mrf24j40: add device managed APIs
[deliverable/linux.git] / drivers / edac / amd64_edac.c
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3
4 static struct edac_pci_ctl_info *pci_ctl;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26
27 /*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
34 static const struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61 };
62
63 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65 {
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74 }
75
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78 {
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87 }
88
89 /*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 * F16h: has only 1 DCT
102 */
103 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
104 const char *func)
105 {
106 if (addr >= 0x100)
107 return -EINVAL;
108
109 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
110 }
111
112 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
113 const char *func)
114 {
115 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
116 }
117
118 /*
119 * Select DCT to which PCI cfg accesses are routed
120 */
121 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
122 {
123 u32 reg = 0;
124
125 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
126 reg &= (pvt->model >= 0x30) ? ~3 : ~1;
127 reg |= dct;
128 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
129 }
130
131 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
132 const char *func)
133 {
134 u8 dct = 0;
135
136 /* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */
137 if (addr >= 0x140 && addr <= 0x1a0) {
138 dct = (pvt->model >= 0x30) ? 3 : 1;
139 addr -= 0x100;
140 }
141
142 f15h_select_dct(pvt, dct);
143
144 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
145 }
146
147 /*
148 * Memory scrubber control interface. For K8, memory scrubbing is handled by
149 * hardware and can involve L2 cache, dcache as well as the main memory. With
150 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
151 * functionality.
152 *
153 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
154 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
155 * bytes/sec for the setting.
156 *
157 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
158 * other archs, we might not have access to the caches directly.
159 */
160
161 /*
162 * scan the scrub rate mapping table for a close or matching bandwidth value to
163 * issue. If requested is too big, then use last maximum value found.
164 */
165 static int __set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
166 {
167 u32 scrubval;
168 int i;
169
170 /*
171 * map the configured rate (new_bw) to a value specific to the AMD64
172 * memory controller and apply to register. Search for the first
173 * bandwidth entry that is greater or equal than the setting requested
174 * and program that. If at last entry, turn off DRAM scrubbing.
175 *
176 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
177 * by falling back to the last element in scrubrates[].
178 */
179 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
180 /*
181 * skip scrub rates which aren't recommended
182 * (see F10 BKDG, F3x58)
183 */
184 if (scrubrates[i].scrubval < min_rate)
185 continue;
186
187 if (scrubrates[i].bandwidth <= new_bw)
188 break;
189 }
190
191 scrubval = scrubrates[i].scrubval;
192
193 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
194
195 if (scrubval)
196 return scrubrates[i].bandwidth;
197
198 return 0;
199 }
200
201 static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
202 {
203 struct amd64_pvt *pvt = mci->pvt_info;
204 u32 min_scrubrate = 0x5;
205
206 if (pvt->fam == 0xf)
207 min_scrubrate = 0x0;
208
209 /* Erratum #505 */
210 if (pvt->fam == 0x15 && pvt->model < 0x10)
211 f15h_select_dct(pvt, 0);
212
213 return __set_scrub_rate(pvt->F3, bw, min_scrubrate);
214 }
215
216 static int get_scrub_rate(struct mem_ctl_info *mci)
217 {
218 struct amd64_pvt *pvt = mci->pvt_info;
219 u32 scrubval = 0;
220 int i, retval = -EINVAL;
221
222 /* Erratum #505 */
223 if (pvt->fam == 0x15 && pvt->model < 0x10)
224 f15h_select_dct(pvt, 0);
225
226 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
227
228 scrubval = scrubval & 0x001F;
229
230 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
231 if (scrubrates[i].scrubval == scrubval) {
232 retval = scrubrates[i].bandwidth;
233 break;
234 }
235 }
236 return retval;
237 }
238
239 /*
240 * returns true if the SysAddr given by sys_addr matches the
241 * DRAM base/limit associated with node_id
242 */
243 static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
244 {
245 u64 addr;
246
247 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
248 * all ones if the most significant implemented address bit is 1.
249 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
250 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
251 * Application Programming.
252 */
253 addr = sys_addr & 0x000000ffffffffffull;
254
255 return ((addr >= get_dram_base(pvt, nid)) &&
256 (addr <= get_dram_limit(pvt, nid)));
257 }
258
259 /*
260 * Attempt to map a SysAddr to a node. On success, return a pointer to the
261 * mem_ctl_info structure for the node that the SysAddr maps to.
262 *
263 * On failure, return NULL.
264 */
265 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
266 u64 sys_addr)
267 {
268 struct amd64_pvt *pvt;
269 u8 node_id;
270 u32 intlv_en, bits;
271
272 /*
273 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
274 * 3.4.4.2) registers to map the SysAddr to a node ID.
275 */
276 pvt = mci->pvt_info;
277
278 /*
279 * The value of this field should be the same for all DRAM Base
280 * registers. Therefore we arbitrarily choose to read it from the
281 * register for node 0.
282 */
283 intlv_en = dram_intlv_en(pvt, 0);
284
285 if (intlv_en == 0) {
286 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
287 if (base_limit_match(pvt, sys_addr, node_id))
288 goto found;
289 }
290 goto err_no_match;
291 }
292
293 if (unlikely((intlv_en != 0x01) &&
294 (intlv_en != 0x03) &&
295 (intlv_en != 0x07))) {
296 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
297 return NULL;
298 }
299
300 bits = (((u32) sys_addr) >> 12) & intlv_en;
301
302 for (node_id = 0; ; ) {
303 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
304 break; /* intlv_sel field matches */
305
306 if (++node_id >= DRAM_RANGES)
307 goto err_no_match;
308 }
309
310 /* sanity test for sys_addr */
311 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
312 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
313 "range for node %d with node interleaving enabled.\n",
314 __func__, sys_addr, node_id);
315 return NULL;
316 }
317
318 found:
319 return edac_mc_find((int)node_id);
320
321 err_no_match:
322 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
323 (unsigned long)sys_addr);
324
325 return NULL;
326 }
327
328 /*
329 * compute the CS base address of the @csrow on the DRAM controller @dct.
330 * For details see F2x[5C:40] in the processor's BKDG
331 */
332 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
333 u64 *base, u64 *mask)
334 {
335 u64 csbase, csmask, base_bits, mask_bits;
336 u8 addr_shift;
337
338 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
339 csbase = pvt->csels[dct].csbases[csrow];
340 csmask = pvt->csels[dct].csmasks[csrow];
341 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
342 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
343 addr_shift = 4;
344
345 /*
346 * F16h and F15h, models 30h and later need two addr_shift values:
347 * 8 for high and 6 for low (cf. F16h BKDG).
348 */
349 } else if (pvt->fam == 0x16 ||
350 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
351 csbase = pvt->csels[dct].csbases[csrow];
352 csmask = pvt->csels[dct].csmasks[csrow >> 1];
353
354 *base = (csbase & GENMASK_ULL(15, 5)) << 6;
355 *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
356
357 *mask = ~0ULL;
358 /* poke holes for the csmask */
359 *mask &= ~((GENMASK_ULL(15, 5) << 6) |
360 (GENMASK_ULL(30, 19) << 8));
361
362 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
363 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
364
365 return;
366 } else {
367 csbase = pvt->csels[dct].csbases[csrow];
368 csmask = pvt->csels[dct].csmasks[csrow >> 1];
369 addr_shift = 8;
370
371 if (pvt->fam == 0x15)
372 base_bits = mask_bits =
373 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
374 else
375 base_bits = mask_bits =
376 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
377 }
378
379 *base = (csbase & base_bits) << addr_shift;
380
381 *mask = ~0ULL;
382 /* poke holes for the csmask */
383 *mask &= ~(mask_bits << addr_shift);
384 /* OR them in */
385 *mask |= (csmask & mask_bits) << addr_shift;
386 }
387
388 #define for_each_chip_select(i, dct, pvt) \
389 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
390
391 #define chip_select_base(i, dct, pvt) \
392 pvt->csels[dct].csbases[i]
393
394 #define for_each_chip_select_mask(i, dct, pvt) \
395 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
396
397 /*
398 * @input_addr is an InputAddr associated with the node given by mci. Return the
399 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
400 */
401 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
402 {
403 struct amd64_pvt *pvt;
404 int csrow;
405 u64 base, mask;
406
407 pvt = mci->pvt_info;
408
409 for_each_chip_select(csrow, 0, pvt) {
410 if (!csrow_enabled(csrow, 0, pvt))
411 continue;
412
413 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
414
415 mask = ~mask;
416
417 if ((input_addr & mask) == (base & mask)) {
418 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
419 (unsigned long)input_addr, csrow,
420 pvt->mc_node_id);
421
422 return csrow;
423 }
424 }
425 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
426 (unsigned long)input_addr, pvt->mc_node_id);
427
428 return -1;
429 }
430
431 /*
432 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
433 * for the node represented by mci. Info is passed back in *hole_base,
434 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
435 * info is invalid. Info may be invalid for either of the following reasons:
436 *
437 * - The revision of the node is not E or greater. In this case, the DRAM Hole
438 * Address Register does not exist.
439 *
440 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
441 * indicating that its contents are not valid.
442 *
443 * The values passed back in *hole_base, *hole_offset, and *hole_size are
444 * complete 32-bit values despite the fact that the bitfields in the DHAR
445 * only represent bits 31-24 of the base and offset values.
446 */
447 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
448 u64 *hole_offset, u64 *hole_size)
449 {
450 struct amd64_pvt *pvt = mci->pvt_info;
451
452 /* only revE and later have the DRAM Hole Address Register */
453 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
454 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
455 pvt->ext_model, pvt->mc_node_id);
456 return 1;
457 }
458
459 /* valid for Fam10h and above */
460 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
461 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
462 return 1;
463 }
464
465 if (!dhar_valid(pvt)) {
466 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
467 pvt->mc_node_id);
468 return 1;
469 }
470
471 /* This node has Memory Hoisting */
472
473 /* +------------------+--------------------+--------------------+-----
474 * | memory | DRAM hole | relocated |
475 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
476 * | | | DRAM hole |
477 * | | | [0x100000000, |
478 * | | | (0x100000000+ |
479 * | | | (0xffffffff-x))] |
480 * +------------------+--------------------+--------------------+-----
481 *
482 * Above is a diagram of physical memory showing the DRAM hole and the
483 * relocated addresses from the DRAM hole. As shown, the DRAM hole
484 * starts at address x (the base address) and extends through address
485 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
486 * addresses in the hole so that they start at 0x100000000.
487 */
488
489 *hole_base = dhar_base(pvt);
490 *hole_size = (1ULL << 32) - *hole_base;
491
492 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
493 : k8_dhar_offset(pvt);
494
495 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
496 pvt->mc_node_id, (unsigned long)*hole_base,
497 (unsigned long)*hole_offset, (unsigned long)*hole_size);
498
499 return 0;
500 }
501 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
502
503 /*
504 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
505 * assumed that sys_addr maps to the node given by mci.
506 *
507 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
508 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
509 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
510 * then it is also involved in translating a SysAddr to a DramAddr. Sections
511 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
512 * These parts of the documentation are unclear. I interpret them as follows:
513 *
514 * When node n receives a SysAddr, it processes the SysAddr as follows:
515 *
516 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
517 * Limit registers for node n. If the SysAddr is not within the range
518 * specified by the base and limit values, then node n ignores the Sysaddr
519 * (since it does not map to node n). Otherwise continue to step 2 below.
520 *
521 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
522 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
523 * the range of relocated addresses (starting at 0x100000000) from the DRAM
524 * hole. If not, skip to step 3 below. Else get the value of the
525 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
526 * offset defined by this value from the SysAddr.
527 *
528 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
529 * Base register for node n. To obtain the DramAddr, subtract the base
530 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
531 */
532 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
533 {
534 struct amd64_pvt *pvt = mci->pvt_info;
535 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
536 int ret;
537
538 dram_base = get_dram_base(pvt, pvt->mc_node_id);
539
540 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
541 &hole_size);
542 if (!ret) {
543 if ((sys_addr >= (1ULL << 32)) &&
544 (sys_addr < ((1ULL << 32) + hole_size))) {
545 /* use DHAR to translate SysAddr to DramAddr */
546 dram_addr = sys_addr - hole_offset;
547
548 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
549 (unsigned long)sys_addr,
550 (unsigned long)dram_addr);
551
552 return dram_addr;
553 }
554 }
555
556 /*
557 * Translate the SysAddr to a DramAddr as shown near the start of
558 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
559 * only deals with 40-bit values. Therefore we discard bits 63-40 of
560 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
561 * discard are all 1s. Otherwise the bits we discard are all 0s. See
562 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
563 * Programmer's Manual Volume 1 Application Programming.
564 */
565 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
566
567 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
568 (unsigned long)sys_addr, (unsigned long)dram_addr);
569 return dram_addr;
570 }
571
572 /*
573 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
574 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
575 * for node interleaving.
576 */
577 static int num_node_interleave_bits(unsigned intlv_en)
578 {
579 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
580 int n;
581
582 BUG_ON(intlv_en > 7);
583 n = intlv_shift_table[intlv_en];
584 return n;
585 }
586
587 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
588 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
589 {
590 struct amd64_pvt *pvt;
591 int intlv_shift;
592 u64 input_addr;
593
594 pvt = mci->pvt_info;
595
596 /*
597 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
598 * concerning translating a DramAddr to an InputAddr.
599 */
600 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
601 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
602 (dram_addr & 0xfff);
603
604 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
605 intlv_shift, (unsigned long)dram_addr,
606 (unsigned long)input_addr);
607
608 return input_addr;
609 }
610
611 /*
612 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
613 * assumed that @sys_addr maps to the node given by mci.
614 */
615 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
616 {
617 u64 input_addr;
618
619 input_addr =
620 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
621
622 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
623 (unsigned long)sys_addr, (unsigned long)input_addr);
624
625 return input_addr;
626 }
627
628 /* Map the Error address to a PAGE and PAGE OFFSET. */
629 static inline void error_address_to_page_and_offset(u64 error_address,
630 struct err_info *err)
631 {
632 err->page = (u32) (error_address >> PAGE_SHIFT);
633 err->offset = ((u32) error_address) & ~PAGE_MASK;
634 }
635
636 /*
637 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
638 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
639 * of a node that detected an ECC memory error. mci represents the node that
640 * the error address maps to (possibly different from the node that detected
641 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
642 * error.
643 */
644 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
645 {
646 int csrow;
647
648 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
649
650 if (csrow == -1)
651 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
652 "address 0x%lx\n", (unsigned long)sys_addr);
653 return csrow;
654 }
655
656 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
657
658 /*
659 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
660 * are ECC capable.
661 */
662 static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
663 {
664 u8 bit;
665 unsigned long edac_cap = EDAC_FLAG_NONE;
666
667 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
668 ? 19
669 : 17;
670
671 if (pvt->dclr0 & BIT(bit))
672 edac_cap = EDAC_FLAG_SECDED;
673
674 return edac_cap;
675 }
676
677 static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
678
679 static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
680 {
681 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
682
683 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
684 (dclr & BIT(16)) ? "un" : "",
685 (dclr & BIT(19)) ? "yes" : "no");
686
687 edac_dbg(1, " PAR/ERR parity: %s\n",
688 (dclr & BIT(8)) ? "enabled" : "disabled");
689
690 if (pvt->fam == 0x10)
691 edac_dbg(1, " DCT 128bit mode width: %s\n",
692 (dclr & BIT(11)) ? "128b" : "64b");
693
694 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
695 (dclr & BIT(12)) ? "yes" : "no",
696 (dclr & BIT(13)) ? "yes" : "no",
697 (dclr & BIT(14)) ? "yes" : "no",
698 (dclr & BIT(15)) ? "yes" : "no");
699 }
700
701 /* Display and decode various NB registers for debug purposes. */
702 static void dump_misc_regs(struct amd64_pvt *pvt)
703 {
704 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
705
706 edac_dbg(1, " NB two channel DRAM capable: %s\n",
707 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
708
709 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
710 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
711 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
712
713 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
714
715 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
716
717 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
718 pvt->dhar, dhar_base(pvt),
719 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
720 : f10_dhar_offset(pvt));
721
722 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
723
724 debug_display_dimm_sizes(pvt, 0);
725
726 /* everything below this point is Fam10h and above */
727 if (pvt->fam == 0xf)
728 return;
729
730 debug_display_dimm_sizes(pvt, 1);
731
732 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
733
734 /* Only if NOT ganged does dclr1 have valid info */
735 if (!dct_ganging_enabled(pvt))
736 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
737 }
738
739 /*
740 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
741 */
742 static void prep_chip_selects(struct amd64_pvt *pvt)
743 {
744 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
745 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
746 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
747 } else if (pvt->fam == 0x15 && pvt->model >= 0x30) {
748 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
749 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
750 } else {
751 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
752 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
753 }
754 }
755
756 /*
757 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
758 */
759 static void read_dct_base_mask(struct amd64_pvt *pvt)
760 {
761 int cs;
762
763 prep_chip_selects(pvt);
764
765 for_each_chip_select(cs, 0, pvt) {
766 int reg0 = DCSB0 + (cs * 4);
767 int reg1 = DCSB1 + (cs * 4);
768 u32 *base0 = &pvt->csels[0].csbases[cs];
769 u32 *base1 = &pvt->csels[1].csbases[cs];
770
771 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
772 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
773 cs, *base0, reg0);
774
775 if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
776 continue;
777
778 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
779 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
780 cs, *base1, reg1);
781 }
782
783 for_each_chip_select_mask(cs, 0, pvt) {
784 int reg0 = DCSM0 + (cs * 4);
785 int reg1 = DCSM1 + (cs * 4);
786 u32 *mask0 = &pvt->csels[0].csmasks[cs];
787 u32 *mask1 = &pvt->csels[1].csmasks[cs];
788
789 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
790 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
791 cs, *mask0, reg0);
792
793 if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
794 continue;
795
796 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
797 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
798 cs, *mask1, reg1);
799 }
800 }
801
802 static enum mem_type determine_memory_type(struct amd64_pvt *pvt, int cs)
803 {
804 enum mem_type type;
805
806 /* F15h supports only DDR3 */
807 if (pvt->fam >= 0x15)
808 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
809 else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) {
810 if (pvt->dchr0 & DDR3_MODE)
811 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
812 else
813 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
814 } else {
815 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
816 }
817
818 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
819
820 return type;
821 }
822
823 /* Get the number of DCT channels the memory controller is using. */
824 static int k8_early_channel_count(struct amd64_pvt *pvt)
825 {
826 int flag;
827
828 if (pvt->ext_model >= K8_REV_F)
829 /* RevF (NPT) and later */
830 flag = pvt->dclr0 & WIDTH_128;
831 else
832 /* RevE and earlier */
833 flag = pvt->dclr0 & REVE_WIDTH_128;
834
835 /* not used */
836 pvt->dclr1 = 0;
837
838 return (flag) ? 2 : 1;
839 }
840
841 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
842 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
843 {
844 u64 addr;
845 u8 start_bit = 1;
846 u8 end_bit = 47;
847
848 if (pvt->fam == 0xf) {
849 start_bit = 3;
850 end_bit = 39;
851 }
852
853 addr = m->addr & GENMASK_ULL(end_bit, start_bit);
854
855 /*
856 * Erratum 637 workaround
857 */
858 if (pvt->fam == 0x15) {
859 struct amd64_pvt *pvt;
860 u64 cc6_base, tmp_addr;
861 u32 tmp;
862 u16 mce_nid;
863 u8 intlv_en;
864
865 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
866 return addr;
867
868 mce_nid = amd_get_nb_id(m->extcpu);
869 pvt = mcis[mce_nid]->pvt_info;
870
871 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
872 intlv_en = tmp >> 21 & 0x7;
873
874 /* add [47:27] + 3 trailing bits */
875 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
876
877 /* reverse and add DramIntlvEn */
878 cc6_base |= intlv_en ^ 0x7;
879
880 /* pin at [47:24] */
881 cc6_base <<= 24;
882
883 if (!intlv_en)
884 return cc6_base | (addr & GENMASK_ULL(23, 0));
885
886 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
887
888 /* faster log2 */
889 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
890
891 /* OR DramIntlvSel into bits [14:12] */
892 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
893
894 /* add remaining [11:0] bits from original MC4_ADDR */
895 tmp_addr |= addr & GENMASK_ULL(11, 0);
896
897 return cc6_base | tmp_addr;
898 }
899
900 return addr;
901 }
902
903 static struct pci_dev *pci_get_related_function(unsigned int vendor,
904 unsigned int device,
905 struct pci_dev *related)
906 {
907 struct pci_dev *dev = NULL;
908
909 while ((dev = pci_get_device(vendor, device, dev))) {
910 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
911 (dev->bus->number == related->bus->number) &&
912 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
913 break;
914 }
915
916 return dev;
917 }
918
919 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
920 {
921 struct amd_northbridge *nb;
922 struct pci_dev *f1 = NULL;
923 unsigned int pci_func;
924 int off = range << 3;
925 u32 llim;
926
927 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
928 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
929
930 if (pvt->fam == 0xf)
931 return;
932
933 if (!dram_rw(pvt, range))
934 return;
935
936 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
937 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
938
939 /* F15h: factor in CC6 save area by reading dst node's limit reg */
940 if (pvt->fam != 0x15)
941 return;
942
943 nb = node_to_amd_nb(dram_dst_node(pvt, range));
944 if (WARN_ON(!nb))
945 return;
946
947 pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
948 : PCI_DEVICE_ID_AMD_15H_NB_F1;
949
950 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
951 if (WARN_ON(!f1))
952 return;
953
954 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
955
956 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
957
958 /* {[39:27],111b} */
959 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
960
961 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
962
963 /* [47:40] */
964 pvt->ranges[range].lim.hi |= llim >> 13;
965
966 pci_dev_put(f1);
967 }
968
969 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
970 struct err_info *err)
971 {
972 struct amd64_pvt *pvt = mci->pvt_info;
973
974 error_address_to_page_and_offset(sys_addr, err);
975
976 /*
977 * Find out which node the error address belongs to. This may be
978 * different from the node that detected the error.
979 */
980 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
981 if (!err->src_mci) {
982 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
983 (unsigned long)sys_addr);
984 err->err_code = ERR_NODE;
985 return;
986 }
987
988 /* Now map the sys_addr to a CSROW */
989 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
990 if (err->csrow < 0) {
991 err->err_code = ERR_CSROW;
992 return;
993 }
994
995 /* CHIPKILL enabled */
996 if (pvt->nbcfg & NBCFG_CHIPKILL) {
997 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
998 if (err->channel < 0) {
999 /*
1000 * Syndrome didn't map, so we don't know which of the
1001 * 2 DIMMs is in error. So we need to ID 'both' of them
1002 * as suspect.
1003 */
1004 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1005 "possible error reporting race\n",
1006 err->syndrome);
1007 err->err_code = ERR_CHANNEL;
1008 return;
1009 }
1010 } else {
1011 /*
1012 * non-chipkill ecc mode
1013 *
1014 * The k8 documentation is unclear about how to determine the
1015 * channel number when using non-chipkill memory. This method
1016 * was obtained from email communication with someone at AMD.
1017 * (Wish the email was placed in this comment - norsk)
1018 */
1019 err->channel = ((sys_addr & BIT(3)) != 0);
1020 }
1021 }
1022
1023 static int ddr2_cs_size(unsigned i, bool dct_width)
1024 {
1025 unsigned shift = 0;
1026
1027 if (i <= 2)
1028 shift = i;
1029 else if (!(i & 0x1))
1030 shift = i >> 1;
1031 else
1032 shift = (i + 1) >> 1;
1033
1034 return 128 << (shift + !!dct_width);
1035 }
1036
1037 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1038 unsigned cs_mode)
1039 {
1040 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1041
1042 if (pvt->ext_model >= K8_REV_F) {
1043 WARN_ON(cs_mode > 11);
1044 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1045 }
1046 else if (pvt->ext_model >= K8_REV_D) {
1047 unsigned diff;
1048 WARN_ON(cs_mode > 10);
1049
1050 /*
1051 * the below calculation, besides trying to win an obfuscated C
1052 * contest, maps cs_mode values to DIMM chip select sizes. The
1053 * mappings are:
1054 *
1055 * cs_mode CS size (mb)
1056 * ======= ============
1057 * 0 32
1058 * 1 64
1059 * 2 128
1060 * 3 128
1061 * 4 256
1062 * 5 512
1063 * 6 256
1064 * 7 512
1065 * 8 1024
1066 * 9 1024
1067 * 10 2048
1068 *
1069 * Basically, it calculates a value with which to shift the
1070 * smallest CS size of 32MB.
1071 *
1072 * ddr[23]_cs_size have a similar purpose.
1073 */
1074 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1075
1076 return 32 << (cs_mode - diff);
1077 }
1078 else {
1079 WARN_ON(cs_mode > 6);
1080 return 32 << cs_mode;
1081 }
1082 }
1083
1084 /*
1085 * Get the number of DCT channels in use.
1086 *
1087 * Return:
1088 * number of Memory Channels in operation
1089 * Pass back:
1090 * contents of the DCL0_LOW register
1091 */
1092 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1093 {
1094 int i, j, channels = 0;
1095
1096 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1097 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1098 return 2;
1099
1100 /*
1101 * Need to check if in unganged mode: In such, there are 2 channels,
1102 * but they are not in 128 bit mode and thus the above 'dclr0' status
1103 * bit will be OFF.
1104 *
1105 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1106 * their CSEnable bit on. If so, then SINGLE DIMM case.
1107 */
1108 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1109
1110 /*
1111 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1112 * is more than just one DIMM present in unganged mode. Need to check
1113 * both controllers since DIMMs can be placed in either one.
1114 */
1115 for (i = 0; i < 2; i++) {
1116 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1117
1118 for (j = 0; j < 4; j++) {
1119 if (DBAM_DIMM(j, dbam) > 0) {
1120 channels++;
1121 break;
1122 }
1123 }
1124 }
1125
1126 if (channels > 2)
1127 channels = 2;
1128
1129 amd64_info("MCT channel count: %d\n", channels);
1130
1131 return channels;
1132 }
1133
1134 static int ddr3_cs_size(unsigned i, bool dct_width)
1135 {
1136 unsigned shift = 0;
1137 int cs_size = 0;
1138
1139 if (i == 0 || i == 3 || i == 4)
1140 cs_size = -1;
1141 else if (i <= 2)
1142 shift = i;
1143 else if (i == 12)
1144 shift = 7;
1145 else if (!(i & 0x1))
1146 shift = i >> 1;
1147 else
1148 shift = (i + 1) >> 1;
1149
1150 if (cs_size != -1)
1151 cs_size = (128 * (1 << !!dct_width)) << shift;
1152
1153 return cs_size;
1154 }
1155
1156 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1157 unsigned cs_mode)
1158 {
1159 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1160
1161 WARN_ON(cs_mode > 11);
1162
1163 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1164 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1165 else
1166 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1167 }
1168
1169 /*
1170 * F15h supports only 64bit DCT interfaces
1171 */
1172 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1173 unsigned cs_mode)
1174 {
1175 WARN_ON(cs_mode > 12);
1176
1177 return ddr3_cs_size(cs_mode, false);
1178 }
1179
1180 /*
1181 * F16h and F15h model 30h have only limited cs_modes.
1182 */
1183 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1184 unsigned cs_mode)
1185 {
1186 WARN_ON(cs_mode > 12);
1187
1188 if (cs_mode == 6 || cs_mode == 8 ||
1189 cs_mode == 9 || cs_mode == 12)
1190 return -1;
1191 else
1192 return ddr3_cs_size(cs_mode, false);
1193 }
1194
1195 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1196 {
1197
1198 if (pvt->fam == 0xf)
1199 return;
1200
1201 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1202 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1203 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1204
1205 edac_dbg(0, " DCTs operate in %s mode\n",
1206 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1207
1208 if (!dct_ganging_enabled(pvt))
1209 edac_dbg(0, " Address range split per DCT: %s\n",
1210 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1211
1212 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1213 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1214 (dct_memory_cleared(pvt) ? "yes" : "no"));
1215
1216 edac_dbg(0, " channel interleave: %s, "
1217 "interleave bits selector: 0x%x\n",
1218 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1219 dct_sel_interleave_addr(pvt));
1220 }
1221
1222 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1223 }
1224
1225 /*
1226 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1227 * 2.10.12 Memory Interleaving Modes).
1228 */
1229 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1230 u8 intlv_en, int num_dcts_intlv,
1231 u32 dct_sel)
1232 {
1233 u8 channel = 0;
1234 u8 select;
1235
1236 if (!(intlv_en))
1237 return (u8)(dct_sel);
1238
1239 if (num_dcts_intlv == 2) {
1240 select = (sys_addr >> 8) & 0x3;
1241 channel = select ? 0x3 : 0;
1242 } else if (num_dcts_intlv == 4) {
1243 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1244 switch (intlv_addr) {
1245 case 0x4:
1246 channel = (sys_addr >> 8) & 0x3;
1247 break;
1248 case 0x5:
1249 channel = (sys_addr >> 9) & 0x3;
1250 break;
1251 }
1252 }
1253 return channel;
1254 }
1255
1256 /*
1257 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1258 * Interleaving Modes.
1259 */
1260 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1261 bool hi_range_sel, u8 intlv_en)
1262 {
1263 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1264
1265 if (dct_ganging_enabled(pvt))
1266 return 0;
1267
1268 if (hi_range_sel)
1269 return dct_sel_high;
1270
1271 /*
1272 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1273 */
1274 if (dct_interleave_enabled(pvt)) {
1275 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1276
1277 /* return DCT select function: 0=DCT0, 1=DCT1 */
1278 if (!intlv_addr)
1279 return sys_addr >> 6 & 1;
1280
1281 if (intlv_addr & 0x2) {
1282 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1283 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1284
1285 return ((sys_addr >> shift) & 1) ^ temp;
1286 }
1287
1288 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1289 }
1290
1291 if (dct_high_range_enabled(pvt))
1292 return ~dct_sel_high & 1;
1293
1294 return 0;
1295 }
1296
1297 /* Convert the sys_addr to the normalized DCT address */
1298 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1299 u64 sys_addr, bool hi_rng,
1300 u32 dct_sel_base_addr)
1301 {
1302 u64 chan_off;
1303 u64 dram_base = get_dram_base(pvt, range);
1304 u64 hole_off = f10_dhar_offset(pvt);
1305 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1306
1307 if (hi_rng) {
1308 /*
1309 * if
1310 * base address of high range is below 4Gb
1311 * (bits [47:27] at [31:11])
1312 * DRAM address space on this DCT is hoisted above 4Gb &&
1313 * sys_addr > 4Gb
1314 *
1315 * remove hole offset from sys_addr
1316 * else
1317 * remove high range offset from sys_addr
1318 */
1319 if ((!(dct_sel_base_addr >> 16) ||
1320 dct_sel_base_addr < dhar_base(pvt)) &&
1321 dhar_valid(pvt) &&
1322 (sys_addr >= BIT_64(32)))
1323 chan_off = hole_off;
1324 else
1325 chan_off = dct_sel_base_off;
1326 } else {
1327 /*
1328 * if
1329 * we have a valid hole &&
1330 * sys_addr > 4Gb
1331 *
1332 * remove hole
1333 * else
1334 * remove dram base to normalize to DCT address
1335 */
1336 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1337 chan_off = hole_off;
1338 else
1339 chan_off = dram_base;
1340 }
1341
1342 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1343 }
1344
1345 /*
1346 * checks if the csrow passed in is marked as SPARED, if so returns the new
1347 * spare row
1348 */
1349 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1350 {
1351 int tmp_cs;
1352
1353 if (online_spare_swap_done(pvt, dct) &&
1354 csrow == online_spare_bad_dramcs(pvt, dct)) {
1355
1356 for_each_chip_select(tmp_cs, dct, pvt) {
1357 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1358 csrow = tmp_cs;
1359 break;
1360 }
1361 }
1362 }
1363 return csrow;
1364 }
1365
1366 /*
1367 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1368 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1369 *
1370 * Return:
1371 * -EINVAL: NOT FOUND
1372 * 0..csrow = Chip-Select Row
1373 */
1374 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1375 {
1376 struct mem_ctl_info *mci;
1377 struct amd64_pvt *pvt;
1378 u64 cs_base, cs_mask;
1379 int cs_found = -EINVAL;
1380 int csrow;
1381
1382 mci = mcis[nid];
1383 if (!mci)
1384 return cs_found;
1385
1386 pvt = mci->pvt_info;
1387
1388 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1389
1390 for_each_chip_select(csrow, dct, pvt) {
1391 if (!csrow_enabled(csrow, dct, pvt))
1392 continue;
1393
1394 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1395
1396 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1397 csrow, cs_base, cs_mask);
1398
1399 cs_mask = ~cs_mask;
1400
1401 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1402 (in_addr & cs_mask), (cs_base & cs_mask));
1403
1404 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1405 if (pvt->fam == 0x15 && pvt->model >= 0x30) {
1406 cs_found = csrow;
1407 break;
1408 }
1409 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1410
1411 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1412 break;
1413 }
1414 }
1415 return cs_found;
1416 }
1417
1418 /*
1419 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1420 * swapped with a region located at the bottom of memory so that the GPU can use
1421 * the interleaved region and thus two channels.
1422 */
1423 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1424 {
1425 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1426
1427 if (pvt->fam == 0x10) {
1428 /* only revC3 and revE have that feature */
1429 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1430 return sys_addr;
1431 }
1432
1433 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1434
1435 if (!(swap_reg & 0x1))
1436 return sys_addr;
1437
1438 swap_base = (swap_reg >> 3) & 0x7f;
1439 swap_limit = (swap_reg >> 11) & 0x7f;
1440 rgn_size = (swap_reg >> 20) & 0x7f;
1441 tmp_addr = sys_addr >> 27;
1442
1443 if (!(sys_addr >> 34) &&
1444 (((tmp_addr >= swap_base) &&
1445 (tmp_addr <= swap_limit)) ||
1446 (tmp_addr < rgn_size)))
1447 return sys_addr ^ (u64)swap_base << 27;
1448
1449 return sys_addr;
1450 }
1451
1452 /* For a given @dram_range, check if @sys_addr falls within it. */
1453 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1454 u64 sys_addr, int *chan_sel)
1455 {
1456 int cs_found = -EINVAL;
1457 u64 chan_addr;
1458 u32 dct_sel_base;
1459 u8 channel;
1460 bool high_range = false;
1461
1462 u8 node_id = dram_dst_node(pvt, range);
1463 u8 intlv_en = dram_intlv_en(pvt, range);
1464 u32 intlv_sel = dram_intlv_sel(pvt, range);
1465
1466 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1467 range, sys_addr, get_dram_limit(pvt, range));
1468
1469 if (dhar_valid(pvt) &&
1470 dhar_base(pvt) <= sys_addr &&
1471 sys_addr < BIT_64(32)) {
1472 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1473 sys_addr);
1474 return -EINVAL;
1475 }
1476
1477 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1478 return -EINVAL;
1479
1480 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1481
1482 dct_sel_base = dct_sel_baseaddr(pvt);
1483
1484 /*
1485 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1486 * select between DCT0 and DCT1.
1487 */
1488 if (dct_high_range_enabled(pvt) &&
1489 !dct_ganging_enabled(pvt) &&
1490 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1491 high_range = true;
1492
1493 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1494
1495 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1496 high_range, dct_sel_base);
1497
1498 /* Remove node interleaving, see F1x120 */
1499 if (intlv_en)
1500 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1501 (chan_addr & 0xfff);
1502
1503 /* remove channel interleave */
1504 if (dct_interleave_enabled(pvt) &&
1505 !dct_high_range_enabled(pvt) &&
1506 !dct_ganging_enabled(pvt)) {
1507
1508 if (dct_sel_interleave_addr(pvt) != 1) {
1509 if (dct_sel_interleave_addr(pvt) == 0x3)
1510 /* hash 9 */
1511 chan_addr = ((chan_addr >> 10) << 9) |
1512 (chan_addr & 0x1ff);
1513 else
1514 /* A[6] or hash 6 */
1515 chan_addr = ((chan_addr >> 7) << 6) |
1516 (chan_addr & 0x3f);
1517 } else
1518 /* A[12] */
1519 chan_addr = ((chan_addr >> 13) << 12) |
1520 (chan_addr & 0xfff);
1521 }
1522
1523 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1524
1525 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1526
1527 if (cs_found >= 0)
1528 *chan_sel = channel;
1529
1530 return cs_found;
1531 }
1532
1533 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1534 u64 sys_addr, int *chan_sel)
1535 {
1536 int cs_found = -EINVAL;
1537 int num_dcts_intlv = 0;
1538 u64 chan_addr, chan_offset;
1539 u64 dct_base, dct_limit;
1540 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
1541 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
1542
1543 u64 dhar_offset = f10_dhar_offset(pvt);
1544 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1545 u8 node_id = dram_dst_node(pvt, range);
1546 u8 intlv_en = dram_intlv_en(pvt, range);
1547
1548 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
1549 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
1550
1551 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
1552 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
1553
1554 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1555 range, sys_addr, get_dram_limit(pvt, range));
1556
1557 if (!(get_dram_base(pvt, range) <= sys_addr) &&
1558 !(get_dram_limit(pvt, range) >= sys_addr))
1559 return -EINVAL;
1560
1561 if (dhar_valid(pvt) &&
1562 dhar_base(pvt) <= sys_addr &&
1563 sys_addr < BIT_64(32)) {
1564 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1565 sys_addr);
1566 return -EINVAL;
1567 }
1568
1569 /* Verify sys_addr is within DCT Range. */
1570 dct_base = (u64) dct_sel_baseaddr(pvt);
1571 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1572
1573 if (!(dct_cont_base_reg & BIT(0)) &&
1574 !(dct_base <= (sys_addr >> 27) &&
1575 dct_limit >= (sys_addr >> 27)))
1576 return -EINVAL;
1577
1578 /* Verify number of dct's that participate in channel interleaving. */
1579 num_dcts_intlv = (int) hweight8(intlv_en);
1580
1581 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
1582 return -EINVAL;
1583
1584 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
1585 num_dcts_intlv, dct_sel);
1586
1587 /* Verify we stay within the MAX number of channels allowed */
1588 if (channel > 3)
1589 return -EINVAL;
1590
1591 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
1592
1593 /* Get normalized DCT addr */
1594 if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
1595 chan_offset = dhar_offset;
1596 else
1597 chan_offset = dct_base << 27;
1598
1599 chan_addr = sys_addr - chan_offset;
1600
1601 /* remove channel interleave */
1602 if (num_dcts_intlv == 2) {
1603 if (intlv_addr == 0x4)
1604 chan_addr = ((chan_addr >> 9) << 8) |
1605 (chan_addr & 0xff);
1606 else if (intlv_addr == 0x5)
1607 chan_addr = ((chan_addr >> 10) << 9) |
1608 (chan_addr & 0x1ff);
1609 else
1610 return -EINVAL;
1611
1612 } else if (num_dcts_intlv == 4) {
1613 if (intlv_addr == 0x4)
1614 chan_addr = ((chan_addr >> 10) << 8) |
1615 (chan_addr & 0xff);
1616 else if (intlv_addr == 0x5)
1617 chan_addr = ((chan_addr >> 11) << 9) |
1618 (chan_addr & 0x1ff);
1619 else
1620 return -EINVAL;
1621 }
1622
1623 if (dct_offset_en) {
1624 amd64_read_pci_cfg(pvt->F1,
1625 DRAM_CONT_HIGH_OFF + (int) channel * 4,
1626 &tmp);
1627 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
1628 }
1629
1630 f15h_select_dct(pvt, channel);
1631
1632 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1633
1634 /*
1635 * Find Chip select:
1636 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1637 * there is support for 4 DCT's, but only 2 are currently functional.
1638 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1639 * pvt->csels[1]. So we need to use '1' here to get correct info.
1640 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1641 */
1642 alias_channel = (channel == 3) ? 1 : channel;
1643
1644 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
1645
1646 if (cs_found >= 0)
1647 *chan_sel = alias_channel;
1648
1649 return cs_found;
1650 }
1651
1652 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
1653 u64 sys_addr,
1654 int *chan_sel)
1655 {
1656 int cs_found = -EINVAL;
1657 unsigned range;
1658
1659 for (range = 0; range < DRAM_RANGES; range++) {
1660 if (!dram_rw(pvt, range))
1661 continue;
1662
1663 if (pvt->fam == 0x15 && pvt->model >= 0x30)
1664 cs_found = f15_m30h_match_to_this_node(pvt, range,
1665 sys_addr,
1666 chan_sel);
1667
1668 else if ((get_dram_base(pvt, range) <= sys_addr) &&
1669 (get_dram_limit(pvt, range) >= sys_addr)) {
1670 cs_found = f1x_match_to_this_node(pvt, range,
1671 sys_addr, chan_sel);
1672 if (cs_found >= 0)
1673 break;
1674 }
1675 }
1676 return cs_found;
1677 }
1678
1679 /*
1680 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1681 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1682 *
1683 * The @sys_addr is usually an error address received from the hardware
1684 * (MCX_ADDR).
1685 */
1686 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1687 struct err_info *err)
1688 {
1689 struct amd64_pvt *pvt = mci->pvt_info;
1690
1691 error_address_to_page_and_offset(sys_addr, err);
1692
1693 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1694 if (err->csrow < 0) {
1695 err->err_code = ERR_CSROW;
1696 return;
1697 }
1698
1699 /*
1700 * We need the syndromes for channel detection only when we're
1701 * ganged. Otherwise @chan should already contain the channel at
1702 * this point.
1703 */
1704 if (dct_ganging_enabled(pvt))
1705 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1706 }
1707
1708 /*
1709 * debug routine to display the memory sizes of all logical DIMMs and its
1710 * CSROWs
1711 */
1712 static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1713 {
1714 int dimm, size0, size1;
1715 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1716 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1717
1718 if (pvt->fam == 0xf) {
1719 /* K8 families < revF not supported yet */
1720 if (pvt->ext_model < K8_REV_F)
1721 return;
1722 else
1723 WARN_ON(ctrl != 0);
1724 }
1725
1726 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1727 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1728 : pvt->csels[0].csbases;
1729
1730 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1731 ctrl, dbam);
1732
1733 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1734
1735 /* Dump memory sizes for DIMM and its CSROWs */
1736 for (dimm = 0; dimm < 4; dimm++) {
1737
1738 size0 = 0;
1739 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1740 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1741 DBAM_DIMM(dimm, dbam));
1742
1743 size1 = 0;
1744 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1745 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1746 DBAM_DIMM(dimm, dbam));
1747
1748 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1749 dimm * 2, size0,
1750 dimm * 2 + 1, size1);
1751 }
1752 }
1753
1754 static struct amd64_family_type family_types[] = {
1755 [K8_CPUS] = {
1756 .ctl_name = "K8",
1757 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1758 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1759 .ops = {
1760 .early_channel_count = k8_early_channel_count,
1761 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1762 .dbam_to_cs = k8_dbam_to_chip_select,
1763 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1764 }
1765 },
1766 [F10_CPUS] = {
1767 .ctl_name = "F10h",
1768 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1769 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1770 .ops = {
1771 .early_channel_count = f1x_early_channel_count,
1772 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1773 .dbam_to_cs = f10_dbam_to_chip_select,
1774 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1775 }
1776 },
1777 [F15_CPUS] = {
1778 .ctl_name = "F15h",
1779 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1780 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1781 .ops = {
1782 .early_channel_count = f1x_early_channel_count,
1783 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1784 .dbam_to_cs = f15_dbam_to_chip_select,
1785 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1786 }
1787 },
1788 [F15_M30H_CPUS] = {
1789 .ctl_name = "F15h_M30h",
1790 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
1791 .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
1792 .ops = {
1793 .early_channel_count = f1x_early_channel_count,
1794 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1795 .dbam_to_cs = f16_dbam_to_chip_select,
1796 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1797 }
1798 },
1799 [F16_CPUS] = {
1800 .ctl_name = "F16h",
1801 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
1802 .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
1803 .ops = {
1804 .early_channel_count = f1x_early_channel_count,
1805 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1806 .dbam_to_cs = f16_dbam_to_chip_select,
1807 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1808 }
1809 },
1810 [F16_M30H_CPUS] = {
1811 .ctl_name = "F16h_M30h",
1812 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
1813 .f3_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F3,
1814 .ops = {
1815 .early_channel_count = f1x_early_channel_count,
1816 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1817 .dbam_to_cs = f16_dbam_to_chip_select,
1818 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1819 }
1820 },
1821 };
1822
1823 /*
1824 * These are tables of eigenvectors (one per line) which can be used for the
1825 * construction of the syndrome tables. The modified syndrome search algorithm
1826 * uses those to find the symbol in error and thus the DIMM.
1827 *
1828 * Algorithm courtesy of Ross LaFetra from AMD.
1829 */
1830 static const u16 x4_vectors[] = {
1831 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1832 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1833 0x0001, 0x0002, 0x0004, 0x0008,
1834 0x1013, 0x3032, 0x4044, 0x8088,
1835 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1836 0x4857, 0xc4fe, 0x13cc, 0x3288,
1837 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1838 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1839 0x15c1, 0x2a42, 0x89ac, 0x4758,
1840 0x2b03, 0x1602, 0x4f0c, 0xca08,
1841 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1842 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1843 0x2b87, 0x164e, 0x642c, 0xdc18,
1844 0x40b9, 0x80de, 0x1094, 0x20e8,
1845 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1846 0x11c1, 0x2242, 0x84ac, 0x4c58,
1847 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1848 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1849 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1850 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1851 0x16b3, 0x3d62, 0x4f34, 0x8518,
1852 0x1e2f, 0x391a, 0x5cac, 0xf858,
1853 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1854 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1855 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1856 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1857 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1858 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1859 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1860 0x185d, 0x2ca6, 0x7914, 0x9e28,
1861 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1862 0x4199, 0x82ee, 0x19f4, 0x2e58,
1863 0x4807, 0xc40e, 0x130c, 0x3208,
1864 0x1905, 0x2e0a, 0x5804, 0xac08,
1865 0x213f, 0x132a, 0xadfc, 0x5ba8,
1866 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1867 };
1868
1869 static const u16 x8_vectors[] = {
1870 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1871 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1872 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1873 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1874 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1875 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1876 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1877 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1878 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1879 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1880 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1881 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1882 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1883 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1884 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1885 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1886 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1887 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1888 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1889 };
1890
1891 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
1892 unsigned v_dim)
1893 {
1894 unsigned int i, err_sym;
1895
1896 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1897 u16 s = syndrome;
1898 unsigned v_idx = err_sym * v_dim;
1899 unsigned v_end = (err_sym + 1) * v_dim;
1900
1901 /* walk over all 16 bits of the syndrome */
1902 for (i = 1; i < (1U << 16); i <<= 1) {
1903
1904 /* if bit is set in that eigenvector... */
1905 if (v_idx < v_end && vectors[v_idx] & i) {
1906 u16 ev_comp = vectors[v_idx++];
1907
1908 /* ... and bit set in the modified syndrome, */
1909 if (s & i) {
1910 /* remove it. */
1911 s ^= ev_comp;
1912
1913 if (!s)
1914 return err_sym;
1915 }
1916
1917 } else if (s & i)
1918 /* can't get to zero, move to next symbol */
1919 break;
1920 }
1921 }
1922
1923 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
1924 return -1;
1925 }
1926
1927 static int map_err_sym_to_channel(int err_sym, int sym_size)
1928 {
1929 if (sym_size == 4)
1930 switch (err_sym) {
1931 case 0x20:
1932 case 0x21:
1933 return 0;
1934 break;
1935 case 0x22:
1936 case 0x23:
1937 return 1;
1938 break;
1939 default:
1940 return err_sym >> 4;
1941 break;
1942 }
1943 /* x8 symbols */
1944 else
1945 switch (err_sym) {
1946 /* imaginary bits not in a DIMM */
1947 case 0x10:
1948 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1949 err_sym);
1950 return -1;
1951 break;
1952
1953 case 0x11:
1954 return 0;
1955 break;
1956 case 0x12:
1957 return 1;
1958 break;
1959 default:
1960 return err_sym >> 3;
1961 break;
1962 }
1963 return -1;
1964 }
1965
1966 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1967 {
1968 struct amd64_pvt *pvt = mci->pvt_info;
1969 int err_sym = -1;
1970
1971 if (pvt->ecc_sym_sz == 8)
1972 err_sym = decode_syndrome(syndrome, x8_vectors,
1973 ARRAY_SIZE(x8_vectors),
1974 pvt->ecc_sym_sz);
1975 else if (pvt->ecc_sym_sz == 4)
1976 err_sym = decode_syndrome(syndrome, x4_vectors,
1977 ARRAY_SIZE(x4_vectors),
1978 pvt->ecc_sym_sz);
1979 else {
1980 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1981 return err_sym;
1982 }
1983
1984 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1985 }
1986
1987 static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
1988 u8 ecc_type)
1989 {
1990 enum hw_event_mc_err_type err_type;
1991 const char *string;
1992
1993 if (ecc_type == 2)
1994 err_type = HW_EVENT_ERR_CORRECTED;
1995 else if (ecc_type == 1)
1996 err_type = HW_EVENT_ERR_UNCORRECTED;
1997 else {
1998 WARN(1, "Something is rotten in the state of Denmark.\n");
1999 return;
2000 }
2001
2002 switch (err->err_code) {
2003 case DECODE_OK:
2004 string = "";
2005 break;
2006 case ERR_NODE:
2007 string = "Failed to map error addr to a node";
2008 break;
2009 case ERR_CSROW:
2010 string = "Failed to map error addr to a csrow";
2011 break;
2012 case ERR_CHANNEL:
2013 string = "unknown syndrome - possible error reporting race";
2014 break;
2015 default:
2016 string = "WTF error";
2017 break;
2018 }
2019
2020 edac_mc_handle_error(err_type, mci, 1,
2021 err->page, err->offset, err->syndrome,
2022 err->csrow, err->channel, -1,
2023 string, "");
2024 }
2025
2026 static inline void decode_bus_error(int node_id, struct mce *m)
2027 {
2028 struct mem_ctl_info *mci = mcis[node_id];
2029 struct amd64_pvt *pvt = mci->pvt_info;
2030 u8 ecc_type = (m->status >> 45) & 0x3;
2031 u8 xec = XEC(m->status, 0x1f);
2032 u16 ec = EC(m->status);
2033 u64 sys_addr;
2034 struct err_info err;
2035
2036 /* Bail out early if this was an 'observed' error */
2037 if (PP(ec) == NBSL_PP_OBS)
2038 return;
2039
2040 /* Do only ECC errors */
2041 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2042 return;
2043
2044 memset(&err, 0, sizeof(err));
2045
2046 sys_addr = get_error_address(pvt, m);
2047
2048 if (ecc_type == 2)
2049 err.syndrome = extract_syndrome(m->status);
2050
2051 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2052
2053 __log_bus_error(mci, &err, ecc_type);
2054 }
2055
2056 /*
2057 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2058 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2059 */
2060 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2061 {
2062 /* Reserve the ADDRESS MAP Device */
2063 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2064 if (!pvt->F1) {
2065 amd64_err("error address map device not found: "
2066 "vendor %x device 0x%x (broken BIOS?)\n",
2067 PCI_VENDOR_ID_AMD, f1_id);
2068 return -ENODEV;
2069 }
2070
2071 /* Reserve the MISC Device */
2072 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2073 if (!pvt->F3) {
2074 pci_dev_put(pvt->F1);
2075 pvt->F1 = NULL;
2076
2077 amd64_err("error F3 device not found: "
2078 "vendor %x device 0x%x (broken BIOS?)\n",
2079 PCI_VENDOR_ID_AMD, f3_id);
2080
2081 return -ENODEV;
2082 }
2083 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2084 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2085 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2086
2087 return 0;
2088 }
2089
2090 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2091 {
2092 pci_dev_put(pvt->F1);
2093 pci_dev_put(pvt->F3);
2094 }
2095
2096 /*
2097 * Retrieve the hardware registers of the memory controller (this includes the
2098 * 'Address Map' and 'Misc' device regs)
2099 */
2100 static void read_mc_regs(struct amd64_pvt *pvt)
2101 {
2102 unsigned range;
2103 u64 msr_val;
2104 u32 tmp;
2105
2106 /*
2107 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2108 * those are Read-As-Zero
2109 */
2110 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2111 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
2112
2113 /* check first whether TOP_MEM2 is enabled */
2114 rdmsrl(MSR_K8_SYSCFG, msr_val);
2115 if (msr_val & (1U << 21)) {
2116 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2117 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2118 } else
2119 edac_dbg(0, " TOP_MEM2 disabled\n");
2120
2121 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2122
2123 read_dram_ctl_register(pvt);
2124
2125 for (range = 0; range < DRAM_RANGES; range++) {
2126 u8 rw;
2127
2128 /* read settings for this DRAM range */
2129 read_dram_base_limit_regs(pvt, range);
2130
2131 rw = dram_rw(pvt, range);
2132 if (!rw)
2133 continue;
2134
2135 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2136 range,
2137 get_dram_base(pvt, range),
2138 get_dram_limit(pvt, range));
2139
2140 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2141 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2142 (rw & 0x1) ? "R" : "-",
2143 (rw & 0x2) ? "W" : "-",
2144 dram_intlv_sel(pvt, range),
2145 dram_dst_node(pvt, range));
2146 }
2147
2148 read_dct_base_mask(pvt);
2149
2150 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2151 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2152
2153 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2154
2155 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2156 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2157
2158 if (!dct_ganging_enabled(pvt)) {
2159 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2160 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2161 }
2162
2163 pvt->ecc_sym_sz = 4;
2164
2165 if (pvt->fam >= 0x10) {
2166 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2167 if (pvt->fam != 0x16)
2168 /* F16h has only DCT0 */
2169 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2170
2171 /* F10h, revD and later can do x8 ECC too */
2172 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
2173 pvt->ecc_sym_sz = 8;
2174 }
2175 dump_misc_regs(pvt);
2176 }
2177
2178 /*
2179 * NOTE: CPU Revision Dependent code
2180 *
2181 * Input:
2182 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2183 * k8 private pointer to -->
2184 * DRAM Bank Address mapping register
2185 * node_id
2186 * DCL register where dual_channel_active is
2187 *
2188 * The DBAM register consists of 4 sets of 4 bits each definitions:
2189 *
2190 * Bits: CSROWs
2191 * 0-3 CSROWs 0 and 1
2192 * 4-7 CSROWs 2 and 3
2193 * 8-11 CSROWs 4 and 5
2194 * 12-15 CSROWs 6 and 7
2195 *
2196 * Values range from: 0 to 15
2197 * The meaning of the values depends on CPU revision and dual-channel state,
2198 * see relevant BKDG more info.
2199 *
2200 * The memory controller provides for total of only 8 CSROWs in its current
2201 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2202 * single channel or two (2) DIMMs in dual channel mode.
2203 *
2204 * The following code logic collapses the various tables for CSROW based on CPU
2205 * revision.
2206 *
2207 * Returns:
2208 * The number of PAGE_SIZE pages on the specified CSROW number it
2209 * encompasses
2210 *
2211 */
2212 static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2213 {
2214 u32 cs_mode, nr_pages;
2215 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2216
2217
2218 /*
2219 * The math on this doesn't look right on the surface because x/2*4 can
2220 * be simplified to x*2 but this expression makes use of the fact that
2221 * it is integral math where 1/2=0. This intermediate value becomes the
2222 * number of bits to shift the DBAM register to extract the proper CSROW
2223 * field.
2224 */
2225 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2226
2227 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2228
2229 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2230 csrow_nr, dct, cs_mode);
2231 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2232
2233 return nr_pages;
2234 }
2235
2236 /*
2237 * Initialize the array of csrow attribute instances, based on the values
2238 * from pci config hardware registers.
2239 */
2240 static int init_csrows(struct mem_ctl_info *mci)
2241 {
2242 struct amd64_pvt *pvt = mci->pvt_info;
2243 struct csrow_info *csrow;
2244 struct dimm_info *dimm;
2245 enum edac_type edac_mode;
2246 enum mem_type mtype;
2247 int i, j, empty = 1;
2248 int nr_pages = 0;
2249 u32 val;
2250
2251 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2252
2253 pvt->nbcfg = val;
2254
2255 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2256 pvt->mc_node_id, val,
2257 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2258
2259 /*
2260 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2261 */
2262 for_each_chip_select(i, 0, pvt) {
2263 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2264 bool row_dct1 = false;
2265
2266 if (pvt->fam != 0xf)
2267 row_dct1 = !!csrow_enabled(i, 1, pvt);
2268
2269 if (!row_dct0 && !row_dct1)
2270 continue;
2271
2272 csrow = mci->csrows[i];
2273 empty = 0;
2274
2275 edac_dbg(1, "MC node: %d, csrow: %d\n",
2276 pvt->mc_node_id, i);
2277
2278 if (row_dct0) {
2279 nr_pages = get_csrow_nr_pages(pvt, 0, i);
2280 csrow->channels[0]->dimm->nr_pages = nr_pages;
2281 }
2282
2283 /* K8 has only one DCT */
2284 if (pvt->fam != 0xf && row_dct1) {
2285 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2286
2287 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2288 nr_pages += row_dct1_pages;
2289 }
2290
2291 mtype = determine_memory_type(pvt, i);
2292
2293 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2294
2295 /*
2296 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2297 */
2298 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2299 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2300 EDAC_S4ECD4ED : EDAC_SECDED;
2301 else
2302 edac_mode = EDAC_NONE;
2303
2304 for (j = 0; j < pvt->channel_count; j++) {
2305 dimm = csrow->channels[j]->dimm;
2306 dimm->mtype = mtype;
2307 dimm->edac_mode = edac_mode;
2308 }
2309 }
2310
2311 return empty;
2312 }
2313
2314 /* get all cores on this DCT */
2315 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2316 {
2317 int cpu;
2318
2319 for_each_online_cpu(cpu)
2320 if (amd_get_nb_id(cpu) == nid)
2321 cpumask_set_cpu(cpu, mask);
2322 }
2323
2324 /* check MCG_CTL on all the cpus on this node */
2325 static bool nb_mce_bank_enabled_on_node(u16 nid)
2326 {
2327 cpumask_var_t mask;
2328 int cpu, nbe;
2329 bool ret = false;
2330
2331 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2332 amd64_warn("%s: Error allocating mask\n", __func__);
2333 return false;
2334 }
2335
2336 get_cpus_on_this_dct_cpumask(mask, nid);
2337
2338 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2339
2340 for_each_cpu(cpu, mask) {
2341 struct msr *reg = per_cpu_ptr(msrs, cpu);
2342 nbe = reg->l & MSR_MCGCTL_NBE;
2343
2344 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2345 cpu, reg->q,
2346 (nbe ? "enabled" : "disabled"));
2347
2348 if (!nbe)
2349 goto out;
2350 }
2351 ret = true;
2352
2353 out:
2354 free_cpumask_var(mask);
2355 return ret;
2356 }
2357
2358 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2359 {
2360 cpumask_var_t cmask;
2361 int cpu;
2362
2363 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2364 amd64_warn("%s: error allocating mask\n", __func__);
2365 return false;
2366 }
2367
2368 get_cpus_on_this_dct_cpumask(cmask, nid);
2369
2370 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2371
2372 for_each_cpu(cpu, cmask) {
2373
2374 struct msr *reg = per_cpu_ptr(msrs, cpu);
2375
2376 if (on) {
2377 if (reg->l & MSR_MCGCTL_NBE)
2378 s->flags.nb_mce_enable = 1;
2379
2380 reg->l |= MSR_MCGCTL_NBE;
2381 } else {
2382 /*
2383 * Turn off NB MCE reporting only when it was off before
2384 */
2385 if (!s->flags.nb_mce_enable)
2386 reg->l &= ~MSR_MCGCTL_NBE;
2387 }
2388 }
2389 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2390
2391 free_cpumask_var(cmask);
2392
2393 return 0;
2394 }
2395
2396 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2397 struct pci_dev *F3)
2398 {
2399 bool ret = true;
2400 u32 value, mask = 0x3; /* UECC/CECC enable */
2401
2402 if (toggle_ecc_err_reporting(s, nid, ON)) {
2403 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2404 return false;
2405 }
2406
2407 amd64_read_pci_cfg(F3, NBCTL, &value);
2408
2409 s->old_nbctl = value & mask;
2410 s->nbctl_valid = true;
2411
2412 value |= mask;
2413 amd64_write_pci_cfg(F3, NBCTL, value);
2414
2415 amd64_read_pci_cfg(F3, NBCFG, &value);
2416
2417 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2418 nid, value, !!(value & NBCFG_ECC_ENABLE));
2419
2420 if (!(value & NBCFG_ECC_ENABLE)) {
2421 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2422
2423 s->flags.nb_ecc_prev = 0;
2424
2425 /* Attempt to turn on DRAM ECC Enable */
2426 value |= NBCFG_ECC_ENABLE;
2427 amd64_write_pci_cfg(F3, NBCFG, value);
2428
2429 amd64_read_pci_cfg(F3, NBCFG, &value);
2430
2431 if (!(value & NBCFG_ECC_ENABLE)) {
2432 amd64_warn("Hardware rejected DRAM ECC enable,"
2433 "check memory DIMM configuration.\n");
2434 ret = false;
2435 } else {
2436 amd64_info("Hardware accepted DRAM ECC Enable\n");
2437 }
2438 } else {
2439 s->flags.nb_ecc_prev = 1;
2440 }
2441
2442 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2443 nid, value, !!(value & NBCFG_ECC_ENABLE));
2444
2445 return ret;
2446 }
2447
2448 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2449 struct pci_dev *F3)
2450 {
2451 u32 value, mask = 0x3; /* UECC/CECC enable */
2452
2453
2454 if (!s->nbctl_valid)
2455 return;
2456
2457 amd64_read_pci_cfg(F3, NBCTL, &value);
2458 value &= ~mask;
2459 value |= s->old_nbctl;
2460
2461 amd64_write_pci_cfg(F3, NBCTL, value);
2462
2463 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2464 if (!s->flags.nb_ecc_prev) {
2465 amd64_read_pci_cfg(F3, NBCFG, &value);
2466 value &= ~NBCFG_ECC_ENABLE;
2467 amd64_write_pci_cfg(F3, NBCFG, value);
2468 }
2469
2470 /* restore the NB Enable MCGCTL bit */
2471 if (toggle_ecc_err_reporting(s, nid, OFF))
2472 amd64_warn("Error restoring NB MCGCTL settings!\n");
2473 }
2474
2475 /*
2476 * EDAC requires that the BIOS have ECC enabled before
2477 * taking over the processing of ECC errors. A command line
2478 * option allows to force-enable hardware ECC later in
2479 * enable_ecc_error_reporting().
2480 */
2481 static const char *ecc_msg =
2482 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2483 " Either enable ECC checking or force module loading by setting "
2484 "'ecc_enable_override'.\n"
2485 " (Note that use of the override may cause unknown side effects.)\n";
2486
2487 static bool ecc_enabled(struct pci_dev *F3, u16 nid)
2488 {
2489 u32 value;
2490 u8 ecc_en = 0;
2491 bool nb_mce_en = false;
2492
2493 amd64_read_pci_cfg(F3, NBCFG, &value);
2494
2495 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2496 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2497
2498 nb_mce_en = nb_mce_bank_enabled_on_node(nid);
2499 if (!nb_mce_en)
2500 amd64_notice("NB MCE bank disabled, set MSR "
2501 "0x%08x[4] on node %d to enable.\n",
2502 MSR_IA32_MCG_CTL, nid);
2503
2504 if (!ecc_en || !nb_mce_en) {
2505 amd64_notice("%s", ecc_msg);
2506 return false;
2507 }
2508 return true;
2509 }
2510
2511 static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2512 {
2513 struct amd64_pvt *pvt = mci->pvt_info;
2514 int rc;
2515
2516 rc = amd64_create_sysfs_dbg_files(mci);
2517 if (rc < 0)
2518 return rc;
2519
2520 if (pvt->fam >= 0x10) {
2521 rc = amd64_create_sysfs_inject_files(mci);
2522 if (rc < 0)
2523 return rc;
2524 }
2525
2526 return 0;
2527 }
2528
2529 static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2530 {
2531 struct amd64_pvt *pvt = mci->pvt_info;
2532
2533 amd64_remove_sysfs_dbg_files(mci);
2534
2535 if (pvt->fam >= 0x10)
2536 amd64_remove_sysfs_inject_files(mci);
2537 }
2538
2539 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2540 struct amd64_family_type *fam)
2541 {
2542 struct amd64_pvt *pvt = mci->pvt_info;
2543
2544 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2545 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2546
2547 if (pvt->nbcap & NBCAP_SECDED)
2548 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2549
2550 if (pvt->nbcap & NBCAP_CHIPKILL)
2551 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2552
2553 mci->edac_cap = determine_edac_cap(pvt);
2554 mci->mod_name = EDAC_MOD_STR;
2555 mci->mod_ver = EDAC_AMD64_VERSION;
2556 mci->ctl_name = fam->ctl_name;
2557 mci->dev_name = pci_name(pvt->F2);
2558 mci->ctl_page_to_phys = NULL;
2559
2560 /* memory scrubber interface */
2561 mci->set_sdram_scrub_rate = set_scrub_rate;
2562 mci->get_sdram_scrub_rate = get_scrub_rate;
2563 }
2564
2565 /*
2566 * returns a pointer to the family descriptor on success, NULL otherwise.
2567 */
2568 static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
2569 {
2570 struct amd64_family_type *fam_type = NULL;
2571
2572 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2573 pvt->stepping = boot_cpu_data.x86_mask;
2574 pvt->model = boot_cpu_data.x86_model;
2575 pvt->fam = boot_cpu_data.x86;
2576
2577 switch (pvt->fam) {
2578 case 0xf:
2579 fam_type = &family_types[K8_CPUS];
2580 pvt->ops = &family_types[K8_CPUS].ops;
2581 break;
2582
2583 case 0x10:
2584 fam_type = &family_types[F10_CPUS];
2585 pvt->ops = &family_types[F10_CPUS].ops;
2586 break;
2587
2588 case 0x15:
2589 if (pvt->model == 0x30) {
2590 fam_type = &family_types[F15_M30H_CPUS];
2591 pvt->ops = &family_types[F15_M30H_CPUS].ops;
2592 break;
2593 }
2594
2595 fam_type = &family_types[F15_CPUS];
2596 pvt->ops = &family_types[F15_CPUS].ops;
2597 break;
2598
2599 case 0x16:
2600 if (pvt->model == 0x30) {
2601 fam_type = &family_types[F16_M30H_CPUS];
2602 pvt->ops = &family_types[F16_M30H_CPUS].ops;
2603 break;
2604 }
2605 fam_type = &family_types[F16_CPUS];
2606 pvt->ops = &family_types[F16_CPUS].ops;
2607 break;
2608
2609 default:
2610 amd64_err("Unsupported family!\n");
2611 return NULL;
2612 }
2613
2614 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2615 (pvt->fam == 0xf ?
2616 (pvt->ext_model >= K8_REV_F ? "revF or later "
2617 : "revE or earlier ")
2618 : ""), pvt->mc_node_id);
2619 return fam_type;
2620 }
2621
2622 static int init_one_instance(struct pci_dev *F2)
2623 {
2624 struct amd64_pvt *pvt = NULL;
2625 struct amd64_family_type *fam_type = NULL;
2626 struct mem_ctl_info *mci = NULL;
2627 struct edac_mc_layer layers[2];
2628 int err = 0, ret;
2629 u16 nid = amd_get_node_id(F2);
2630
2631 ret = -ENOMEM;
2632 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2633 if (!pvt)
2634 goto err_ret;
2635
2636 pvt->mc_node_id = nid;
2637 pvt->F2 = F2;
2638
2639 ret = -EINVAL;
2640 fam_type = per_family_init(pvt);
2641 if (!fam_type)
2642 goto err_free;
2643
2644 ret = -ENODEV;
2645 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2646 if (err)
2647 goto err_free;
2648
2649 read_mc_regs(pvt);
2650
2651 /*
2652 * We need to determine how many memory channels there are. Then use
2653 * that information for calculating the size of the dynamic instance
2654 * tables in the 'mci' structure.
2655 */
2656 ret = -EINVAL;
2657 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2658 if (pvt->channel_count < 0)
2659 goto err_siblings;
2660
2661 ret = -ENOMEM;
2662 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2663 layers[0].size = pvt->csels[0].b_cnt;
2664 layers[0].is_virt_csrow = true;
2665 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2666
2667 /*
2668 * Always allocate two channels since we can have setups with DIMMs on
2669 * only one channel. Also, this simplifies handling later for the price
2670 * of a couple of KBs tops.
2671 */
2672 layers[1].size = 2;
2673 layers[1].is_virt_csrow = false;
2674
2675 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2676 if (!mci)
2677 goto err_siblings;
2678
2679 mci->pvt_info = pvt;
2680 mci->pdev = &pvt->F2->dev;
2681
2682 setup_mci_misc_attrs(mci, fam_type);
2683
2684 if (init_csrows(mci))
2685 mci->edac_cap = EDAC_FLAG_NONE;
2686
2687 ret = -ENODEV;
2688 if (edac_mc_add_mc(mci)) {
2689 edac_dbg(1, "failed edac_mc_add_mc()\n");
2690 goto err_add_mc;
2691 }
2692 if (set_mc_sysfs_attrs(mci)) {
2693 edac_dbg(1, "failed edac_mc_add_mc()\n");
2694 goto err_add_sysfs;
2695 }
2696
2697 /* register stuff with EDAC MCE */
2698 if (report_gart_errors)
2699 amd_report_gart_errors(true);
2700
2701 amd_register_ecc_decoder(decode_bus_error);
2702
2703 mcis[nid] = mci;
2704
2705 atomic_inc(&drv_instances);
2706
2707 return 0;
2708
2709 err_add_sysfs:
2710 edac_mc_del_mc(mci->pdev);
2711 err_add_mc:
2712 edac_mc_free(mci);
2713
2714 err_siblings:
2715 free_mc_sibling_devs(pvt);
2716
2717 err_free:
2718 kfree(pvt);
2719
2720 err_ret:
2721 return ret;
2722 }
2723
2724 static int probe_one_instance(struct pci_dev *pdev,
2725 const struct pci_device_id *mc_type)
2726 {
2727 u16 nid = amd_get_node_id(pdev);
2728 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2729 struct ecc_settings *s;
2730 int ret = 0;
2731
2732 ret = pci_enable_device(pdev);
2733 if (ret < 0) {
2734 edac_dbg(0, "ret=%d\n", ret);
2735 return -EIO;
2736 }
2737
2738 ret = -ENOMEM;
2739 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2740 if (!s)
2741 goto err_out;
2742
2743 ecc_stngs[nid] = s;
2744
2745 if (!ecc_enabled(F3, nid)) {
2746 ret = -ENODEV;
2747
2748 if (!ecc_enable_override)
2749 goto err_enable;
2750
2751 amd64_warn("Forcing ECC on!\n");
2752
2753 if (!enable_ecc_error_reporting(s, nid, F3))
2754 goto err_enable;
2755 }
2756
2757 ret = init_one_instance(pdev);
2758 if (ret < 0) {
2759 amd64_err("Error probing instance: %d\n", nid);
2760 restore_ecc_error_reporting(s, nid, F3);
2761 }
2762
2763 return ret;
2764
2765 err_enable:
2766 kfree(s);
2767 ecc_stngs[nid] = NULL;
2768
2769 err_out:
2770 return ret;
2771 }
2772
2773 static void remove_one_instance(struct pci_dev *pdev)
2774 {
2775 struct mem_ctl_info *mci;
2776 struct amd64_pvt *pvt;
2777 u16 nid = amd_get_node_id(pdev);
2778 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2779 struct ecc_settings *s = ecc_stngs[nid];
2780
2781 mci = find_mci_by_dev(&pdev->dev);
2782 WARN_ON(!mci);
2783
2784 del_mc_sysfs_attrs(mci);
2785 /* Remove from EDAC CORE tracking list */
2786 mci = edac_mc_del_mc(&pdev->dev);
2787 if (!mci)
2788 return;
2789
2790 pvt = mci->pvt_info;
2791
2792 restore_ecc_error_reporting(s, nid, F3);
2793
2794 free_mc_sibling_devs(pvt);
2795
2796 /* unregister from EDAC MCE */
2797 amd_report_gart_errors(false);
2798 amd_unregister_ecc_decoder(decode_bus_error);
2799
2800 kfree(ecc_stngs[nid]);
2801 ecc_stngs[nid] = NULL;
2802
2803 /* Free the EDAC CORE resources */
2804 mci->pvt_info = NULL;
2805 mcis[nid] = NULL;
2806
2807 kfree(pvt);
2808 edac_mc_free(mci);
2809 }
2810
2811 /*
2812 * This table is part of the interface for loading drivers for PCI devices. The
2813 * PCI core identifies what devices are on a system during boot, and then
2814 * inquiry this table to see if this driver is for a given device found.
2815 */
2816 static const struct pci_device_id amd64_pci_table[] = {
2817 {
2818 .vendor = PCI_VENDOR_ID_AMD,
2819 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2820 .subvendor = PCI_ANY_ID,
2821 .subdevice = PCI_ANY_ID,
2822 .class = 0,
2823 .class_mask = 0,
2824 },
2825 {
2826 .vendor = PCI_VENDOR_ID_AMD,
2827 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2828 .subvendor = PCI_ANY_ID,
2829 .subdevice = PCI_ANY_ID,
2830 .class = 0,
2831 .class_mask = 0,
2832 },
2833 {
2834 .vendor = PCI_VENDOR_ID_AMD,
2835 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2836 .subvendor = PCI_ANY_ID,
2837 .subdevice = PCI_ANY_ID,
2838 .class = 0,
2839 .class_mask = 0,
2840 },
2841 {
2842 .vendor = PCI_VENDOR_ID_AMD,
2843 .device = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2844 .subvendor = PCI_ANY_ID,
2845 .subdevice = PCI_ANY_ID,
2846 .class = 0,
2847 .class_mask = 0,
2848 },
2849 {
2850 .vendor = PCI_VENDOR_ID_AMD,
2851 .device = PCI_DEVICE_ID_AMD_16H_NB_F2,
2852 .subvendor = PCI_ANY_ID,
2853 .subdevice = PCI_ANY_ID,
2854 .class = 0,
2855 .class_mask = 0,
2856 },
2857 {
2858 .vendor = PCI_VENDOR_ID_AMD,
2859 .device = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2860 .subvendor = PCI_ANY_ID,
2861 .subdevice = PCI_ANY_ID,
2862 .class = 0,
2863 .class_mask = 0,
2864 },
2865
2866 {0, }
2867 };
2868 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2869
2870 static struct pci_driver amd64_pci_driver = {
2871 .name = EDAC_MOD_STR,
2872 .probe = probe_one_instance,
2873 .remove = remove_one_instance,
2874 .id_table = amd64_pci_table,
2875 };
2876
2877 static void setup_pci_device(void)
2878 {
2879 struct mem_ctl_info *mci;
2880 struct amd64_pvt *pvt;
2881
2882 if (pci_ctl)
2883 return;
2884
2885 mci = mcis[0];
2886 if (!mci)
2887 return;
2888
2889 pvt = mci->pvt_info;
2890 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2891 if (!pci_ctl) {
2892 pr_warn("%s(): Unable to create PCI control\n", __func__);
2893 pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
2894 }
2895 }
2896
2897 static int __init amd64_edac_init(void)
2898 {
2899 int err = -ENODEV;
2900
2901 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2902
2903 opstate_init();
2904
2905 if (amd_cache_northbridges() < 0)
2906 goto err_ret;
2907
2908 err = -ENOMEM;
2909 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2910 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2911 if (!(mcis && ecc_stngs))
2912 goto err_free;
2913
2914 msrs = msrs_alloc();
2915 if (!msrs)
2916 goto err_free;
2917
2918 err = pci_register_driver(&amd64_pci_driver);
2919 if (err)
2920 goto err_pci;
2921
2922 err = -ENODEV;
2923 if (!atomic_read(&drv_instances))
2924 goto err_no_instances;
2925
2926 setup_pci_device();
2927 return 0;
2928
2929 err_no_instances:
2930 pci_unregister_driver(&amd64_pci_driver);
2931
2932 err_pci:
2933 msrs_free(msrs);
2934 msrs = NULL;
2935
2936 err_free:
2937 kfree(mcis);
2938 mcis = NULL;
2939
2940 kfree(ecc_stngs);
2941 ecc_stngs = NULL;
2942
2943 err_ret:
2944 return err;
2945 }
2946
2947 static void __exit amd64_edac_exit(void)
2948 {
2949 if (pci_ctl)
2950 edac_pci_release_generic_ctl(pci_ctl);
2951
2952 pci_unregister_driver(&amd64_pci_driver);
2953
2954 kfree(ecc_stngs);
2955 ecc_stngs = NULL;
2956
2957 kfree(mcis);
2958 mcis = NULL;
2959
2960 msrs_free(msrs);
2961 msrs = NULL;
2962 }
2963
2964 module_init(amd64_edac_init);
2965 module_exit(amd64_edac_exit);
2966
2967 MODULE_LICENSE("GPL");
2968 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2969 "Dave Peterson, Thayne Harbaugh");
2970 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2971 EDAC_AMD64_VERSION);
2972
2973 module_param(edac_op_state, int, 0444);
2974 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.132953 seconds and 5 git commands to generate.