Merge branch 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / edac / amd64_edac.c
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26
27 /*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
34 static const struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61 };
62
63 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65 {
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74 }
75
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78 {
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87 }
88
89 /*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 * F16h: has only 1 DCT
102 */
103 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
104 const char *func)
105 {
106 if (addr >= 0x100)
107 return -EINVAL;
108
109 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
110 }
111
112 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
113 const char *func)
114 {
115 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
116 }
117
118 /*
119 * Select DCT to which PCI cfg accesses are routed
120 */
121 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
122 {
123 u32 reg = 0;
124
125 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
126 reg &= (pvt->model >= 0x30) ? ~3 : ~1;
127 reg |= dct;
128 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
129 }
130
131 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
132 const char *func)
133 {
134 u8 dct = 0;
135
136 /* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */
137 if (addr >= 0x140 && addr <= 0x1a0) {
138 dct = (pvt->model >= 0x30) ? 3 : 1;
139 addr -= 0x100;
140 }
141
142 f15h_select_dct(pvt, dct);
143
144 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
145 }
146
147 /*
148 * Memory scrubber control interface. For K8, memory scrubbing is handled by
149 * hardware and can involve L2 cache, dcache as well as the main memory. With
150 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
151 * functionality.
152 *
153 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
154 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
155 * bytes/sec for the setting.
156 *
157 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
158 * other archs, we might not have access to the caches directly.
159 */
160
161 /*
162 * scan the scrub rate mapping table for a close or matching bandwidth value to
163 * issue. If requested is too big, then use last maximum value found.
164 */
165 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
166 {
167 u32 scrubval;
168 int i;
169
170 /*
171 * map the configured rate (new_bw) to a value specific to the AMD64
172 * memory controller and apply to register. Search for the first
173 * bandwidth entry that is greater or equal than the setting requested
174 * and program that. If at last entry, turn off DRAM scrubbing.
175 *
176 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
177 * by falling back to the last element in scrubrates[].
178 */
179 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
180 /*
181 * skip scrub rates which aren't recommended
182 * (see F10 BKDG, F3x58)
183 */
184 if (scrubrates[i].scrubval < min_rate)
185 continue;
186
187 if (scrubrates[i].bandwidth <= new_bw)
188 break;
189 }
190
191 scrubval = scrubrates[i].scrubval;
192
193 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
194
195 if (scrubval)
196 return scrubrates[i].bandwidth;
197
198 return 0;
199 }
200
201 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
202 {
203 struct amd64_pvt *pvt = mci->pvt_info;
204 u32 min_scrubrate = 0x5;
205
206 if (pvt->fam == 0xf)
207 min_scrubrate = 0x0;
208
209 /* Erratum #505 */
210 if (pvt->fam == 0x15 && pvt->model < 0x10)
211 f15h_select_dct(pvt, 0);
212
213 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
214 }
215
216 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
217 {
218 struct amd64_pvt *pvt = mci->pvt_info;
219 u32 scrubval = 0;
220 int i, retval = -EINVAL;
221
222 /* Erratum #505 */
223 if (pvt->fam == 0x15 && pvt->model < 0x10)
224 f15h_select_dct(pvt, 0);
225
226 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
227
228 scrubval = scrubval & 0x001F;
229
230 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
231 if (scrubrates[i].scrubval == scrubval) {
232 retval = scrubrates[i].bandwidth;
233 break;
234 }
235 }
236 return retval;
237 }
238
239 /*
240 * returns true if the SysAddr given by sys_addr matches the
241 * DRAM base/limit associated with node_id
242 */
243 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
244 u8 nid)
245 {
246 u64 addr;
247
248 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
249 * all ones if the most significant implemented address bit is 1.
250 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
251 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
252 * Application Programming.
253 */
254 addr = sys_addr & 0x000000ffffffffffull;
255
256 return ((addr >= get_dram_base(pvt, nid)) &&
257 (addr <= get_dram_limit(pvt, nid)));
258 }
259
260 /*
261 * Attempt to map a SysAddr to a node. On success, return a pointer to the
262 * mem_ctl_info structure for the node that the SysAddr maps to.
263 *
264 * On failure, return NULL.
265 */
266 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
267 u64 sys_addr)
268 {
269 struct amd64_pvt *pvt;
270 u8 node_id;
271 u32 intlv_en, bits;
272
273 /*
274 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
275 * 3.4.4.2) registers to map the SysAddr to a node ID.
276 */
277 pvt = mci->pvt_info;
278
279 /*
280 * The value of this field should be the same for all DRAM Base
281 * registers. Therefore we arbitrarily choose to read it from the
282 * register for node 0.
283 */
284 intlv_en = dram_intlv_en(pvt, 0);
285
286 if (intlv_en == 0) {
287 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
288 if (amd64_base_limit_match(pvt, sys_addr, node_id))
289 goto found;
290 }
291 goto err_no_match;
292 }
293
294 if (unlikely((intlv_en != 0x01) &&
295 (intlv_en != 0x03) &&
296 (intlv_en != 0x07))) {
297 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
298 return NULL;
299 }
300
301 bits = (((u32) sys_addr) >> 12) & intlv_en;
302
303 for (node_id = 0; ; ) {
304 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
305 break; /* intlv_sel field matches */
306
307 if (++node_id >= DRAM_RANGES)
308 goto err_no_match;
309 }
310
311 /* sanity test for sys_addr */
312 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
313 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
314 "range for node %d with node interleaving enabled.\n",
315 __func__, sys_addr, node_id);
316 return NULL;
317 }
318
319 found:
320 return edac_mc_find((int)node_id);
321
322 err_no_match:
323 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
324 (unsigned long)sys_addr);
325
326 return NULL;
327 }
328
329 /*
330 * compute the CS base address of the @csrow on the DRAM controller @dct.
331 * For details see F2x[5C:40] in the processor's BKDG
332 */
333 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
334 u64 *base, u64 *mask)
335 {
336 u64 csbase, csmask, base_bits, mask_bits;
337 u8 addr_shift;
338
339 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
340 csbase = pvt->csels[dct].csbases[csrow];
341 csmask = pvt->csels[dct].csmasks[csrow];
342 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
343 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
344 addr_shift = 4;
345
346 /*
347 * F16h and F15h, models 30h and later need two addr_shift values:
348 * 8 for high and 6 for low (cf. F16h BKDG).
349 */
350 } else if (pvt->fam == 0x16 ||
351 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
352 csbase = pvt->csels[dct].csbases[csrow];
353 csmask = pvt->csels[dct].csmasks[csrow >> 1];
354
355 *base = (csbase & GENMASK(5, 15)) << 6;
356 *base |= (csbase & GENMASK(19, 30)) << 8;
357
358 *mask = ~0ULL;
359 /* poke holes for the csmask */
360 *mask &= ~((GENMASK(5, 15) << 6) |
361 (GENMASK(19, 30) << 8));
362
363 *mask |= (csmask & GENMASK(5, 15)) << 6;
364 *mask |= (csmask & GENMASK(19, 30)) << 8;
365
366 return;
367 } else {
368 csbase = pvt->csels[dct].csbases[csrow];
369 csmask = pvt->csels[dct].csmasks[csrow >> 1];
370 addr_shift = 8;
371
372 if (pvt->fam == 0x15)
373 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
374 else
375 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
376 }
377
378 *base = (csbase & base_bits) << addr_shift;
379
380 *mask = ~0ULL;
381 /* poke holes for the csmask */
382 *mask &= ~(mask_bits << addr_shift);
383 /* OR them in */
384 *mask |= (csmask & mask_bits) << addr_shift;
385 }
386
387 #define for_each_chip_select(i, dct, pvt) \
388 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
389
390 #define chip_select_base(i, dct, pvt) \
391 pvt->csels[dct].csbases[i]
392
393 #define for_each_chip_select_mask(i, dct, pvt) \
394 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
395
396 /*
397 * @input_addr is an InputAddr associated with the node given by mci. Return the
398 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
399 */
400 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
401 {
402 struct amd64_pvt *pvt;
403 int csrow;
404 u64 base, mask;
405
406 pvt = mci->pvt_info;
407
408 for_each_chip_select(csrow, 0, pvt) {
409 if (!csrow_enabled(csrow, 0, pvt))
410 continue;
411
412 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
413
414 mask = ~mask;
415
416 if ((input_addr & mask) == (base & mask)) {
417 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
418 (unsigned long)input_addr, csrow,
419 pvt->mc_node_id);
420
421 return csrow;
422 }
423 }
424 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
425 (unsigned long)input_addr, pvt->mc_node_id);
426
427 return -1;
428 }
429
430 /*
431 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
432 * for the node represented by mci. Info is passed back in *hole_base,
433 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
434 * info is invalid. Info may be invalid for either of the following reasons:
435 *
436 * - The revision of the node is not E or greater. In this case, the DRAM Hole
437 * Address Register does not exist.
438 *
439 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
440 * indicating that its contents are not valid.
441 *
442 * The values passed back in *hole_base, *hole_offset, and *hole_size are
443 * complete 32-bit values despite the fact that the bitfields in the DHAR
444 * only represent bits 31-24 of the base and offset values.
445 */
446 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
447 u64 *hole_offset, u64 *hole_size)
448 {
449 struct amd64_pvt *pvt = mci->pvt_info;
450
451 /* only revE and later have the DRAM Hole Address Register */
452 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
453 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
454 pvt->ext_model, pvt->mc_node_id);
455 return 1;
456 }
457
458 /* valid for Fam10h and above */
459 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
460 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
461 return 1;
462 }
463
464 if (!dhar_valid(pvt)) {
465 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
466 pvt->mc_node_id);
467 return 1;
468 }
469
470 /* This node has Memory Hoisting */
471
472 /* +------------------+--------------------+--------------------+-----
473 * | memory | DRAM hole | relocated |
474 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
475 * | | | DRAM hole |
476 * | | | [0x100000000, |
477 * | | | (0x100000000+ |
478 * | | | (0xffffffff-x))] |
479 * +------------------+--------------------+--------------------+-----
480 *
481 * Above is a diagram of physical memory showing the DRAM hole and the
482 * relocated addresses from the DRAM hole. As shown, the DRAM hole
483 * starts at address x (the base address) and extends through address
484 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
485 * addresses in the hole so that they start at 0x100000000.
486 */
487
488 *hole_base = dhar_base(pvt);
489 *hole_size = (1ULL << 32) - *hole_base;
490
491 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
492 : k8_dhar_offset(pvt);
493
494 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
495 pvt->mc_node_id, (unsigned long)*hole_base,
496 (unsigned long)*hole_offset, (unsigned long)*hole_size);
497
498 return 0;
499 }
500 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
501
502 /*
503 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
504 * assumed that sys_addr maps to the node given by mci.
505 *
506 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
507 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
508 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
509 * then it is also involved in translating a SysAddr to a DramAddr. Sections
510 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
511 * These parts of the documentation are unclear. I interpret them as follows:
512 *
513 * When node n receives a SysAddr, it processes the SysAddr as follows:
514 *
515 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
516 * Limit registers for node n. If the SysAddr is not within the range
517 * specified by the base and limit values, then node n ignores the Sysaddr
518 * (since it does not map to node n). Otherwise continue to step 2 below.
519 *
520 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
521 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
522 * the range of relocated addresses (starting at 0x100000000) from the DRAM
523 * hole. If not, skip to step 3 below. Else get the value of the
524 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
525 * offset defined by this value from the SysAddr.
526 *
527 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
528 * Base register for node n. To obtain the DramAddr, subtract the base
529 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
530 */
531 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
532 {
533 struct amd64_pvt *pvt = mci->pvt_info;
534 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
535 int ret;
536
537 dram_base = get_dram_base(pvt, pvt->mc_node_id);
538
539 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
540 &hole_size);
541 if (!ret) {
542 if ((sys_addr >= (1ULL << 32)) &&
543 (sys_addr < ((1ULL << 32) + hole_size))) {
544 /* use DHAR to translate SysAddr to DramAddr */
545 dram_addr = sys_addr - hole_offset;
546
547 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
548 (unsigned long)sys_addr,
549 (unsigned long)dram_addr);
550
551 return dram_addr;
552 }
553 }
554
555 /*
556 * Translate the SysAddr to a DramAddr as shown near the start of
557 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
558 * only deals with 40-bit values. Therefore we discard bits 63-40 of
559 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
560 * discard are all 1s. Otherwise the bits we discard are all 0s. See
561 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
562 * Programmer's Manual Volume 1 Application Programming.
563 */
564 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
565
566 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
567 (unsigned long)sys_addr, (unsigned long)dram_addr);
568 return dram_addr;
569 }
570
571 /*
572 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
573 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
574 * for node interleaving.
575 */
576 static int num_node_interleave_bits(unsigned intlv_en)
577 {
578 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
579 int n;
580
581 BUG_ON(intlv_en > 7);
582 n = intlv_shift_table[intlv_en];
583 return n;
584 }
585
586 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
587 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
588 {
589 struct amd64_pvt *pvt;
590 int intlv_shift;
591 u64 input_addr;
592
593 pvt = mci->pvt_info;
594
595 /*
596 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
597 * concerning translating a DramAddr to an InputAddr.
598 */
599 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
600 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
601 (dram_addr & 0xfff);
602
603 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
604 intlv_shift, (unsigned long)dram_addr,
605 (unsigned long)input_addr);
606
607 return input_addr;
608 }
609
610 /*
611 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
612 * assumed that @sys_addr maps to the node given by mci.
613 */
614 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
615 {
616 u64 input_addr;
617
618 input_addr =
619 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
620
621 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
622 (unsigned long)sys_addr, (unsigned long)input_addr);
623
624 return input_addr;
625 }
626
627 /* Map the Error address to a PAGE and PAGE OFFSET. */
628 static inline void error_address_to_page_and_offset(u64 error_address,
629 struct err_info *err)
630 {
631 err->page = (u32) (error_address >> PAGE_SHIFT);
632 err->offset = ((u32) error_address) & ~PAGE_MASK;
633 }
634
635 /*
636 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
637 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
638 * of a node that detected an ECC memory error. mci represents the node that
639 * the error address maps to (possibly different from the node that detected
640 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
641 * error.
642 */
643 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
644 {
645 int csrow;
646
647 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
648
649 if (csrow == -1)
650 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
651 "address 0x%lx\n", (unsigned long)sys_addr);
652 return csrow;
653 }
654
655 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
656
657 /*
658 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
659 * are ECC capable.
660 */
661 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
662 {
663 u8 bit;
664 unsigned long edac_cap = EDAC_FLAG_NONE;
665
666 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
667 ? 19
668 : 17;
669
670 if (pvt->dclr0 & BIT(bit))
671 edac_cap = EDAC_FLAG_SECDED;
672
673 return edac_cap;
674 }
675
676 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
677
678 static void amd64_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
679 {
680 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
681
682 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
683 (dclr & BIT(16)) ? "un" : "",
684 (dclr & BIT(19)) ? "yes" : "no");
685
686 edac_dbg(1, " PAR/ERR parity: %s\n",
687 (dclr & BIT(8)) ? "enabled" : "disabled");
688
689 if (pvt->fam == 0x10)
690 edac_dbg(1, " DCT 128bit mode width: %s\n",
691 (dclr & BIT(11)) ? "128b" : "64b");
692
693 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
694 (dclr & BIT(12)) ? "yes" : "no",
695 (dclr & BIT(13)) ? "yes" : "no",
696 (dclr & BIT(14)) ? "yes" : "no",
697 (dclr & BIT(15)) ? "yes" : "no");
698 }
699
700 /* Display and decode various NB registers for debug purposes. */
701 static void dump_misc_regs(struct amd64_pvt *pvt)
702 {
703 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
704
705 edac_dbg(1, " NB two channel DRAM capable: %s\n",
706 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
707
708 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
709 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
710 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
711
712 amd64_dump_dramcfg_low(pvt, pvt->dclr0, 0);
713
714 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
715
716 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
717 pvt->dhar, dhar_base(pvt),
718 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
719 : f10_dhar_offset(pvt));
720
721 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
722
723 amd64_debug_display_dimm_sizes(pvt, 0);
724
725 /* everything below this point is Fam10h and above */
726 if (pvt->fam == 0xf)
727 return;
728
729 amd64_debug_display_dimm_sizes(pvt, 1);
730
731 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
732
733 /* Only if NOT ganged does dclr1 have valid info */
734 if (!dct_ganging_enabled(pvt))
735 amd64_dump_dramcfg_low(pvt, pvt->dclr1, 1);
736 }
737
738 /*
739 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
740 */
741 static void prep_chip_selects(struct amd64_pvt *pvt)
742 {
743 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
744 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
745 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
746 } else if (pvt->fam == 0x15 && pvt->model >= 0x30) {
747 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
748 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
749 } else {
750 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
751 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
752 }
753 }
754
755 /*
756 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
757 */
758 static void read_dct_base_mask(struct amd64_pvt *pvt)
759 {
760 int cs;
761
762 prep_chip_selects(pvt);
763
764 for_each_chip_select(cs, 0, pvt) {
765 int reg0 = DCSB0 + (cs * 4);
766 int reg1 = DCSB1 + (cs * 4);
767 u32 *base0 = &pvt->csels[0].csbases[cs];
768 u32 *base1 = &pvt->csels[1].csbases[cs];
769
770 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
771 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
772 cs, *base0, reg0);
773
774 if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
775 continue;
776
777 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
778 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
779 cs, *base1, reg1);
780 }
781
782 for_each_chip_select_mask(cs, 0, pvt) {
783 int reg0 = DCSM0 + (cs * 4);
784 int reg1 = DCSM1 + (cs * 4);
785 u32 *mask0 = &pvt->csels[0].csmasks[cs];
786 u32 *mask1 = &pvt->csels[1].csmasks[cs];
787
788 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
789 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
790 cs, *mask0, reg0);
791
792 if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
793 continue;
794
795 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
796 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
797 cs, *mask1, reg1);
798 }
799 }
800
801 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
802 {
803 enum mem_type type;
804
805 /* F15h supports only DDR3 */
806 if (pvt->fam >= 0x15)
807 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
808 else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) {
809 if (pvt->dchr0 & DDR3_MODE)
810 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
811 else
812 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
813 } else {
814 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
815 }
816
817 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
818
819 return type;
820 }
821
822 /* Get the number of DCT channels the memory controller is using. */
823 static int k8_early_channel_count(struct amd64_pvt *pvt)
824 {
825 int flag;
826
827 if (pvt->ext_model >= K8_REV_F)
828 /* RevF (NPT) and later */
829 flag = pvt->dclr0 & WIDTH_128;
830 else
831 /* RevE and earlier */
832 flag = pvt->dclr0 & REVE_WIDTH_128;
833
834 /* not used */
835 pvt->dclr1 = 0;
836
837 return (flag) ? 2 : 1;
838 }
839
840 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
841 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
842 {
843 u64 addr;
844 u8 start_bit = 1;
845 u8 end_bit = 47;
846
847 if (pvt->fam == 0xf) {
848 start_bit = 3;
849 end_bit = 39;
850 }
851
852 addr = m->addr & GENMASK(start_bit, end_bit);
853
854 /*
855 * Erratum 637 workaround
856 */
857 if (pvt->fam == 0x15) {
858 struct amd64_pvt *pvt;
859 u64 cc6_base, tmp_addr;
860 u32 tmp;
861 u16 mce_nid;
862 u8 intlv_en;
863
864 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
865 return addr;
866
867 mce_nid = amd_get_nb_id(m->extcpu);
868 pvt = mcis[mce_nid]->pvt_info;
869
870 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
871 intlv_en = tmp >> 21 & 0x7;
872
873 /* add [47:27] + 3 trailing bits */
874 cc6_base = (tmp & GENMASK(0, 20)) << 3;
875
876 /* reverse and add DramIntlvEn */
877 cc6_base |= intlv_en ^ 0x7;
878
879 /* pin at [47:24] */
880 cc6_base <<= 24;
881
882 if (!intlv_en)
883 return cc6_base | (addr & GENMASK(0, 23));
884
885 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
886
887 /* faster log2 */
888 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
889
890 /* OR DramIntlvSel into bits [14:12] */
891 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
892
893 /* add remaining [11:0] bits from original MC4_ADDR */
894 tmp_addr |= addr & GENMASK(0, 11);
895
896 return cc6_base | tmp_addr;
897 }
898
899 return addr;
900 }
901
902 static struct pci_dev *pci_get_related_function(unsigned int vendor,
903 unsigned int device,
904 struct pci_dev *related)
905 {
906 struct pci_dev *dev = NULL;
907
908 while ((dev = pci_get_device(vendor, device, dev))) {
909 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
910 (dev->bus->number == related->bus->number) &&
911 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
912 break;
913 }
914
915 return dev;
916 }
917
918 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
919 {
920 struct amd_northbridge *nb;
921 struct pci_dev *f1 = NULL;
922 unsigned int pci_func;
923 int off = range << 3;
924 u32 llim;
925
926 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
927 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
928
929 if (pvt->fam == 0xf)
930 return;
931
932 if (!dram_rw(pvt, range))
933 return;
934
935 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
936 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
937
938 /* F15h: factor in CC6 save area by reading dst node's limit reg */
939 if (pvt->fam != 0x15)
940 return;
941
942 nb = node_to_amd_nb(dram_dst_node(pvt, range));
943 if (WARN_ON(!nb))
944 return;
945
946 pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
947 : PCI_DEVICE_ID_AMD_15H_NB_F1;
948
949 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
950 if (WARN_ON(!f1))
951 return;
952
953 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
954
955 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
956
957 /* {[39:27],111b} */
958 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
959
960 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
961
962 /* [47:40] */
963 pvt->ranges[range].lim.hi |= llim >> 13;
964
965 pci_dev_put(f1);
966 }
967
968 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
969 struct err_info *err)
970 {
971 struct amd64_pvt *pvt = mci->pvt_info;
972
973 error_address_to_page_and_offset(sys_addr, err);
974
975 /*
976 * Find out which node the error address belongs to. This may be
977 * different from the node that detected the error.
978 */
979 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
980 if (!err->src_mci) {
981 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
982 (unsigned long)sys_addr);
983 err->err_code = ERR_NODE;
984 return;
985 }
986
987 /* Now map the sys_addr to a CSROW */
988 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
989 if (err->csrow < 0) {
990 err->err_code = ERR_CSROW;
991 return;
992 }
993
994 /* CHIPKILL enabled */
995 if (pvt->nbcfg & NBCFG_CHIPKILL) {
996 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
997 if (err->channel < 0) {
998 /*
999 * Syndrome didn't map, so we don't know which of the
1000 * 2 DIMMs is in error. So we need to ID 'both' of them
1001 * as suspect.
1002 */
1003 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1004 "possible error reporting race\n",
1005 err->syndrome);
1006 err->err_code = ERR_CHANNEL;
1007 return;
1008 }
1009 } else {
1010 /*
1011 * non-chipkill ecc mode
1012 *
1013 * The k8 documentation is unclear about how to determine the
1014 * channel number when using non-chipkill memory. This method
1015 * was obtained from email communication with someone at AMD.
1016 * (Wish the email was placed in this comment - norsk)
1017 */
1018 err->channel = ((sys_addr & BIT(3)) != 0);
1019 }
1020 }
1021
1022 static int ddr2_cs_size(unsigned i, bool dct_width)
1023 {
1024 unsigned shift = 0;
1025
1026 if (i <= 2)
1027 shift = i;
1028 else if (!(i & 0x1))
1029 shift = i >> 1;
1030 else
1031 shift = (i + 1) >> 1;
1032
1033 return 128 << (shift + !!dct_width);
1034 }
1035
1036 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1037 unsigned cs_mode)
1038 {
1039 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1040
1041 if (pvt->ext_model >= K8_REV_F) {
1042 WARN_ON(cs_mode > 11);
1043 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1044 }
1045 else if (pvt->ext_model >= K8_REV_D) {
1046 unsigned diff;
1047 WARN_ON(cs_mode > 10);
1048
1049 /*
1050 * the below calculation, besides trying to win an obfuscated C
1051 * contest, maps cs_mode values to DIMM chip select sizes. The
1052 * mappings are:
1053 *
1054 * cs_mode CS size (mb)
1055 * ======= ============
1056 * 0 32
1057 * 1 64
1058 * 2 128
1059 * 3 128
1060 * 4 256
1061 * 5 512
1062 * 6 256
1063 * 7 512
1064 * 8 1024
1065 * 9 1024
1066 * 10 2048
1067 *
1068 * Basically, it calculates a value with which to shift the
1069 * smallest CS size of 32MB.
1070 *
1071 * ddr[23]_cs_size have a similar purpose.
1072 */
1073 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1074
1075 return 32 << (cs_mode - diff);
1076 }
1077 else {
1078 WARN_ON(cs_mode > 6);
1079 return 32 << cs_mode;
1080 }
1081 }
1082
1083 /*
1084 * Get the number of DCT channels in use.
1085 *
1086 * Return:
1087 * number of Memory Channels in operation
1088 * Pass back:
1089 * contents of the DCL0_LOW register
1090 */
1091 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1092 {
1093 int i, j, channels = 0;
1094
1095 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1096 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1097 return 2;
1098
1099 /*
1100 * Need to check if in unganged mode: In such, there are 2 channels,
1101 * but they are not in 128 bit mode and thus the above 'dclr0' status
1102 * bit will be OFF.
1103 *
1104 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1105 * their CSEnable bit on. If so, then SINGLE DIMM case.
1106 */
1107 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1108
1109 /*
1110 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1111 * is more than just one DIMM present in unganged mode. Need to check
1112 * both controllers since DIMMs can be placed in either one.
1113 */
1114 for (i = 0; i < 2; i++) {
1115 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1116
1117 for (j = 0; j < 4; j++) {
1118 if (DBAM_DIMM(j, dbam) > 0) {
1119 channels++;
1120 break;
1121 }
1122 }
1123 }
1124
1125 if (channels > 2)
1126 channels = 2;
1127
1128 amd64_info("MCT channel count: %d\n", channels);
1129
1130 return channels;
1131 }
1132
1133 static int ddr3_cs_size(unsigned i, bool dct_width)
1134 {
1135 unsigned shift = 0;
1136 int cs_size = 0;
1137
1138 if (i == 0 || i == 3 || i == 4)
1139 cs_size = -1;
1140 else if (i <= 2)
1141 shift = i;
1142 else if (i == 12)
1143 shift = 7;
1144 else if (!(i & 0x1))
1145 shift = i >> 1;
1146 else
1147 shift = (i + 1) >> 1;
1148
1149 if (cs_size != -1)
1150 cs_size = (128 * (1 << !!dct_width)) << shift;
1151
1152 return cs_size;
1153 }
1154
1155 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1156 unsigned cs_mode)
1157 {
1158 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1159
1160 WARN_ON(cs_mode > 11);
1161
1162 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1163 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1164 else
1165 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1166 }
1167
1168 /*
1169 * F15h supports only 64bit DCT interfaces
1170 */
1171 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1172 unsigned cs_mode)
1173 {
1174 WARN_ON(cs_mode > 12);
1175
1176 return ddr3_cs_size(cs_mode, false);
1177 }
1178
1179 /*
1180 * F16h and F15h model 30h have only limited cs_modes.
1181 */
1182 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1183 unsigned cs_mode)
1184 {
1185 WARN_ON(cs_mode > 12);
1186
1187 if (cs_mode == 6 || cs_mode == 8 ||
1188 cs_mode == 9 || cs_mode == 12)
1189 return -1;
1190 else
1191 return ddr3_cs_size(cs_mode, false);
1192 }
1193
1194 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1195 {
1196
1197 if (pvt->fam == 0xf)
1198 return;
1199
1200 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1201 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1202 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1203
1204 edac_dbg(0, " DCTs operate in %s mode\n",
1205 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1206
1207 if (!dct_ganging_enabled(pvt))
1208 edac_dbg(0, " Address range split per DCT: %s\n",
1209 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1210
1211 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1212 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1213 (dct_memory_cleared(pvt) ? "yes" : "no"));
1214
1215 edac_dbg(0, " channel interleave: %s, "
1216 "interleave bits selector: 0x%x\n",
1217 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1218 dct_sel_interleave_addr(pvt));
1219 }
1220
1221 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1222 }
1223
1224 /*
1225 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1226 * 2.10.12 Memory Interleaving Modes).
1227 */
1228 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1229 u8 intlv_en, int num_dcts_intlv,
1230 u32 dct_sel)
1231 {
1232 u8 channel = 0;
1233 u8 select;
1234
1235 if (!(intlv_en))
1236 return (u8)(dct_sel);
1237
1238 if (num_dcts_intlv == 2) {
1239 select = (sys_addr >> 8) & 0x3;
1240 channel = select ? 0x3 : 0;
1241 } else if (num_dcts_intlv == 4)
1242 channel = (sys_addr >> 8) & 0x7;
1243
1244 return channel;
1245 }
1246
1247 /*
1248 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1249 * Interleaving Modes.
1250 */
1251 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1252 bool hi_range_sel, u8 intlv_en)
1253 {
1254 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1255
1256 if (dct_ganging_enabled(pvt))
1257 return 0;
1258
1259 if (hi_range_sel)
1260 return dct_sel_high;
1261
1262 /*
1263 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1264 */
1265 if (dct_interleave_enabled(pvt)) {
1266 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1267
1268 /* return DCT select function: 0=DCT0, 1=DCT1 */
1269 if (!intlv_addr)
1270 return sys_addr >> 6 & 1;
1271
1272 if (intlv_addr & 0x2) {
1273 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1274 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1275
1276 return ((sys_addr >> shift) & 1) ^ temp;
1277 }
1278
1279 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1280 }
1281
1282 if (dct_high_range_enabled(pvt))
1283 return ~dct_sel_high & 1;
1284
1285 return 0;
1286 }
1287
1288 /* Convert the sys_addr to the normalized DCT address */
1289 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1290 u64 sys_addr, bool hi_rng,
1291 u32 dct_sel_base_addr)
1292 {
1293 u64 chan_off;
1294 u64 dram_base = get_dram_base(pvt, range);
1295 u64 hole_off = f10_dhar_offset(pvt);
1296 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1297
1298 if (hi_rng) {
1299 /*
1300 * if
1301 * base address of high range is below 4Gb
1302 * (bits [47:27] at [31:11])
1303 * DRAM address space on this DCT is hoisted above 4Gb &&
1304 * sys_addr > 4Gb
1305 *
1306 * remove hole offset from sys_addr
1307 * else
1308 * remove high range offset from sys_addr
1309 */
1310 if ((!(dct_sel_base_addr >> 16) ||
1311 dct_sel_base_addr < dhar_base(pvt)) &&
1312 dhar_valid(pvt) &&
1313 (sys_addr >= BIT_64(32)))
1314 chan_off = hole_off;
1315 else
1316 chan_off = dct_sel_base_off;
1317 } else {
1318 /*
1319 * if
1320 * we have a valid hole &&
1321 * sys_addr > 4Gb
1322 *
1323 * remove hole
1324 * else
1325 * remove dram base to normalize to DCT address
1326 */
1327 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1328 chan_off = hole_off;
1329 else
1330 chan_off = dram_base;
1331 }
1332
1333 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1334 }
1335
1336 /*
1337 * checks if the csrow passed in is marked as SPARED, if so returns the new
1338 * spare row
1339 */
1340 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1341 {
1342 int tmp_cs;
1343
1344 if (online_spare_swap_done(pvt, dct) &&
1345 csrow == online_spare_bad_dramcs(pvt, dct)) {
1346
1347 for_each_chip_select(tmp_cs, dct, pvt) {
1348 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1349 csrow = tmp_cs;
1350 break;
1351 }
1352 }
1353 }
1354 return csrow;
1355 }
1356
1357 /*
1358 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1359 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1360 *
1361 * Return:
1362 * -EINVAL: NOT FOUND
1363 * 0..csrow = Chip-Select Row
1364 */
1365 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1366 {
1367 struct mem_ctl_info *mci;
1368 struct amd64_pvt *pvt;
1369 u64 cs_base, cs_mask;
1370 int cs_found = -EINVAL;
1371 int csrow;
1372
1373 mci = mcis[nid];
1374 if (!mci)
1375 return cs_found;
1376
1377 pvt = mci->pvt_info;
1378
1379 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1380
1381 for_each_chip_select(csrow, dct, pvt) {
1382 if (!csrow_enabled(csrow, dct, pvt))
1383 continue;
1384
1385 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1386
1387 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1388 csrow, cs_base, cs_mask);
1389
1390 cs_mask = ~cs_mask;
1391
1392 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1393 (in_addr & cs_mask), (cs_base & cs_mask));
1394
1395 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1396 if (pvt->fam == 0x15 && pvt->model >= 0x30) {
1397 cs_found = csrow;
1398 break;
1399 }
1400 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1401
1402 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1403 break;
1404 }
1405 }
1406 return cs_found;
1407 }
1408
1409 /*
1410 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1411 * swapped with a region located at the bottom of memory so that the GPU can use
1412 * the interleaved region and thus two channels.
1413 */
1414 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1415 {
1416 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1417
1418 if (pvt->fam == 0x10) {
1419 /* only revC3 and revE have that feature */
1420 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1421 return sys_addr;
1422 }
1423
1424 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1425
1426 if (!(swap_reg & 0x1))
1427 return sys_addr;
1428
1429 swap_base = (swap_reg >> 3) & 0x7f;
1430 swap_limit = (swap_reg >> 11) & 0x7f;
1431 rgn_size = (swap_reg >> 20) & 0x7f;
1432 tmp_addr = sys_addr >> 27;
1433
1434 if (!(sys_addr >> 34) &&
1435 (((tmp_addr >= swap_base) &&
1436 (tmp_addr <= swap_limit)) ||
1437 (tmp_addr < rgn_size)))
1438 return sys_addr ^ (u64)swap_base << 27;
1439
1440 return sys_addr;
1441 }
1442
1443 /* For a given @dram_range, check if @sys_addr falls within it. */
1444 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1445 u64 sys_addr, int *chan_sel)
1446 {
1447 int cs_found = -EINVAL;
1448 u64 chan_addr;
1449 u32 dct_sel_base;
1450 u8 channel;
1451 bool high_range = false;
1452
1453 u8 node_id = dram_dst_node(pvt, range);
1454 u8 intlv_en = dram_intlv_en(pvt, range);
1455 u32 intlv_sel = dram_intlv_sel(pvt, range);
1456
1457 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1458 range, sys_addr, get_dram_limit(pvt, range));
1459
1460 if (dhar_valid(pvt) &&
1461 dhar_base(pvt) <= sys_addr &&
1462 sys_addr < BIT_64(32)) {
1463 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1464 sys_addr);
1465 return -EINVAL;
1466 }
1467
1468 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1469 return -EINVAL;
1470
1471 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1472
1473 dct_sel_base = dct_sel_baseaddr(pvt);
1474
1475 /*
1476 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1477 * select between DCT0 and DCT1.
1478 */
1479 if (dct_high_range_enabled(pvt) &&
1480 !dct_ganging_enabled(pvt) &&
1481 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1482 high_range = true;
1483
1484 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1485
1486 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1487 high_range, dct_sel_base);
1488
1489 /* Remove node interleaving, see F1x120 */
1490 if (intlv_en)
1491 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1492 (chan_addr & 0xfff);
1493
1494 /* remove channel interleave */
1495 if (dct_interleave_enabled(pvt) &&
1496 !dct_high_range_enabled(pvt) &&
1497 !dct_ganging_enabled(pvt)) {
1498
1499 if (dct_sel_interleave_addr(pvt) != 1) {
1500 if (dct_sel_interleave_addr(pvt) == 0x3)
1501 /* hash 9 */
1502 chan_addr = ((chan_addr >> 10) << 9) |
1503 (chan_addr & 0x1ff);
1504 else
1505 /* A[6] or hash 6 */
1506 chan_addr = ((chan_addr >> 7) << 6) |
1507 (chan_addr & 0x3f);
1508 } else
1509 /* A[12] */
1510 chan_addr = ((chan_addr >> 13) << 12) |
1511 (chan_addr & 0xfff);
1512 }
1513
1514 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1515
1516 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1517
1518 if (cs_found >= 0)
1519 *chan_sel = channel;
1520
1521 return cs_found;
1522 }
1523
1524 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1525 u64 sys_addr, int *chan_sel)
1526 {
1527 int cs_found = -EINVAL;
1528 int num_dcts_intlv = 0;
1529 u64 chan_addr, chan_offset;
1530 u64 dct_base, dct_limit;
1531 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
1532 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
1533
1534 u64 dhar_offset = f10_dhar_offset(pvt);
1535 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1536 u8 node_id = dram_dst_node(pvt, range);
1537 u8 intlv_en = dram_intlv_en(pvt, range);
1538
1539 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
1540 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
1541
1542 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
1543 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
1544
1545 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1546 range, sys_addr, get_dram_limit(pvt, range));
1547
1548 if (!(get_dram_base(pvt, range) <= sys_addr) &&
1549 !(get_dram_limit(pvt, range) >= sys_addr))
1550 return -EINVAL;
1551
1552 if (dhar_valid(pvt) &&
1553 dhar_base(pvt) <= sys_addr &&
1554 sys_addr < BIT_64(32)) {
1555 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1556 sys_addr);
1557 return -EINVAL;
1558 }
1559
1560 /* Verify sys_addr is within DCT Range. */
1561 dct_base = (u64) dct_sel_baseaddr(pvt);
1562 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1563
1564 if (!(dct_cont_base_reg & BIT(0)) &&
1565 !(dct_base <= (sys_addr >> 27) &&
1566 dct_limit >= (sys_addr >> 27)))
1567 return -EINVAL;
1568
1569 /* Verify number of dct's that participate in channel interleaving. */
1570 num_dcts_intlv = (int) hweight8(intlv_en);
1571
1572 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
1573 return -EINVAL;
1574
1575 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
1576 num_dcts_intlv, dct_sel);
1577
1578 /* Verify we stay within the MAX number of channels allowed */
1579 if (channel > 4 || channel < 0)
1580 return -EINVAL;
1581
1582 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
1583
1584 /* Get normalized DCT addr */
1585 if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
1586 chan_offset = dhar_offset;
1587 else
1588 chan_offset = dct_base << 27;
1589
1590 chan_addr = sys_addr - chan_offset;
1591
1592 /* remove channel interleave */
1593 if (num_dcts_intlv == 2) {
1594 if (intlv_addr == 0x4)
1595 chan_addr = ((chan_addr >> 9) << 8) |
1596 (chan_addr & 0xff);
1597 else if (intlv_addr == 0x5)
1598 chan_addr = ((chan_addr >> 10) << 9) |
1599 (chan_addr & 0x1ff);
1600 else
1601 return -EINVAL;
1602
1603 } else if (num_dcts_intlv == 4) {
1604 if (intlv_addr == 0x4)
1605 chan_addr = ((chan_addr >> 10) << 8) |
1606 (chan_addr & 0xff);
1607 else if (intlv_addr == 0x5)
1608 chan_addr = ((chan_addr >> 11) << 9) |
1609 (chan_addr & 0x1ff);
1610 else
1611 return -EINVAL;
1612 }
1613
1614 if (dct_offset_en) {
1615 amd64_read_pci_cfg(pvt->F1,
1616 DRAM_CONT_HIGH_OFF + (int) channel * 4,
1617 &tmp);
1618 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
1619 }
1620
1621 f15h_select_dct(pvt, channel);
1622
1623 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1624
1625 /*
1626 * Find Chip select:
1627 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1628 * there is support for 4 DCT's, but only 2 are currently functional.
1629 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1630 * pvt->csels[1]. So we need to use '1' here to get correct info.
1631 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1632 */
1633 alias_channel = (channel == 3) ? 1 : channel;
1634
1635 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
1636
1637 if (cs_found >= 0)
1638 *chan_sel = alias_channel;
1639
1640 return cs_found;
1641 }
1642
1643 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
1644 u64 sys_addr,
1645 int *chan_sel)
1646 {
1647 int cs_found = -EINVAL;
1648 unsigned range;
1649
1650 for (range = 0; range < DRAM_RANGES; range++) {
1651 if (!dram_rw(pvt, range))
1652 continue;
1653
1654 if (pvt->fam == 0x15 && pvt->model >= 0x30)
1655 cs_found = f15_m30h_match_to_this_node(pvt, range,
1656 sys_addr,
1657 chan_sel);
1658
1659 else if ((get_dram_base(pvt, range) <= sys_addr) &&
1660 (get_dram_limit(pvt, range) >= sys_addr)) {
1661 cs_found = f1x_match_to_this_node(pvt, range,
1662 sys_addr, chan_sel);
1663 if (cs_found >= 0)
1664 break;
1665 }
1666 }
1667 return cs_found;
1668 }
1669
1670 /*
1671 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1672 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1673 *
1674 * The @sys_addr is usually an error address received from the hardware
1675 * (MCX_ADDR).
1676 */
1677 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1678 struct err_info *err)
1679 {
1680 struct amd64_pvt *pvt = mci->pvt_info;
1681
1682 error_address_to_page_and_offset(sys_addr, err);
1683
1684 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1685 if (err->csrow < 0) {
1686 err->err_code = ERR_CSROW;
1687 return;
1688 }
1689
1690 /*
1691 * We need the syndromes for channel detection only when we're
1692 * ganged. Otherwise @chan should already contain the channel at
1693 * this point.
1694 */
1695 if (dct_ganging_enabled(pvt))
1696 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1697 }
1698
1699 /*
1700 * debug routine to display the memory sizes of all logical DIMMs and its
1701 * CSROWs
1702 */
1703 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1704 {
1705 int dimm, size0, size1;
1706 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1707 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1708
1709 if (pvt->fam == 0xf) {
1710 /* K8 families < revF not supported yet */
1711 if (pvt->ext_model < K8_REV_F)
1712 return;
1713 else
1714 WARN_ON(ctrl != 0);
1715 }
1716
1717 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1718 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1719 : pvt->csels[0].csbases;
1720
1721 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1722 ctrl, dbam);
1723
1724 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1725
1726 /* Dump memory sizes for DIMM and its CSROWs */
1727 for (dimm = 0; dimm < 4; dimm++) {
1728
1729 size0 = 0;
1730 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1731 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1732 DBAM_DIMM(dimm, dbam));
1733
1734 size1 = 0;
1735 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1736 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1737 DBAM_DIMM(dimm, dbam));
1738
1739 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1740 dimm * 2, size0,
1741 dimm * 2 + 1, size1);
1742 }
1743 }
1744
1745 static struct amd64_family_type amd64_family_types[] = {
1746 [K8_CPUS] = {
1747 .ctl_name = "K8",
1748 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1749 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1750 .ops = {
1751 .early_channel_count = k8_early_channel_count,
1752 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1753 .dbam_to_cs = k8_dbam_to_chip_select,
1754 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1755 }
1756 },
1757 [F10_CPUS] = {
1758 .ctl_name = "F10h",
1759 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1760 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1761 .ops = {
1762 .early_channel_count = f1x_early_channel_count,
1763 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1764 .dbam_to_cs = f10_dbam_to_chip_select,
1765 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1766 }
1767 },
1768 [F15_CPUS] = {
1769 .ctl_name = "F15h",
1770 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1771 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1772 .ops = {
1773 .early_channel_count = f1x_early_channel_count,
1774 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1775 .dbam_to_cs = f15_dbam_to_chip_select,
1776 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1777 }
1778 },
1779 [F15_M30H_CPUS] = {
1780 .ctl_name = "F15h_M30h",
1781 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
1782 .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
1783 .ops = {
1784 .early_channel_count = f1x_early_channel_count,
1785 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1786 .dbam_to_cs = f16_dbam_to_chip_select,
1787 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1788 }
1789 },
1790 [F16_CPUS] = {
1791 .ctl_name = "F16h",
1792 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
1793 .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
1794 .ops = {
1795 .early_channel_count = f1x_early_channel_count,
1796 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1797 .dbam_to_cs = f16_dbam_to_chip_select,
1798 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1799 }
1800 },
1801 };
1802
1803 /*
1804 * These are tables of eigenvectors (one per line) which can be used for the
1805 * construction of the syndrome tables. The modified syndrome search algorithm
1806 * uses those to find the symbol in error and thus the DIMM.
1807 *
1808 * Algorithm courtesy of Ross LaFetra from AMD.
1809 */
1810 static const u16 x4_vectors[] = {
1811 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1812 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1813 0x0001, 0x0002, 0x0004, 0x0008,
1814 0x1013, 0x3032, 0x4044, 0x8088,
1815 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1816 0x4857, 0xc4fe, 0x13cc, 0x3288,
1817 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1818 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1819 0x15c1, 0x2a42, 0x89ac, 0x4758,
1820 0x2b03, 0x1602, 0x4f0c, 0xca08,
1821 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1822 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1823 0x2b87, 0x164e, 0x642c, 0xdc18,
1824 0x40b9, 0x80de, 0x1094, 0x20e8,
1825 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1826 0x11c1, 0x2242, 0x84ac, 0x4c58,
1827 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1828 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1829 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1830 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1831 0x16b3, 0x3d62, 0x4f34, 0x8518,
1832 0x1e2f, 0x391a, 0x5cac, 0xf858,
1833 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1834 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1835 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1836 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1837 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1838 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1839 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1840 0x185d, 0x2ca6, 0x7914, 0x9e28,
1841 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1842 0x4199, 0x82ee, 0x19f4, 0x2e58,
1843 0x4807, 0xc40e, 0x130c, 0x3208,
1844 0x1905, 0x2e0a, 0x5804, 0xac08,
1845 0x213f, 0x132a, 0xadfc, 0x5ba8,
1846 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1847 };
1848
1849 static const u16 x8_vectors[] = {
1850 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1851 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1852 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1853 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1854 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1855 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1856 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1857 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1858 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1859 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1860 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1861 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1862 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1863 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1864 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1865 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1866 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1867 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1868 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1869 };
1870
1871 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
1872 unsigned v_dim)
1873 {
1874 unsigned int i, err_sym;
1875
1876 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1877 u16 s = syndrome;
1878 unsigned v_idx = err_sym * v_dim;
1879 unsigned v_end = (err_sym + 1) * v_dim;
1880
1881 /* walk over all 16 bits of the syndrome */
1882 for (i = 1; i < (1U << 16); i <<= 1) {
1883
1884 /* if bit is set in that eigenvector... */
1885 if (v_idx < v_end && vectors[v_idx] & i) {
1886 u16 ev_comp = vectors[v_idx++];
1887
1888 /* ... and bit set in the modified syndrome, */
1889 if (s & i) {
1890 /* remove it. */
1891 s ^= ev_comp;
1892
1893 if (!s)
1894 return err_sym;
1895 }
1896
1897 } else if (s & i)
1898 /* can't get to zero, move to next symbol */
1899 break;
1900 }
1901 }
1902
1903 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
1904 return -1;
1905 }
1906
1907 static int map_err_sym_to_channel(int err_sym, int sym_size)
1908 {
1909 if (sym_size == 4)
1910 switch (err_sym) {
1911 case 0x20:
1912 case 0x21:
1913 return 0;
1914 break;
1915 case 0x22:
1916 case 0x23:
1917 return 1;
1918 break;
1919 default:
1920 return err_sym >> 4;
1921 break;
1922 }
1923 /* x8 symbols */
1924 else
1925 switch (err_sym) {
1926 /* imaginary bits not in a DIMM */
1927 case 0x10:
1928 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1929 err_sym);
1930 return -1;
1931 break;
1932
1933 case 0x11:
1934 return 0;
1935 break;
1936 case 0x12:
1937 return 1;
1938 break;
1939 default:
1940 return err_sym >> 3;
1941 break;
1942 }
1943 return -1;
1944 }
1945
1946 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1947 {
1948 struct amd64_pvt *pvt = mci->pvt_info;
1949 int err_sym = -1;
1950
1951 if (pvt->ecc_sym_sz == 8)
1952 err_sym = decode_syndrome(syndrome, x8_vectors,
1953 ARRAY_SIZE(x8_vectors),
1954 pvt->ecc_sym_sz);
1955 else if (pvt->ecc_sym_sz == 4)
1956 err_sym = decode_syndrome(syndrome, x4_vectors,
1957 ARRAY_SIZE(x4_vectors),
1958 pvt->ecc_sym_sz);
1959 else {
1960 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1961 return err_sym;
1962 }
1963
1964 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1965 }
1966
1967 static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
1968 u8 ecc_type)
1969 {
1970 enum hw_event_mc_err_type err_type;
1971 const char *string;
1972
1973 if (ecc_type == 2)
1974 err_type = HW_EVENT_ERR_CORRECTED;
1975 else if (ecc_type == 1)
1976 err_type = HW_EVENT_ERR_UNCORRECTED;
1977 else {
1978 WARN(1, "Something is rotten in the state of Denmark.\n");
1979 return;
1980 }
1981
1982 switch (err->err_code) {
1983 case DECODE_OK:
1984 string = "";
1985 break;
1986 case ERR_NODE:
1987 string = "Failed to map error addr to a node";
1988 break;
1989 case ERR_CSROW:
1990 string = "Failed to map error addr to a csrow";
1991 break;
1992 case ERR_CHANNEL:
1993 string = "unknown syndrome - possible error reporting race";
1994 break;
1995 default:
1996 string = "WTF error";
1997 break;
1998 }
1999
2000 edac_mc_handle_error(err_type, mci, 1,
2001 err->page, err->offset, err->syndrome,
2002 err->csrow, err->channel, -1,
2003 string, "");
2004 }
2005
2006 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2007 struct mce *m)
2008 {
2009 struct amd64_pvt *pvt = mci->pvt_info;
2010 u8 ecc_type = (m->status >> 45) & 0x3;
2011 u8 xec = XEC(m->status, 0x1f);
2012 u16 ec = EC(m->status);
2013 u64 sys_addr;
2014 struct err_info err;
2015
2016 /* Bail out early if this was an 'observed' error */
2017 if (PP(ec) == NBSL_PP_OBS)
2018 return;
2019
2020 /* Do only ECC errors */
2021 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2022 return;
2023
2024 memset(&err, 0, sizeof(err));
2025
2026 sys_addr = get_error_address(pvt, m);
2027
2028 if (ecc_type == 2)
2029 err.syndrome = extract_syndrome(m->status);
2030
2031 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2032
2033 __log_bus_error(mci, &err, ecc_type);
2034 }
2035
2036 void amd64_decode_bus_error(int node_id, struct mce *m)
2037 {
2038 __amd64_decode_bus_error(mcis[node_id], m);
2039 }
2040
2041 /*
2042 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2043 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2044 */
2045 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2046 {
2047 /* Reserve the ADDRESS MAP Device */
2048 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2049 if (!pvt->F1) {
2050 amd64_err("error address map device not found: "
2051 "vendor %x device 0x%x (broken BIOS?)\n",
2052 PCI_VENDOR_ID_AMD, f1_id);
2053 return -ENODEV;
2054 }
2055
2056 /* Reserve the MISC Device */
2057 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2058 if (!pvt->F3) {
2059 pci_dev_put(pvt->F1);
2060 pvt->F1 = NULL;
2061
2062 amd64_err("error F3 device not found: "
2063 "vendor %x device 0x%x (broken BIOS?)\n",
2064 PCI_VENDOR_ID_AMD, f3_id);
2065
2066 return -ENODEV;
2067 }
2068 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2069 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2070 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2071
2072 return 0;
2073 }
2074
2075 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2076 {
2077 pci_dev_put(pvt->F1);
2078 pci_dev_put(pvt->F3);
2079 }
2080
2081 /*
2082 * Retrieve the hardware registers of the memory controller (this includes the
2083 * 'Address Map' and 'Misc' device regs)
2084 */
2085 static void read_mc_regs(struct amd64_pvt *pvt)
2086 {
2087 unsigned range;
2088 u64 msr_val;
2089 u32 tmp;
2090
2091 /*
2092 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2093 * those are Read-As-Zero
2094 */
2095 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2096 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
2097
2098 /* check first whether TOP_MEM2 is enabled */
2099 rdmsrl(MSR_K8_SYSCFG, msr_val);
2100 if (msr_val & (1U << 21)) {
2101 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2102 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2103 } else
2104 edac_dbg(0, " TOP_MEM2 disabled\n");
2105
2106 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2107
2108 read_dram_ctl_register(pvt);
2109
2110 for (range = 0; range < DRAM_RANGES; range++) {
2111 u8 rw;
2112
2113 /* read settings for this DRAM range */
2114 read_dram_base_limit_regs(pvt, range);
2115
2116 rw = dram_rw(pvt, range);
2117 if (!rw)
2118 continue;
2119
2120 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2121 range,
2122 get_dram_base(pvt, range),
2123 get_dram_limit(pvt, range));
2124
2125 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2126 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2127 (rw & 0x1) ? "R" : "-",
2128 (rw & 0x2) ? "W" : "-",
2129 dram_intlv_sel(pvt, range),
2130 dram_dst_node(pvt, range));
2131 }
2132
2133 read_dct_base_mask(pvt);
2134
2135 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2136 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2137
2138 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2139
2140 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2141 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2142
2143 if (!dct_ganging_enabled(pvt)) {
2144 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2145 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2146 }
2147
2148 pvt->ecc_sym_sz = 4;
2149
2150 if (pvt->fam >= 0x10) {
2151 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2152 if (pvt->fam != 0x16)
2153 /* F16h has only DCT0 */
2154 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2155
2156 /* F10h, revD and later can do x8 ECC too */
2157 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
2158 pvt->ecc_sym_sz = 8;
2159 }
2160 dump_misc_regs(pvt);
2161 }
2162
2163 /*
2164 * NOTE: CPU Revision Dependent code
2165 *
2166 * Input:
2167 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2168 * k8 private pointer to -->
2169 * DRAM Bank Address mapping register
2170 * node_id
2171 * DCL register where dual_channel_active is
2172 *
2173 * The DBAM register consists of 4 sets of 4 bits each definitions:
2174 *
2175 * Bits: CSROWs
2176 * 0-3 CSROWs 0 and 1
2177 * 4-7 CSROWs 2 and 3
2178 * 8-11 CSROWs 4 and 5
2179 * 12-15 CSROWs 6 and 7
2180 *
2181 * Values range from: 0 to 15
2182 * The meaning of the values depends on CPU revision and dual-channel state,
2183 * see relevant BKDG more info.
2184 *
2185 * The memory controller provides for total of only 8 CSROWs in its current
2186 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2187 * single channel or two (2) DIMMs in dual channel mode.
2188 *
2189 * The following code logic collapses the various tables for CSROW based on CPU
2190 * revision.
2191 *
2192 * Returns:
2193 * The number of PAGE_SIZE pages on the specified CSROW number it
2194 * encompasses
2195 *
2196 */
2197 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2198 {
2199 u32 cs_mode, nr_pages;
2200 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2201
2202
2203 /*
2204 * The math on this doesn't look right on the surface because x/2*4 can
2205 * be simplified to x*2 but this expression makes use of the fact that
2206 * it is integral math where 1/2=0. This intermediate value becomes the
2207 * number of bits to shift the DBAM register to extract the proper CSROW
2208 * field.
2209 */
2210 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2211
2212 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2213
2214 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2215 csrow_nr, dct, cs_mode);
2216 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2217
2218 return nr_pages;
2219 }
2220
2221 /*
2222 * Initialize the array of csrow attribute instances, based on the values
2223 * from pci config hardware registers.
2224 */
2225 static int init_csrows(struct mem_ctl_info *mci)
2226 {
2227 struct amd64_pvt *pvt = mci->pvt_info;
2228 struct csrow_info *csrow;
2229 struct dimm_info *dimm;
2230 enum edac_type edac_mode;
2231 enum mem_type mtype;
2232 int i, j, empty = 1;
2233 int nr_pages = 0;
2234 u32 val;
2235
2236 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2237
2238 pvt->nbcfg = val;
2239
2240 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2241 pvt->mc_node_id, val,
2242 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2243
2244 /*
2245 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2246 */
2247 for_each_chip_select(i, 0, pvt) {
2248 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2249 bool row_dct1 = false;
2250
2251 if (pvt->fam != 0xf)
2252 row_dct1 = !!csrow_enabled(i, 1, pvt);
2253
2254 if (!row_dct0 && !row_dct1)
2255 continue;
2256
2257 csrow = mci->csrows[i];
2258 empty = 0;
2259
2260 edac_dbg(1, "MC node: %d, csrow: %d\n",
2261 pvt->mc_node_id, i);
2262
2263 if (row_dct0) {
2264 nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2265 csrow->channels[0]->dimm->nr_pages = nr_pages;
2266 }
2267
2268 /* K8 has only one DCT */
2269 if (pvt->fam != 0xf && row_dct1) {
2270 int row_dct1_pages = amd64_csrow_nr_pages(pvt, 1, i);
2271
2272 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2273 nr_pages += row_dct1_pages;
2274 }
2275
2276 mtype = amd64_determine_memory_type(pvt, i);
2277
2278 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2279
2280 /*
2281 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2282 */
2283 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2284 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2285 EDAC_S4ECD4ED : EDAC_SECDED;
2286 else
2287 edac_mode = EDAC_NONE;
2288
2289 for (j = 0; j < pvt->channel_count; j++) {
2290 dimm = csrow->channels[j]->dimm;
2291 dimm->mtype = mtype;
2292 dimm->edac_mode = edac_mode;
2293 }
2294 }
2295
2296 return empty;
2297 }
2298
2299 /* get all cores on this DCT */
2300 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2301 {
2302 int cpu;
2303
2304 for_each_online_cpu(cpu)
2305 if (amd_get_nb_id(cpu) == nid)
2306 cpumask_set_cpu(cpu, mask);
2307 }
2308
2309 /* check MCG_CTL on all the cpus on this node */
2310 static bool amd64_nb_mce_bank_enabled_on_node(u16 nid)
2311 {
2312 cpumask_var_t mask;
2313 int cpu, nbe;
2314 bool ret = false;
2315
2316 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2317 amd64_warn("%s: Error allocating mask\n", __func__);
2318 return false;
2319 }
2320
2321 get_cpus_on_this_dct_cpumask(mask, nid);
2322
2323 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2324
2325 for_each_cpu(cpu, mask) {
2326 struct msr *reg = per_cpu_ptr(msrs, cpu);
2327 nbe = reg->l & MSR_MCGCTL_NBE;
2328
2329 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2330 cpu, reg->q,
2331 (nbe ? "enabled" : "disabled"));
2332
2333 if (!nbe)
2334 goto out;
2335 }
2336 ret = true;
2337
2338 out:
2339 free_cpumask_var(mask);
2340 return ret;
2341 }
2342
2343 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2344 {
2345 cpumask_var_t cmask;
2346 int cpu;
2347
2348 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2349 amd64_warn("%s: error allocating mask\n", __func__);
2350 return false;
2351 }
2352
2353 get_cpus_on_this_dct_cpumask(cmask, nid);
2354
2355 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2356
2357 for_each_cpu(cpu, cmask) {
2358
2359 struct msr *reg = per_cpu_ptr(msrs, cpu);
2360
2361 if (on) {
2362 if (reg->l & MSR_MCGCTL_NBE)
2363 s->flags.nb_mce_enable = 1;
2364
2365 reg->l |= MSR_MCGCTL_NBE;
2366 } else {
2367 /*
2368 * Turn off NB MCE reporting only when it was off before
2369 */
2370 if (!s->flags.nb_mce_enable)
2371 reg->l &= ~MSR_MCGCTL_NBE;
2372 }
2373 }
2374 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2375
2376 free_cpumask_var(cmask);
2377
2378 return 0;
2379 }
2380
2381 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2382 struct pci_dev *F3)
2383 {
2384 bool ret = true;
2385 u32 value, mask = 0x3; /* UECC/CECC enable */
2386
2387 if (toggle_ecc_err_reporting(s, nid, ON)) {
2388 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2389 return false;
2390 }
2391
2392 amd64_read_pci_cfg(F3, NBCTL, &value);
2393
2394 s->old_nbctl = value & mask;
2395 s->nbctl_valid = true;
2396
2397 value |= mask;
2398 amd64_write_pci_cfg(F3, NBCTL, value);
2399
2400 amd64_read_pci_cfg(F3, NBCFG, &value);
2401
2402 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2403 nid, value, !!(value & NBCFG_ECC_ENABLE));
2404
2405 if (!(value & NBCFG_ECC_ENABLE)) {
2406 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2407
2408 s->flags.nb_ecc_prev = 0;
2409
2410 /* Attempt to turn on DRAM ECC Enable */
2411 value |= NBCFG_ECC_ENABLE;
2412 amd64_write_pci_cfg(F3, NBCFG, value);
2413
2414 amd64_read_pci_cfg(F3, NBCFG, &value);
2415
2416 if (!(value & NBCFG_ECC_ENABLE)) {
2417 amd64_warn("Hardware rejected DRAM ECC enable,"
2418 "check memory DIMM configuration.\n");
2419 ret = false;
2420 } else {
2421 amd64_info("Hardware accepted DRAM ECC Enable\n");
2422 }
2423 } else {
2424 s->flags.nb_ecc_prev = 1;
2425 }
2426
2427 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2428 nid, value, !!(value & NBCFG_ECC_ENABLE));
2429
2430 return ret;
2431 }
2432
2433 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2434 struct pci_dev *F3)
2435 {
2436 u32 value, mask = 0x3; /* UECC/CECC enable */
2437
2438
2439 if (!s->nbctl_valid)
2440 return;
2441
2442 amd64_read_pci_cfg(F3, NBCTL, &value);
2443 value &= ~mask;
2444 value |= s->old_nbctl;
2445
2446 amd64_write_pci_cfg(F3, NBCTL, value);
2447
2448 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2449 if (!s->flags.nb_ecc_prev) {
2450 amd64_read_pci_cfg(F3, NBCFG, &value);
2451 value &= ~NBCFG_ECC_ENABLE;
2452 amd64_write_pci_cfg(F3, NBCFG, value);
2453 }
2454
2455 /* restore the NB Enable MCGCTL bit */
2456 if (toggle_ecc_err_reporting(s, nid, OFF))
2457 amd64_warn("Error restoring NB MCGCTL settings!\n");
2458 }
2459
2460 /*
2461 * EDAC requires that the BIOS have ECC enabled before
2462 * taking over the processing of ECC errors. A command line
2463 * option allows to force-enable hardware ECC later in
2464 * enable_ecc_error_reporting().
2465 */
2466 static const char *ecc_msg =
2467 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2468 " Either enable ECC checking or force module loading by setting "
2469 "'ecc_enable_override'.\n"
2470 " (Note that use of the override may cause unknown side effects.)\n";
2471
2472 static bool ecc_enabled(struct pci_dev *F3, u16 nid)
2473 {
2474 u32 value;
2475 u8 ecc_en = 0;
2476 bool nb_mce_en = false;
2477
2478 amd64_read_pci_cfg(F3, NBCFG, &value);
2479
2480 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2481 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2482
2483 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2484 if (!nb_mce_en)
2485 amd64_notice("NB MCE bank disabled, set MSR "
2486 "0x%08x[4] on node %d to enable.\n",
2487 MSR_IA32_MCG_CTL, nid);
2488
2489 if (!ecc_en || !nb_mce_en) {
2490 amd64_notice("%s", ecc_msg);
2491 return false;
2492 }
2493 return true;
2494 }
2495
2496 static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2497 {
2498 struct amd64_pvt *pvt = mci->pvt_info;
2499 int rc;
2500
2501 rc = amd64_create_sysfs_dbg_files(mci);
2502 if (rc < 0)
2503 return rc;
2504
2505 if (pvt->fam >= 0x10) {
2506 rc = amd64_create_sysfs_inject_files(mci);
2507 if (rc < 0)
2508 return rc;
2509 }
2510
2511 return 0;
2512 }
2513
2514 static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2515 {
2516 struct amd64_pvt *pvt = mci->pvt_info;
2517
2518 amd64_remove_sysfs_dbg_files(mci);
2519
2520 if (pvt->fam >= 0x10)
2521 amd64_remove_sysfs_inject_files(mci);
2522 }
2523
2524 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2525 struct amd64_family_type *fam)
2526 {
2527 struct amd64_pvt *pvt = mci->pvt_info;
2528
2529 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2530 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2531
2532 if (pvt->nbcap & NBCAP_SECDED)
2533 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2534
2535 if (pvt->nbcap & NBCAP_CHIPKILL)
2536 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2537
2538 mci->edac_cap = amd64_determine_edac_cap(pvt);
2539 mci->mod_name = EDAC_MOD_STR;
2540 mci->mod_ver = EDAC_AMD64_VERSION;
2541 mci->ctl_name = fam->ctl_name;
2542 mci->dev_name = pci_name(pvt->F2);
2543 mci->ctl_page_to_phys = NULL;
2544
2545 /* memory scrubber interface */
2546 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2547 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2548 }
2549
2550 /*
2551 * returns a pointer to the family descriptor on success, NULL otherwise.
2552 */
2553 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2554 {
2555 struct amd64_family_type *fam_type = NULL;
2556
2557 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2558 pvt->stepping = boot_cpu_data.x86_mask;
2559 pvt->model = boot_cpu_data.x86_model;
2560 pvt->fam = boot_cpu_data.x86;
2561
2562 switch (pvt->fam) {
2563 case 0xf:
2564 fam_type = &amd64_family_types[K8_CPUS];
2565 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2566 break;
2567
2568 case 0x10:
2569 fam_type = &amd64_family_types[F10_CPUS];
2570 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2571 break;
2572
2573 case 0x15:
2574 if (pvt->model == 0x30) {
2575 fam_type = &amd64_family_types[F15_M30H_CPUS];
2576 pvt->ops = &amd64_family_types[F15_M30H_CPUS].ops;
2577 break;
2578 }
2579
2580 fam_type = &amd64_family_types[F15_CPUS];
2581 pvt->ops = &amd64_family_types[F15_CPUS].ops;
2582 break;
2583
2584 case 0x16:
2585 fam_type = &amd64_family_types[F16_CPUS];
2586 pvt->ops = &amd64_family_types[F16_CPUS].ops;
2587 break;
2588
2589 default:
2590 amd64_err("Unsupported family!\n");
2591 return NULL;
2592 }
2593
2594 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2595 (pvt->fam == 0xf ?
2596 (pvt->ext_model >= K8_REV_F ? "revF or later "
2597 : "revE or earlier ")
2598 : ""), pvt->mc_node_id);
2599 return fam_type;
2600 }
2601
2602 static int amd64_init_one_instance(struct pci_dev *F2)
2603 {
2604 struct amd64_pvt *pvt = NULL;
2605 struct amd64_family_type *fam_type = NULL;
2606 struct mem_ctl_info *mci = NULL;
2607 struct edac_mc_layer layers[2];
2608 int err = 0, ret;
2609 u16 nid = amd_get_node_id(F2);
2610
2611 ret = -ENOMEM;
2612 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2613 if (!pvt)
2614 goto err_ret;
2615
2616 pvt->mc_node_id = nid;
2617 pvt->F2 = F2;
2618
2619 ret = -EINVAL;
2620 fam_type = amd64_per_family_init(pvt);
2621 if (!fam_type)
2622 goto err_free;
2623
2624 ret = -ENODEV;
2625 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2626 if (err)
2627 goto err_free;
2628
2629 read_mc_regs(pvt);
2630
2631 /*
2632 * We need to determine how many memory channels there are. Then use
2633 * that information for calculating the size of the dynamic instance
2634 * tables in the 'mci' structure.
2635 */
2636 ret = -EINVAL;
2637 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2638 if (pvt->channel_count < 0)
2639 goto err_siblings;
2640
2641 ret = -ENOMEM;
2642 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2643 layers[0].size = pvt->csels[0].b_cnt;
2644 layers[0].is_virt_csrow = true;
2645 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2646
2647 /*
2648 * Always allocate two channels since we can have setups with DIMMs on
2649 * only one channel. Also, this simplifies handling later for the price
2650 * of a couple of KBs tops.
2651 */
2652 layers[1].size = 2;
2653 layers[1].is_virt_csrow = false;
2654
2655 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2656 if (!mci)
2657 goto err_siblings;
2658
2659 mci->pvt_info = pvt;
2660 mci->pdev = &pvt->F2->dev;
2661
2662 setup_mci_misc_attrs(mci, fam_type);
2663
2664 if (init_csrows(mci))
2665 mci->edac_cap = EDAC_FLAG_NONE;
2666
2667 ret = -ENODEV;
2668 if (edac_mc_add_mc(mci)) {
2669 edac_dbg(1, "failed edac_mc_add_mc()\n");
2670 goto err_add_mc;
2671 }
2672 if (set_mc_sysfs_attrs(mci)) {
2673 edac_dbg(1, "failed edac_mc_add_mc()\n");
2674 goto err_add_sysfs;
2675 }
2676
2677 /* register stuff with EDAC MCE */
2678 if (report_gart_errors)
2679 amd_report_gart_errors(true);
2680
2681 amd_register_ecc_decoder(amd64_decode_bus_error);
2682
2683 mcis[nid] = mci;
2684
2685 atomic_inc(&drv_instances);
2686
2687 return 0;
2688
2689 err_add_sysfs:
2690 edac_mc_del_mc(mci->pdev);
2691 err_add_mc:
2692 edac_mc_free(mci);
2693
2694 err_siblings:
2695 free_mc_sibling_devs(pvt);
2696
2697 err_free:
2698 kfree(pvt);
2699
2700 err_ret:
2701 return ret;
2702 }
2703
2704 static int amd64_probe_one_instance(struct pci_dev *pdev,
2705 const struct pci_device_id *mc_type)
2706 {
2707 u16 nid = amd_get_node_id(pdev);
2708 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2709 struct ecc_settings *s;
2710 int ret = 0;
2711
2712 ret = pci_enable_device(pdev);
2713 if (ret < 0) {
2714 edac_dbg(0, "ret=%d\n", ret);
2715 return -EIO;
2716 }
2717
2718 ret = -ENOMEM;
2719 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2720 if (!s)
2721 goto err_out;
2722
2723 ecc_stngs[nid] = s;
2724
2725 if (!ecc_enabled(F3, nid)) {
2726 ret = -ENODEV;
2727
2728 if (!ecc_enable_override)
2729 goto err_enable;
2730
2731 amd64_warn("Forcing ECC on!\n");
2732
2733 if (!enable_ecc_error_reporting(s, nid, F3))
2734 goto err_enable;
2735 }
2736
2737 ret = amd64_init_one_instance(pdev);
2738 if (ret < 0) {
2739 amd64_err("Error probing instance: %d\n", nid);
2740 restore_ecc_error_reporting(s, nid, F3);
2741 }
2742
2743 return ret;
2744
2745 err_enable:
2746 kfree(s);
2747 ecc_stngs[nid] = NULL;
2748
2749 err_out:
2750 return ret;
2751 }
2752
2753 static void amd64_remove_one_instance(struct pci_dev *pdev)
2754 {
2755 struct mem_ctl_info *mci;
2756 struct amd64_pvt *pvt;
2757 u16 nid = amd_get_node_id(pdev);
2758 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2759 struct ecc_settings *s = ecc_stngs[nid];
2760
2761 mci = find_mci_by_dev(&pdev->dev);
2762 WARN_ON(!mci);
2763
2764 del_mc_sysfs_attrs(mci);
2765 /* Remove from EDAC CORE tracking list */
2766 mci = edac_mc_del_mc(&pdev->dev);
2767 if (!mci)
2768 return;
2769
2770 pvt = mci->pvt_info;
2771
2772 restore_ecc_error_reporting(s, nid, F3);
2773
2774 free_mc_sibling_devs(pvt);
2775
2776 /* unregister from EDAC MCE */
2777 amd_report_gart_errors(false);
2778 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2779
2780 kfree(ecc_stngs[nid]);
2781 ecc_stngs[nid] = NULL;
2782
2783 /* Free the EDAC CORE resources */
2784 mci->pvt_info = NULL;
2785 mcis[nid] = NULL;
2786
2787 kfree(pvt);
2788 edac_mc_free(mci);
2789 }
2790
2791 /*
2792 * This table is part of the interface for loading drivers for PCI devices. The
2793 * PCI core identifies what devices are on a system during boot, and then
2794 * inquiry this table to see if this driver is for a given device found.
2795 */
2796 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2797 {
2798 .vendor = PCI_VENDOR_ID_AMD,
2799 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2800 .subvendor = PCI_ANY_ID,
2801 .subdevice = PCI_ANY_ID,
2802 .class = 0,
2803 .class_mask = 0,
2804 },
2805 {
2806 .vendor = PCI_VENDOR_ID_AMD,
2807 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2808 .subvendor = PCI_ANY_ID,
2809 .subdevice = PCI_ANY_ID,
2810 .class = 0,
2811 .class_mask = 0,
2812 },
2813 {
2814 .vendor = PCI_VENDOR_ID_AMD,
2815 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2816 .subvendor = PCI_ANY_ID,
2817 .subdevice = PCI_ANY_ID,
2818 .class = 0,
2819 .class_mask = 0,
2820 },
2821 {
2822 .vendor = PCI_VENDOR_ID_AMD,
2823 .device = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2824 .subvendor = PCI_ANY_ID,
2825 .subdevice = PCI_ANY_ID,
2826 .class = 0,
2827 .class_mask = 0,
2828 },
2829 {
2830 .vendor = PCI_VENDOR_ID_AMD,
2831 .device = PCI_DEVICE_ID_AMD_16H_NB_F2,
2832 .subvendor = PCI_ANY_ID,
2833 .subdevice = PCI_ANY_ID,
2834 .class = 0,
2835 .class_mask = 0,
2836 },
2837
2838 {0, }
2839 };
2840 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2841
2842 static struct pci_driver amd64_pci_driver = {
2843 .name = EDAC_MOD_STR,
2844 .probe = amd64_probe_one_instance,
2845 .remove = amd64_remove_one_instance,
2846 .id_table = amd64_pci_table,
2847 };
2848
2849 static void setup_pci_device(void)
2850 {
2851 struct mem_ctl_info *mci;
2852 struct amd64_pvt *pvt;
2853
2854 if (amd64_ctl_pci)
2855 return;
2856
2857 mci = mcis[0];
2858 if (mci) {
2859
2860 pvt = mci->pvt_info;
2861 amd64_ctl_pci =
2862 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2863
2864 if (!amd64_ctl_pci) {
2865 pr_warning("%s(): Unable to create PCI control\n",
2866 __func__);
2867
2868 pr_warning("%s(): PCI error report via EDAC not set\n",
2869 __func__);
2870 }
2871 }
2872 }
2873
2874 static int __init amd64_edac_init(void)
2875 {
2876 int err = -ENODEV;
2877
2878 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2879
2880 opstate_init();
2881
2882 if (amd_cache_northbridges() < 0)
2883 goto err_ret;
2884
2885 err = -ENOMEM;
2886 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2887 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2888 if (!(mcis && ecc_stngs))
2889 goto err_free;
2890
2891 msrs = msrs_alloc();
2892 if (!msrs)
2893 goto err_free;
2894
2895 err = pci_register_driver(&amd64_pci_driver);
2896 if (err)
2897 goto err_pci;
2898
2899 err = -ENODEV;
2900 if (!atomic_read(&drv_instances))
2901 goto err_no_instances;
2902
2903 setup_pci_device();
2904 return 0;
2905
2906 err_no_instances:
2907 pci_unregister_driver(&amd64_pci_driver);
2908
2909 err_pci:
2910 msrs_free(msrs);
2911 msrs = NULL;
2912
2913 err_free:
2914 kfree(mcis);
2915 mcis = NULL;
2916
2917 kfree(ecc_stngs);
2918 ecc_stngs = NULL;
2919
2920 err_ret:
2921 return err;
2922 }
2923
2924 static void __exit amd64_edac_exit(void)
2925 {
2926 if (amd64_ctl_pci)
2927 edac_pci_release_generic_ctl(amd64_ctl_pci);
2928
2929 pci_unregister_driver(&amd64_pci_driver);
2930
2931 kfree(ecc_stngs);
2932 ecc_stngs = NULL;
2933
2934 kfree(mcis);
2935 mcis = NULL;
2936
2937 msrs_free(msrs);
2938 msrs = NULL;
2939 }
2940
2941 module_init(amd64_edac_init);
2942 module_exit(amd64_edac_exit);
2943
2944 MODULE_LICENSE("GPL");
2945 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2946 "Dave Peterson, Thayne Harbaugh");
2947 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2948 EDAC_AMD64_VERSION);
2949
2950 module_param(edac_op_state, int, 0444);
2951 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.271436 seconds and 5 git commands to generate.