
2776 edac_pci_release_generic_ctl(amd64_ctl_pci);
2777
2778 pci_unregister_driver(&amd64_pci_driver);
2779
2780 kfree(ecc_stngs);
2781 ecc_stngs = NULL;
2782
2783 kfree(mcis);
2784 mcis = NULL;
2785
2786 msrs_free(msrs);
2787 msrs = NULL;
2788 }
2789
2790 module_init(amd64_edac_init);
2791 module_exit(amd64_edac_exit);
2792
2793 MODULE_LICENSE("GPL");
2794 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2795 "Dave Peterson, Thayne Harbaugh");
2796 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2797 EDAC_AMD64_VERSION);
2798
2799 module_param(edac_op_state, int, 0444);
2800 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.124824 seconds and 5 git commands to generate.