[PATCH] EDAC: mc numbers refactor 1-of-2
[deliverable/linux.git] / drivers / edac / edac_mc.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/config.h>
16 #include <linux/module.h>
17 #include <linux/proc_fs.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/sysctl.h>
23 #include <linux/highmem.h>
24 #include <linux/timer.h>
25 #include <linux/slab.h>
26 #include <linux/jiffies.h>
27 #include <linux/spinlock.h>
28 #include <linux/list.h>
29 #include <linux/sysdev.h>
30 #include <linux/ctype.h>
31 #include <linux/kthread.h>
32 #include <asm/uaccess.h>
33 #include <asm/page.h>
34 #include <asm/edac.h>
35 #include "edac_mc.h"
36
37 #define EDAC_MC_VERSION "Ver: 2.0.0 " __DATE__
38
39 /* For now, disable the EDAC sysfs code. The sysfs interface that EDAC
40 * presents to user space needs more thought, and is likely to change
41 * substantially.
42 */
43 #define DISABLE_EDAC_SYSFS
44
45 #ifdef CONFIG_EDAC_DEBUG
46 /* Values of 0 to 4 will generate output */
47 int edac_debug_level = 1;
48 EXPORT_SYMBOL_GPL(edac_debug_level);
49 #endif
50
51 /* EDAC Controls, setable by module parameter, and sysfs */
52 static int log_ue = 1;
53 static int log_ce = 1;
54 static int panic_on_ue;
55 static int poll_msec = 1000;
56
57 /* lock to memory controller's control array */
58 static DECLARE_MUTEX(mem_ctls_mutex);
59 static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
60
61 static struct task_struct *edac_thread;
62
63 #ifdef CONFIG_PCI
64 static int check_pci_parity = 0; /* default YES check PCI parity */
65 static int panic_on_pci_parity; /* default no panic on PCI Parity */
66 static atomic_t pci_parity_count = ATOMIC_INIT(0);
67
68 /* Structure of the whitelist and blacklist arrays */
69 struct edac_pci_device_list {
70 unsigned int vendor; /* Vendor ID */
71 unsigned int device; /* Deviice ID */
72 };
73
74 #define MAX_LISTED_PCI_DEVICES 32
75
76 /* List of PCI devices (vendor-id:device-id) that should be skipped */
77 static struct edac_pci_device_list pci_blacklist[MAX_LISTED_PCI_DEVICES];
78 static int pci_blacklist_count;
79
80 /* List of PCI devices (vendor-id:device-id) that should be scanned */
81 static struct edac_pci_device_list pci_whitelist[MAX_LISTED_PCI_DEVICES];
82 static int pci_whitelist_count ;
83
84 #ifndef DISABLE_EDAC_SYSFS
85 static struct kobject edac_pci_kobj; /* /sys/devices/system/edac/pci */
86 static struct completion edac_pci_kobj_complete;
87 #endif /* DISABLE_EDAC_SYSFS */
88 #endif /* CONFIG_PCI */
89
90 /* START sysfs data and methods */
91
92 #ifndef DISABLE_EDAC_SYSFS
93
94 static const char *mem_types[] = {
95 [MEM_EMPTY] = "Empty",
96 [MEM_RESERVED] = "Reserved",
97 [MEM_UNKNOWN] = "Unknown",
98 [MEM_FPM] = "FPM",
99 [MEM_EDO] = "EDO",
100 [MEM_BEDO] = "BEDO",
101 [MEM_SDR] = "Unbuffered-SDR",
102 [MEM_RDR] = "Registered-SDR",
103 [MEM_DDR] = "Unbuffered-DDR",
104 [MEM_RDDR] = "Registered-DDR",
105 [MEM_RMBS] = "RMBS"
106 };
107
108 static const char *dev_types[] = {
109 [DEV_UNKNOWN] = "Unknown",
110 [DEV_X1] = "x1",
111 [DEV_X2] = "x2",
112 [DEV_X4] = "x4",
113 [DEV_X8] = "x8",
114 [DEV_X16] = "x16",
115 [DEV_X32] = "x32",
116 [DEV_X64] = "x64"
117 };
118
119 static const char *edac_caps[] = {
120 [EDAC_UNKNOWN] = "Unknown",
121 [EDAC_NONE] = "None",
122 [EDAC_RESERVED] = "Reserved",
123 [EDAC_PARITY] = "PARITY",
124 [EDAC_EC] = "EC",
125 [EDAC_SECDED] = "SECDED",
126 [EDAC_S2ECD2ED] = "S2ECD2ED",
127 [EDAC_S4ECD4ED] = "S4ECD4ED",
128 [EDAC_S8ECD8ED] = "S8ECD8ED",
129 [EDAC_S16ECD16ED] = "S16ECD16ED"
130 };
131
132 /* sysfs object: /sys/devices/system/edac */
133 static struct sysdev_class edac_class = {
134 set_kset_name("edac"),
135 };
136
137 /* sysfs object:
138 * /sys/devices/system/edac/mc
139 */
140 static struct kobject edac_memctrl_kobj;
141
142 /* We use these to wait for the reference counts on edac_memctrl_kobj and
143 * edac_pci_kobj to reach 0.
144 */
145 static struct completion edac_memctrl_kobj_complete;
146
147 /*
148 * /sys/devices/system/edac/mc;
149 * data structures and methods
150 */
151 #if 0
152 static ssize_t memctrl_string_show(void *ptr, char *buffer)
153 {
154 char *value = (char*) ptr;
155 return sprintf(buffer, "%s\n", value);
156 }
157 #endif
158
159 static ssize_t memctrl_int_show(void *ptr, char *buffer)
160 {
161 int *value = (int*) ptr;
162 return sprintf(buffer, "%d\n", *value);
163 }
164
165 static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
166 {
167 int *value = (int*) ptr;
168
169 if (isdigit(*buffer))
170 *value = simple_strtoul(buffer, NULL, 0);
171
172 return count;
173 }
174
175 struct memctrl_dev_attribute {
176 struct attribute attr;
177 void *value;
178 ssize_t (*show)(void *,char *);
179 ssize_t (*store)(void *, const char *, size_t);
180 };
181
182 /* Set of show/store abstract level functions for memory control object */
183 static ssize_t memctrl_dev_show(struct kobject *kobj,
184 struct attribute *attr, char *buffer)
185 {
186 struct memctrl_dev_attribute *memctrl_dev;
187 memctrl_dev = (struct memctrl_dev_attribute*)attr;
188
189 if (memctrl_dev->show)
190 return memctrl_dev->show(memctrl_dev->value, buffer);
191
192 return -EIO;
193 }
194
195 static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
196 const char *buffer, size_t count)
197 {
198 struct memctrl_dev_attribute *memctrl_dev;
199 memctrl_dev = (struct memctrl_dev_attribute*)attr;
200
201 if (memctrl_dev->store)
202 return memctrl_dev->store(memctrl_dev->value, buffer, count);
203
204 return -EIO;
205 }
206
207 static struct sysfs_ops memctrlfs_ops = {
208 .show = memctrl_dev_show,
209 .store = memctrl_dev_store
210 };
211
212 #define MEMCTRL_ATTR(_name,_mode,_show,_store) \
213 struct memctrl_dev_attribute attr_##_name = { \
214 .attr = {.name = __stringify(_name), .mode = _mode }, \
215 .value = &_name, \
216 .show = _show, \
217 .store = _store, \
218 };
219
220 #define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store) \
221 struct memctrl_dev_attribute attr_##_name = { \
222 .attr = {.name = __stringify(_name), .mode = _mode }, \
223 .value = _data, \
224 .show = _show, \
225 .store = _store, \
226 };
227
228 /* cwrow<id> attribute f*/
229 #if 0
230 MEMCTRL_STRING_ATTR(mc_version,EDAC_MC_VERSION,S_IRUGO,memctrl_string_show,NULL);
231 #endif
232
233 /* csrow<id> control files */
234 MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
235 MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
236 MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
237 MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
238
239 /* Base Attributes of the memory ECC object */
240 static struct memctrl_dev_attribute *memctrl_attr[] = {
241 &attr_panic_on_ue,
242 &attr_log_ue,
243 &attr_log_ce,
244 &attr_poll_msec,
245 NULL,
246 };
247
248 /* Main MC kobject release() function */
249 static void edac_memctrl_master_release(struct kobject *kobj)
250 {
251 debugf1("%s()\n", __func__);
252 complete(&edac_memctrl_kobj_complete);
253 }
254
255 static struct kobj_type ktype_memctrl = {
256 .release = edac_memctrl_master_release,
257 .sysfs_ops = &memctrlfs_ops,
258 .default_attrs = (struct attribute **) memctrl_attr,
259 };
260
261 #endif /* DISABLE_EDAC_SYSFS */
262
263 /* Initialize the main sysfs entries for edac:
264 * /sys/devices/system/edac
265 *
266 * and children
267 *
268 * Return: 0 SUCCESS
269 * !0 FAILURE
270 */
271 static int edac_sysfs_memctrl_setup(void)
272 #ifdef DISABLE_EDAC_SYSFS
273 {
274 return 0;
275 }
276 #else
277 {
278 int err=0;
279
280 debugf1("%s()\n", __func__);
281
282 /* create the /sys/devices/system/edac directory */
283 err = sysdev_class_register(&edac_class);
284
285 if (!err) {
286 /* Init the MC's kobject */
287 memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
288 edac_memctrl_kobj.parent = &edac_class.kset.kobj;
289 edac_memctrl_kobj.ktype = &ktype_memctrl;
290
291 /* generate sysfs "..../edac/mc" */
292 err = kobject_set_name(&edac_memctrl_kobj,"mc");
293
294 if (!err) {
295 /* FIXME: maybe new sysdev_create_subdir() */
296 err = kobject_register(&edac_memctrl_kobj);
297
298 if (err)
299 debugf1("Failed to register '.../edac/mc'\n");
300 else
301 debugf1("Registered '.../edac/mc' kobject\n");
302 }
303 } else
304 debugf1("%s() error=%d\n", __func__, err);
305
306 return err;
307 }
308 #endif /* DISABLE_EDAC_SYSFS */
309
310 /*
311 * MC teardown:
312 * the '..../edac/mc' kobject followed by '..../edac' itself
313 */
314 static void edac_sysfs_memctrl_teardown(void)
315 {
316 #ifndef DISABLE_EDAC_SYSFS
317 debugf0("MC: " __FILE__ ": %s()\n", __func__);
318
319 /* Unregister the MC's kobject and wait for reference count to reach
320 * 0.
321 */
322 init_completion(&edac_memctrl_kobj_complete);
323 kobject_unregister(&edac_memctrl_kobj);
324 wait_for_completion(&edac_memctrl_kobj_complete);
325
326 /* Unregister the 'edac' object */
327 sysdev_class_unregister(&edac_class);
328 #endif /* DISABLE_EDAC_SYSFS */
329 }
330
331 #ifdef CONFIG_PCI
332
333 #ifndef DISABLE_EDAC_SYSFS
334
335 /*
336 * /sys/devices/system/edac/pci;
337 * data structures and methods
338 */
339
340 struct list_control {
341 struct edac_pci_device_list *list;
342 int *count;
343 };
344
345 #if 0
346 /* Output the list as: vendor_id:device:id<,vendor_id:device_id> */
347 static ssize_t edac_pci_list_string_show(void *ptr, char *buffer)
348 {
349 struct list_control *listctl;
350 struct edac_pci_device_list *list;
351 char *p = buffer;
352 int len=0;
353 int i;
354
355 listctl = ptr;
356 list = listctl->list;
357
358 for (i = 0; i < *(listctl->count); i++, list++ ) {
359 if (len > 0)
360 len += snprintf(p + len, (PAGE_SIZE-len), ",");
361
362 len += snprintf(p + len,
363 (PAGE_SIZE-len),
364 "%x:%x",
365 list->vendor,list->device);
366 }
367
368 len += snprintf(p + len,(PAGE_SIZE-len), "\n");
369 return (ssize_t) len;
370 }
371
372 /**
373 *
374 * Scan string from **s to **e looking for one 'vendor:device' tuple
375 * where each field is a hex value
376 *
377 * return 0 if an entry is NOT found
378 * return 1 if an entry is found
379 * fill in *vendor_id and *device_id with values found
380 *
381 * In both cases, make sure *s has been moved forward toward *e
382 */
383 static int parse_one_device(const char **s,const char **e,
384 unsigned int *vendor_id, unsigned int *device_id)
385 {
386 const char *runner, *p;
387
388 /* if null byte, we are done */
389 if (!**s) {
390 (*s)++; /* keep *s moving */
391 return 0;
392 }
393
394 /* skip over newlines & whitespace */
395 if ((**s == '\n') || isspace(**s)) {
396 (*s)++;
397 return 0;
398 }
399
400 if (!isxdigit(**s)) {
401 (*s)++;
402 return 0;
403 }
404
405 /* parse vendor_id */
406 runner = *s;
407
408 while (runner < *e) {
409 /* scan for vendor:device delimiter */
410 if (*runner == ':') {
411 *vendor_id = simple_strtol((char*) *s, (char**) &p, 16);
412 runner = p + 1;
413 break;
414 }
415
416 runner++;
417 }
418
419 if (!isxdigit(*runner)) {
420 *s = ++runner;
421 return 0;
422 }
423
424 /* parse device_id */
425 if (runner < *e) {
426 *device_id = simple_strtol((char*)runner, (char**)&p, 16);
427 runner = p;
428 }
429
430 *s = runner;
431 return 1;
432 }
433
434 static ssize_t edac_pci_list_string_store(void *ptr, const char *buffer,
435 size_t count)
436 {
437 struct list_control *listctl;
438 struct edac_pci_device_list *list;
439 unsigned int vendor_id, device_id;
440 const char *s, *e;
441 int *index;
442
443 s = (char*)buffer;
444 e = s + count;
445 listctl = ptr;
446 list = listctl->list;
447 index = listctl->count;
448 *index = 0;
449
450 while (*index < MAX_LISTED_PCI_DEVICES) {
451 if (parse_one_device(&s,&e,&vendor_id,&device_id)) {
452 list[ *index ].vendor = vendor_id;
453 list[ *index ].device = device_id;
454 (*index)++;
455 }
456
457 /* check for all data consume */
458 if (s >= e)
459 break;
460 }
461
462 return count;
463 }
464
465 #endif
466 static ssize_t edac_pci_int_show(void *ptr, char *buffer)
467 {
468 int *value = ptr;
469 return sprintf(buffer,"%d\n",*value);
470 }
471
472 static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
473 {
474 int *value = ptr;
475
476 if (isdigit(*buffer))
477 *value = simple_strtoul(buffer,NULL,0);
478
479 return count;
480 }
481
482 struct edac_pci_dev_attribute {
483 struct attribute attr;
484 void *value;
485 ssize_t (*show)(void *,char *);
486 ssize_t (*store)(void *, const char *,size_t);
487 };
488
489 /* Set of show/store abstract level functions for PCI Parity object */
490 static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
491 char *buffer)
492 {
493 struct edac_pci_dev_attribute *edac_pci_dev;
494 edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
495
496 if (edac_pci_dev->show)
497 return edac_pci_dev->show(edac_pci_dev->value, buffer);
498 return -EIO;
499 }
500
501 static ssize_t edac_pci_dev_store(struct kobject *kobj,
502 struct attribute *attr, const char *buffer, size_t count)
503 {
504 struct edac_pci_dev_attribute *edac_pci_dev;
505 edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
506
507 if (edac_pci_dev->show)
508 return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
509 return -EIO;
510 }
511
512 static struct sysfs_ops edac_pci_sysfs_ops = {
513 .show = edac_pci_dev_show,
514 .store = edac_pci_dev_store
515 };
516
517 #define EDAC_PCI_ATTR(_name,_mode,_show,_store) \
518 struct edac_pci_dev_attribute edac_pci_attr_##_name = { \
519 .attr = {.name = __stringify(_name), .mode = _mode }, \
520 .value = &_name, \
521 .show = _show, \
522 .store = _store, \
523 };
524
525 #define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store) \
526 struct edac_pci_dev_attribute edac_pci_attr_##_name = { \
527 .attr = {.name = __stringify(_name), .mode = _mode }, \
528 .value = _data, \
529 .show = _show, \
530 .store = _store, \
531 };
532
533 #if 0
534 static struct list_control pci_whitelist_control = {
535 .list = pci_whitelist,
536 .count = &pci_whitelist_count
537 };
538
539 static struct list_control pci_blacklist_control = {
540 .list = pci_blacklist,
541 .count = &pci_blacklist_count
542 };
543
544 /* whitelist attribute */
545 EDAC_PCI_STRING_ATTR(pci_parity_whitelist,
546 &pci_whitelist_control,
547 S_IRUGO|S_IWUSR,
548 edac_pci_list_string_show,
549 edac_pci_list_string_store);
550
551 EDAC_PCI_STRING_ATTR(pci_parity_blacklist,
552 &pci_blacklist_control,
553 S_IRUGO|S_IWUSR,
554 edac_pci_list_string_show,
555 edac_pci_list_string_store);
556 #endif
557
558 /* PCI Parity control files */
559 EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
560 edac_pci_int_store);
561 EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
562 edac_pci_int_store);
563 EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL);
564
565 /* Base Attributes of the memory ECC object */
566 static struct edac_pci_dev_attribute *edac_pci_attr[] = {
567 &edac_pci_attr_check_pci_parity,
568 &edac_pci_attr_panic_on_pci_parity,
569 &edac_pci_attr_pci_parity_count,
570 NULL,
571 };
572
573 /* No memory to release */
574 static void edac_pci_release(struct kobject *kobj)
575 {
576 debugf1("%s()\n", __func__);
577 complete(&edac_pci_kobj_complete);
578 }
579
580 static struct kobj_type ktype_edac_pci = {
581 .release = edac_pci_release,
582 .sysfs_ops = &edac_pci_sysfs_ops,
583 .default_attrs = (struct attribute **) edac_pci_attr,
584 };
585
586 #endif /* DISABLE_EDAC_SYSFS */
587
588 /**
589 * edac_sysfs_pci_setup()
590 *
591 */
592 static int edac_sysfs_pci_setup(void)
593 #ifdef DISABLE_EDAC_SYSFS
594 {
595 return 0;
596 }
597 #else
598 {
599 int err;
600
601 debugf1("%s()\n", __func__);
602
603 memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
604 edac_pci_kobj.parent = &edac_class.kset.kobj;
605 edac_pci_kobj.ktype = &ktype_edac_pci;
606 err = kobject_set_name(&edac_pci_kobj, "pci");
607
608 if (!err) {
609 /* Instanstiate the csrow object */
610 /* FIXME: maybe new sysdev_create_subdir() */
611 err = kobject_register(&edac_pci_kobj);
612
613 if (err)
614 debugf1("Failed to register '.../edac/pci'\n");
615 else
616 debugf1("Registered '.../edac/pci' kobject\n");
617 }
618
619 return err;
620 }
621 #endif /* DISABLE_EDAC_SYSFS */
622
623 static void edac_sysfs_pci_teardown(void)
624 {
625 #ifndef DISABLE_EDAC_SYSFS
626 debugf0("%s()\n", __func__);
627 init_completion(&edac_pci_kobj_complete);
628 kobject_unregister(&edac_pci_kobj);
629 wait_for_completion(&edac_pci_kobj_complete);
630 #endif
631 }
632
633
634 static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
635 {
636 int where;
637 u16 status;
638
639 where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
640 pci_read_config_word(dev, where, &status);
641
642 /* If we get back 0xFFFF then we must suspect that the card has been
643 * pulled but the Linux PCI layer has not yet finished cleaning up.
644 * We don't want to report on such devices
645 */
646
647 if (status == 0xFFFF) {
648 u32 sanity;
649
650 pci_read_config_dword(dev, 0, &sanity);
651
652 if (sanity == 0xFFFFFFFF)
653 return 0;
654 }
655
656 status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
657 PCI_STATUS_PARITY;
658
659 if (status)
660 /* reset only the bits we are interested in */
661 pci_write_config_word(dev, where, status);
662
663 return status;
664 }
665
666 typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
667
668 /* Clear any PCI parity errors logged by this device. */
669 static void edac_pci_dev_parity_clear(struct pci_dev *dev)
670 {
671 u8 header_type;
672
673 get_pci_parity_status(dev, 0);
674
675 /* read the device TYPE, looking for bridges */
676 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
677
678 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
679 get_pci_parity_status(dev, 1);
680 }
681
682 /*
683 * PCI Parity polling
684 *
685 */
686 static void edac_pci_dev_parity_test(struct pci_dev *dev)
687 {
688 u16 status;
689 u8 header_type;
690
691 /* read the STATUS register on this device
692 */
693 status = get_pci_parity_status(dev, 0);
694
695 debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
696
697 /* check the status reg for errors */
698 if (status) {
699 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
700 edac_printk(KERN_CRIT, EDAC_PCI,
701 "Signaled System Error on %s\n",
702 pci_name(dev));
703
704 if (status & (PCI_STATUS_PARITY)) {
705 edac_printk(KERN_CRIT, EDAC_PCI,
706 "Master Data Parity Error on %s\n",
707 pci_name(dev));
708
709 atomic_inc(&pci_parity_count);
710 }
711
712 if (status & (PCI_STATUS_DETECTED_PARITY)) {
713 edac_printk(KERN_CRIT, EDAC_PCI,
714 "Detected Parity Error on %s\n",
715 pci_name(dev));
716
717 atomic_inc(&pci_parity_count);
718 }
719 }
720
721 /* read the device TYPE, looking for bridges */
722 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
723
724 debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
725
726 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
727 /* On bridges, need to examine secondary status register */
728 status = get_pci_parity_status(dev, 1);
729
730 debugf2("PCI SEC_STATUS= 0x%04x %s\n",
731 status, dev->dev.bus_id );
732
733 /* check the secondary status reg for errors */
734 if (status) {
735 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
736 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
737 "Signaled System Error on %s\n",
738 pci_name(dev));
739
740 if (status & (PCI_STATUS_PARITY)) {
741 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
742 "Master Data Parity Error on "
743 "%s\n", pci_name(dev));
744
745 atomic_inc(&pci_parity_count);
746 }
747
748 if (status & (PCI_STATUS_DETECTED_PARITY)) {
749 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
750 "Detected Parity Error on %s\n",
751 pci_name(dev));
752
753 atomic_inc(&pci_parity_count);
754 }
755 }
756 }
757 }
758
759 /*
760 * check_dev_on_list: Scan for a PCI device on a white/black list
761 * @list: an EDAC &edac_pci_device_list white/black list pointer
762 * @free_index: index of next free entry on the list
763 * @pci_dev: PCI Device pointer
764 *
765 * see if list contains the device.
766 *
767 * Returns: 0 not found
768 * 1 found on list
769 */
770 static int check_dev_on_list(struct edac_pci_device_list *list,
771 int free_index, struct pci_dev *dev)
772 {
773 int i;
774 int rc = 0; /* Assume not found */
775 unsigned short vendor=dev->vendor;
776 unsigned short device=dev->device;
777
778 /* Scan the list, looking for a vendor/device match */
779 for (i = 0; i < free_index; i++, list++ ) {
780 if ((list->vendor == vendor ) && (list->device == device )) {
781 rc = 1;
782 break;
783 }
784 }
785
786 return rc;
787 }
788
789 /*
790 * pci_dev parity list iterator
791 * Scan the PCI device list for one iteration, looking for SERRORs
792 * Master Parity ERRORS or Parity ERRORs on primary or secondary devices
793 */
794 static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
795 {
796 struct pci_dev *dev = NULL;
797
798 /* request for kernel access to the next PCI device, if any,
799 * and while we are looking at it have its reference count
800 * bumped until we are done with it
801 */
802 while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
803 /* if whitelist exists then it has priority, so only scan
804 * those devices on the whitelist
805 */
806 if (pci_whitelist_count > 0 ) {
807 if (check_dev_on_list(pci_whitelist,
808 pci_whitelist_count, dev))
809 fn(dev);
810 } else {
811 /*
812 * if no whitelist, then check if this devices is
813 * blacklisted
814 */
815 if (!check_dev_on_list(pci_blacklist,
816 pci_blacklist_count, dev))
817 fn(dev);
818 }
819 }
820 }
821
822 static void do_pci_parity_check(void)
823 {
824 unsigned long flags;
825 int before_count;
826
827 debugf3("%s()\n", __func__);
828
829 if (!check_pci_parity)
830 return;
831
832 before_count = atomic_read(&pci_parity_count);
833
834 /* scan all PCI devices looking for a Parity Error on devices and
835 * bridges
836 */
837 local_irq_save(flags);
838 edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
839 local_irq_restore(flags);
840
841 /* Only if operator has selected panic on PCI Error */
842 if (panic_on_pci_parity) {
843 /* If the count is different 'after' from 'before' */
844 if (before_count != atomic_read(&pci_parity_count))
845 panic("EDAC: PCI Parity Error");
846 }
847 }
848
849 static inline void clear_pci_parity_errors(void)
850 {
851 /* Clear any PCI bus parity errors that devices initially have logged
852 * in their registers.
853 */
854 edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
855 }
856
857 #else /* CONFIG_PCI */
858
859 static inline void do_pci_parity_check(void)
860 {
861 /* no-op */
862 }
863
864 static inline void clear_pci_parity_errors(void)
865 {
866 /* no-op */
867 }
868
869 static void edac_sysfs_pci_teardown(void)
870 {
871 }
872
873 static int edac_sysfs_pci_setup(void)
874 {
875 return 0;
876 }
877 #endif /* CONFIG_PCI */
878
879 #ifndef DISABLE_EDAC_SYSFS
880
881 /* EDAC sysfs CSROW data structures and methods */
882
883 /* Set of more detailed csrow<id> attribute show/store functions */
884 static ssize_t csrow_ch0_dimm_label_show(struct csrow_info *csrow, char *data)
885 {
886 ssize_t size = 0;
887
888 if (csrow->nr_channels > 0) {
889 size = snprintf(data, EDAC_MC_LABEL_LEN,"%s\n",
890 csrow->channels[0].label);
891 }
892
893 return size;
894 }
895
896 static ssize_t csrow_ch1_dimm_label_show(struct csrow_info *csrow, char *data)
897 {
898 ssize_t size = 0;
899
900 if (csrow->nr_channels > 0) {
901 size = snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
902 csrow->channels[1].label);
903 }
904
905 return size;
906 }
907
908 static ssize_t csrow_ch0_dimm_label_store(struct csrow_info *csrow,
909 const char *data, size_t size)
910 {
911 ssize_t max_size = 0;
912
913 if (csrow->nr_channels > 0) {
914 max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
915 strncpy(csrow->channels[0].label, data, max_size);
916 csrow->channels[0].label[max_size] = '\0';
917 }
918
919 return size;
920 }
921
922 static ssize_t csrow_ch1_dimm_label_store(struct csrow_info *csrow,
923 const char *data, size_t size)
924 {
925 ssize_t max_size = 0;
926
927 if (csrow->nr_channels > 1) {
928 max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
929 strncpy(csrow->channels[1].label, data, max_size);
930 csrow->channels[1].label[max_size] = '\0';
931 }
932
933 return max_size;
934 }
935
936 static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data)
937 {
938 return sprintf(data,"%u\n", csrow->ue_count);
939 }
940
941 static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data)
942 {
943 return sprintf(data,"%u\n", csrow->ce_count);
944 }
945
946 static ssize_t csrow_ch0_ce_count_show(struct csrow_info *csrow, char *data)
947 {
948 ssize_t size = 0;
949
950 if (csrow->nr_channels > 0) {
951 size = sprintf(data,"%u\n", csrow->channels[0].ce_count);
952 }
953
954 return size;
955 }
956
957 static ssize_t csrow_ch1_ce_count_show(struct csrow_info *csrow, char *data)
958 {
959 ssize_t size = 0;
960
961 if (csrow->nr_channels > 1) {
962 size = sprintf(data,"%u\n", csrow->channels[1].ce_count);
963 }
964
965 return size;
966 }
967
968 static ssize_t csrow_size_show(struct csrow_info *csrow, char *data)
969 {
970 return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
971 }
972
973 static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data)
974 {
975 return sprintf(data,"%s\n", mem_types[csrow->mtype]);
976 }
977
978 static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data)
979 {
980 return sprintf(data,"%s\n", dev_types[csrow->dtype]);
981 }
982
983 static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data)
984 {
985 return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
986 }
987
988 struct csrowdev_attribute {
989 struct attribute attr;
990 ssize_t (*show)(struct csrow_info *,char *);
991 ssize_t (*store)(struct csrow_info *, const char *,size_t);
992 };
993
994 #define to_csrow(k) container_of(k, struct csrow_info, kobj)
995 #define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
996
997 /* Set of show/store higher level functions for csrow objects */
998 static ssize_t csrowdev_show(struct kobject *kobj, struct attribute *attr,
999 char *buffer)
1000 {
1001 struct csrow_info *csrow = to_csrow(kobj);
1002 struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
1003
1004 if (csrowdev_attr->show)
1005 return csrowdev_attr->show(csrow, buffer);
1006
1007 return -EIO;
1008 }
1009
1010 static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
1011 const char *buffer, size_t count)
1012 {
1013 struct csrow_info *csrow = to_csrow(kobj);
1014 struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
1015
1016 if (csrowdev_attr->store)
1017 return csrowdev_attr->store(csrow, buffer, count);
1018
1019 return -EIO;
1020 }
1021
1022 static struct sysfs_ops csrowfs_ops = {
1023 .show = csrowdev_show,
1024 .store = csrowdev_store
1025 };
1026
1027 #define CSROWDEV_ATTR(_name,_mode,_show,_store) \
1028 struct csrowdev_attribute attr_##_name = { \
1029 .attr = {.name = __stringify(_name), .mode = _mode }, \
1030 .show = _show, \
1031 .store = _store, \
1032 };
1033
1034 /* cwrow<id>/attribute files */
1035 CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL);
1036 CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL);
1037 CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL);
1038 CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL);
1039 CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL);
1040 CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL);
1041 CSROWDEV_ATTR(ch0_ce_count,S_IRUGO,csrow_ch0_ce_count_show,NULL);
1042 CSROWDEV_ATTR(ch1_ce_count,S_IRUGO,csrow_ch1_ce_count_show,NULL);
1043
1044 /* control/attribute files */
1045 CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
1046 csrow_ch0_dimm_label_show,
1047 csrow_ch0_dimm_label_store);
1048 CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
1049 csrow_ch1_dimm_label_show,
1050 csrow_ch1_dimm_label_store);
1051
1052 /* Attributes of the CSROW<id> object */
1053 static struct csrowdev_attribute *csrow_attr[] = {
1054 &attr_dev_type,
1055 &attr_mem_type,
1056 &attr_edac_mode,
1057 &attr_size_mb,
1058 &attr_ue_count,
1059 &attr_ce_count,
1060 &attr_ch0_ce_count,
1061 &attr_ch1_ce_count,
1062 &attr_ch0_dimm_label,
1063 &attr_ch1_dimm_label,
1064 NULL,
1065 };
1066
1067 /* No memory to release */
1068 static void edac_csrow_instance_release(struct kobject *kobj)
1069 {
1070 struct csrow_info *cs;
1071
1072 debugf1("%s()\n", __func__);
1073 cs = container_of(kobj, struct csrow_info, kobj);
1074 complete(&cs->kobj_complete);
1075 }
1076
1077 static struct kobj_type ktype_csrow = {
1078 .release = edac_csrow_instance_release,
1079 .sysfs_ops = &csrowfs_ops,
1080 .default_attrs = (struct attribute **) csrow_attr,
1081 };
1082
1083 /* Create a CSROW object under specifed edac_mc_device */
1084 static int edac_create_csrow_object(struct kobject *edac_mci_kobj,
1085 struct csrow_info *csrow, int index)
1086 {
1087 int err = 0;
1088
1089 debugf0("%s()\n", __func__);
1090 memset(&csrow->kobj, 0, sizeof(csrow->kobj));
1091
1092 /* generate ..../edac/mc/mc<id>/csrow<index> */
1093
1094 csrow->kobj.parent = edac_mci_kobj;
1095 csrow->kobj.ktype = &ktype_csrow;
1096
1097 /* name this instance of csrow<id> */
1098 err = kobject_set_name(&csrow->kobj,"csrow%d",index);
1099
1100 if (!err) {
1101 /* Instanstiate the csrow object */
1102 err = kobject_register(&csrow->kobj);
1103
1104 if (err)
1105 debugf0("Failed to register CSROW%d\n",index);
1106 else
1107 debugf0("Registered CSROW%d\n",index);
1108 }
1109
1110 return err;
1111 }
1112
1113 /* sysfs data structures and methods for the MCI kobjects */
1114
1115 static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
1116 const char *data, size_t count)
1117 {
1118 int row, chan;
1119
1120 mci->ue_noinfo_count = 0;
1121 mci->ce_noinfo_count = 0;
1122 mci->ue_count = 0;
1123 mci->ce_count = 0;
1124
1125 for (row = 0; row < mci->nr_csrows; row++) {
1126 struct csrow_info *ri = &mci->csrows[row];
1127
1128 ri->ue_count = 0;
1129 ri->ce_count = 0;
1130
1131 for (chan = 0; chan < ri->nr_channels; chan++)
1132 ri->channels[chan].ce_count = 0;
1133 }
1134
1135 mci->start_time = jiffies;
1136 return count;
1137 }
1138
1139 static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
1140 {
1141 return sprintf(data,"%d\n", mci->ue_count);
1142 }
1143
1144 static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
1145 {
1146 return sprintf(data,"%d\n", mci->ce_count);
1147 }
1148
1149 static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
1150 {
1151 return sprintf(data,"%d\n", mci->ce_noinfo_count);
1152 }
1153
1154 static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
1155 {
1156 return sprintf(data,"%d\n", mci->ue_noinfo_count);
1157 }
1158
1159 static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
1160 {
1161 return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
1162 }
1163
1164 static ssize_t mci_mod_name_show(struct mem_ctl_info *mci, char *data)
1165 {
1166 return sprintf(data,"%s %s\n", mci->mod_name, mci->mod_ver);
1167 }
1168
1169 static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
1170 {
1171 return sprintf(data,"%s\n", mci->ctl_name);
1172 }
1173
1174 static int mci_output_edac_cap(char *buf, unsigned long edac_cap)
1175 {
1176 char *p = buf;
1177 int bit_idx;
1178
1179 for (bit_idx = 0; bit_idx < 8 * sizeof(edac_cap); bit_idx++) {
1180 if ((edac_cap >> bit_idx) & 0x1)
1181 p += sprintf(p, "%s ", edac_caps[bit_idx]);
1182 }
1183
1184 return p - buf;
1185 }
1186
1187 static ssize_t mci_edac_capability_show(struct mem_ctl_info *mci, char *data)
1188 {
1189 char *p = data;
1190
1191 p += mci_output_edac_cap(p,mci->edac_ctl_cap);
1192 p += sprintf(p, "\n");
1193 return p - data;
1194 }
1195
1196 static ssize_t mci_edac_current_capability_show(struct mem_ctl_info *mci,
1197 char *data)
1198 {
1199 char *p = data;
1200
1201 p += mci_output_edac_cap(p,mci->edac_cap);
1202 p += sprintf(p, "\n");
1203 return p - data;
1204 }
1205
1206 static int mci_output_mtype_cap(char *buf, unsigned long mtype_cap)
1207 {
1208 char *p = buf;
1209 int bit_idx;
1210
1211 for (bit_idx = 0; bit_idx < 8 * sizeof(mtype_cap); bit_idx++) {
1212 if ((mtype_cap >> bit_idx) & 0x1)
1213 p += sprintf(p, "%s ", mem_types[bit_idx]);
1214 }
1215
1216 return p - buf;
1217 }
1218
1219 static ssize_t mci_supported_mem_type_show(struct mem_ctl_info *mci,
1220 char *data)
1221 {
1222 char *p = data;
1223
1224 p += mci_output_mtype_cap(p,mci->mtype_cap);
1225 p += sprintf(p, "\n");
1226 return p - data;
1227 }
1228
1229 static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
1230 {
1231 int total_pages, csrow_idx;
1232
1233 for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
1234 csrow_idx++) {
1235 struct csrow_info *csrow = &mci->csrows[csrow_idx];
1236
1237 if (!csrow->nr_pages)
1238 continue;
1239
1240 total_pages += csrow->nr_pages;
1241 }
1242
1243 return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
1244 }
1245
1246 struct mcidev_attribute {
1247 struct attribute attr;
1248 ssize_t (*show)(struct mem_ctl_info *,char *);
1249 ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
1250 };
1251
1252 #define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
1253 #define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
1254
1255 static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
1256 char *buffer)
1257 {
1258 struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1259 struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1260
1261 if (mcidev_attr->show)
1262 return mcidev_attr->show(mem_ctl_info, buffer);
1263
1264 return -EIO;
1265 }
1266
1267 static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1268 const char *buffer, size_t count)
1269 {
1270 struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1271 struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1272
1273 if (mcidev_attr->store)
1274 return mcidev_attr->store(mem_ctl_info, buffer, count);
1275
1276 return -EIO;
1277 }
1278
1279 static struct sysfs_ops mci_ops = {
1280 .show = mcidev_show,
1281 .store = mcidev_store
1282 };
1283
1284 #define MCIDEV_ATTR(_name,_mode,_show,_store) \
1285 struct mcidev_attribute mci_attr_##_name = { \
1286 .attr = {.name = __stringify(_name), .mode = _mode }, \
1287 .show = _show, \
1288 .store = _store, \
1289 };
1290
1291 /* Control file */
1292 MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1293
1294 /* Attribute files */
1295 MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1296 MCIDEV_ATTR(module_name,S_IRUGO,mci_mod_name_show,NULL);
1297 MCIDEV_ATTR(edac_capability,S_IRUGO,mci_edac_capability_show,NULL);
1298 MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1299 MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1300 MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1301 MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1302 MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1303 MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1304 MCIDEV_ATTR(edac_current_capability,S_IRUGO,
1305 mci_edac_current_capability_show,NULL);
1306 MCIDEV_ATTR(supported_mem_type,S_IRUGO,
1307 mci_supported_mem_type_show,NULL);
1308
1309 static struct mcidev_attribute *mci_attr[] = {
1310 &mci_attr_reset_counters,
1311 &mci_attr_module_name,
1312 &mci_attr_mc_name,
1313 &mci_attr_edac_capability,
1314 &mci_attr_edac_current_capability,
1315 &mci_attr_supported_mem_type,
1316 &mci_attr_size_mb,
1317 &mci_attr_seconds_since_reset,
1318 &mci_attr_ue_noinfo_count,
1319 &mci_attr_ce_noinfo_count,
1320 &mci_attr_ue_count,
1321 &mci_attr_ce_count,
1322 NULL
1323 };
1324
1325 /*
1326 * Release of a MC controlling instance
1327 */
1328 static void edac_mci_instance_release(struct kobject *kobj)
1329 {
1330 struct mem_ctl_info *mci;
1331
1332 mci = to_mci(kobj);
1333 debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1334 complete(&mci->kobj_complete);
1335 }
1336
1337 static struct kobj_type ktype_mci = {
1338 .release = edac_mci_instance_release,
1339 .sysfs_ops = &mci_ops,
1340 .default_attrs = (struct attribute **) mci_attr,
1341 };
1342
1343 #endif /* DISABLE_EDAC_SYSFS */
1344
1345 #define EDAC_DEVICE_SYMLINK "device"
1346
1347 /*
1348 * Create a new Memory Controller kobject instance,
1349 * mc<id> under the 'mc' directory
1350 *
1351 * Return:
1352 * 0 Success
1353 * !0 Failure
1354 */
1355 static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1356 #ifdef DISABLE_EDAC_SYSFS
1357 {
1358 return 0;
1359 }
1360 #else
1361 {
1362 int i;
1363 int err;
1364 struct csrow_info *csrow;
1365 struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1366
1367 debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1368 memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1369
1370 /* set the name of the mc<id> object */
1371 err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1372
1373 if (err)
1374 return err;
1375
1376 /* link to our parent the '..../edac/mc' object */
1377 edac_mci_kobj->parent = &edac_memctrl_kobj;
1378 edac_mci_kobj->ktype = &ktype_mci;
1379
1380 /* register the mc<id> kobject */
1381 err = kobject_register(edac_mci_kobj);
1382
1383 if (err)
1384 return err;
1385
1386 /* create a symlink for the device */
1387 err = sysfs_create_link(edac_mci_kobj, &mci->dev->kobj,
1388 EDAC_DEVICE_SYMLINK);
1389
1390 if (err)
1391 goto fail0;
1392
1393 /* Make directories for each CSROW object
1394 * under the mc<id> kobject
1395 */
1396 for (i = 0; i < mci->nr_csrows; i++) {
1397 csrow = &mci->csrows[i];
1398
1399 /* Only expose populated CSROWs */
1400 if (csrow->nr_pages > 0) {
1401 err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1402
1403 if (err)
1404 goto fail1;
1405 }
1406 }
1407
1408 return 0;
1409
1410 /* CSROW error: backout what has already been registered, */
1411 fail1:
1412 for ( i--; i >= 0; i--) {
1413 if (csrow->nr_pages > 0) {
1414 init_completion(&csrow->kobj_complete);
1415 kobject_unregister(&mci->csrows[i].kobj);
1416 wait_for_completion(&csrow->kobj_complete);
1417 }
1418 }
1419
1420 fail0:
1421 init_completion(&mci->kobj_complete);
1422 kobject_unregister(edac_mci_kobj);
1423 wait_for_completion(&mci->kobj_complete);
1424 return err;
1425 }
1426 #endif /* DISABLE_EDAC_SYSFS */
1427
1428 /*
1429 * remove a Memory Controller instance
1430 */
1431 static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1432 {
1433 #ifndef DISABLE_EDAC_SYSFS
1434 int i;
1435
1436 debugf0("%s()\n", __func__);
1437
1438 /* remove all csrow kobjects */
1439 for (i = 0; i < mci->nr_csrows; i++) {
1440 if (mci->csrows[i].nr_pages > 0) {
1441 init_completion(&mci->csrows[i].kobj_complete);
1442 kobject_unregister(&mci->csrows[i].kobj);
1443 wait_for_completion(&mci->csrows[i].kobj_complete);
1444 }
1445 }
1446
1447 sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1448 init_completion(&mci->kobj_complete);
1449 kobject_unregister(&mci->edac_mci_kobj);
1450 wait_for_completion(&mci->kobj_complete);
1451 #endif /* DISABLE_EDAC_SYSFS */
1452 }
1453
1454 /* END OF sysfs data and methods */
1455
1456 #ifdef CONFIG_EDAC_DEBUG
1457
1458 void edac_mc_dump_channel(struct channel_info *chan)
1459 {
1460 debugf4("\tchannel = %p\n", chan);
1461 debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1462 debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1463 debugf4("\tchannel->label = '%s'\n", chan->label);
1464 debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1465 }
1466 EXPORT_SYMBOL_GPL(edac_mc_dump_channel);
1467
1468 void edac_mc_dump_csrow(struct csrow_info *csrow)
1469 {
1470 debugf4("\tcsrow = %p\n", csrow);
1471 debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1472 debugf4("\tcsrow->first_page = 0x%lx\n",
1473 csrow->first_page);
1474 debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1475 debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1476 debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1477 debugf4("\tcsrow->nr_channels = %d\n",
1478 csrow->nr_channels);
1479 debugf4("\tcsrow->channels = %p\n", csrow->channels);
1480 debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1481 }
1482 EXPORT_SYMBOL_GPL(edac_mc_dump_csrow);
1483
1484 void edac_mc_dump_mci(struct mem_ctl_info *mci)
1485 {
1486 debugf3("\tmci = %p\n", mci);
1487 debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1488 debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1489 debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1490 debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1491 debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1492 mci->nr_csrows, mci->csrows);
1493 debugf3("\tdev = %p\n", mci->dev);
1494 debugf3("\tmod_name:ctl_name = %s:%s\n",
1495 mci->mod_name, mci->ctl_name);
1496 debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1497 }
1498 EXPORT_SYMBOL_GPL(edac_mc_dump_mci);
1499
1500 #endif /* CONFIG_EDAC_DEBUG */
1501
1502 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1503 * Adjust 'ptr' so that its alignment is at least as stringent as what the
1504 * compiler would provide for X and return the aligned result.
1505 *
1506 * If 'size' is a constant, the compiler will optimize this whole function
1507 * down to either a no-op or the addition of a constant to the value of 'ptr'.
1508 */
1509 static inline char * align_ptr(void *ptr, unsigned size)
1510 {
1511 unsigned align, r;
1512
1513 /* Here we assume that the alignment of a "long long" is the most
1514 * stringent alignment that the compiler will ever provide by default.
1515 * As far as I know, this is a reasonable assumption.
1516 */
1517 if (size > sizeof(long))
1518 align = sizeof(long long);
1519 else if (size > sizeof(int))
1520 align = sizeof(long);
1521 else if (size > sizeof(short))
1522 align = sizeof(int);
1523 else if (size > sizeof(char))
1524 align = sizeof(short);
1525 else
1526 return (char *) ptr;
1527
1528 r = size % align;
1529
1530 if (r == 0)
1531 return (char *) ptr;
1532
1533 return (char *) (((unsigned long) ptr) + align - r);
1534 }
1535
1536 /**
1537 * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1538 * @size_pvt: size of private storage needed
1539 * @nr_csrows: Number of CWROWS needed for this MC
1540 * @nr_chans: Number of channels for the MC
1541 *
1542 * Everything is kmalloc'ed as one big chunk - more efficient.
1543 * Only can be used if all structures have the same lifetime - otherwise
1544 * you have to allocate and initialize your own structures.
1545 *
1546 * Use edac_mc_free() to free mc structures allocated by this function.
1547 *
1548 * Returns:
1549 * NULL allocation failed
1550 * struct mem_ctl_info pointer
1551 */
1552 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1553 unsigned nr_chans)
1554 {
1555 struct mem_ctl_info *mci;
1556 struct csrow_info *csi, *csrow;
1557 struct channel_info *chi, *chp, *chan;
1558 void *pvt;
1559 unsigned size;
1560 int row, chn;
1561
1562 /* Figure out the offsets of the various items from the start of an mc
1563 * structure. We want the alignment of each item to be at least as
1564 * stringent as what the compiler would provide if we could simply
1565 * hardcode everything into a single struct.
1566 */
1567 mci = (struct mem_ctl_info *) 0;
1568 csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1569 chi = (struct channel_info *)
1570 align_ptr(&csi[nr_csrows], sizeof(*chi));
1571 pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1572 size = ((unsigned long) pvt) + sz_pvt;
1573
1574 if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1575 return NULL;
1576
1577 /* Adjust pointers so they point within the memory we just allocated
1578 * rather than an imaginary chunk of memory located at address 0.
1579 */
1580 csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1581 chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1582 pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1583
1584 memset(mci, 0, size); /* clear all fields */
1585 mci->csrows = csi;
1586 mci->pvt_info = pvt;
1587 mci->nr_csrows = nr_csrows;
1588
1589 for (row = 0; row < nr_csrows; row++) {
1590 csrow = &csi[row];
1591 csrow->csrow_idx = row;
1592 csrow->mci = mci;
1593 csrow->nr_channels = nr_chans;
1594 chp = &chi[row * nr_chans];
1595 csrow->channels = chp;
1596
1597 for (chn = 0; chn < nr_chans; chn++) {
1598 chan = &chp[chn];
1599 chan->chan_idx = chn;
1600 chan->csrow = csrow;
1601 }
1602 }
1603
1604 return mci;
1605 }
1606 EXPORT_SYMBOL_GPL(edac_mc_alloc);
1607
1608 /**
1609 * edac_mc_free: Free a previously allocated 'mci' structure
1610 * @mci: pointer to a struct mem_ctl_info structure
1611 */
1612 void edac_mc_free(struct mem_ctl_info *mci)
1613 {
1614 kfree(mci);
1615 }
1616 EXPORT_SYMBOL_GPL(edac_mc_free);
1617
1618 static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
1619 {
1620 struct mem_ctl_info *mci;
1621 struct list_head *item;
1622
1623 debugf3("%s()\n", __func__);
1624
1625 list_for_each(item, &mc_devices) {
1626 mci = list_entry(item, struct mem_ctl_info, link);
1627
1628 if (mci->dev == dev)
1629 return mci;
1630 }
1631
1632 return NULL;
1633 }
1634
1635 /* Return 0 on success, 1 on failure.
1636 * Before calling this function, caller must
1637 * assign a unique value to mci->mc_idx.
1638 */
1639 static int add_mc_to_global_list (struct mem_ctl_info *mci)
1640 {
1641 struct list_head *item, *insert_before;
1642 struct mem_ctl_info *p;
1643
1644 insert_before = &mc_devices;
1645
1646 if (unlikely((p = find_mci_by_dev(mci->dev)) != NULL))
1647 goto fail0;
1648
1649 list_for_each(item, &mc_devices) {
1650 p = list_entry(item, struct mem_ctl_info, link);
1651
1652 if (p->mc_idx >= mci->mc_idx) {
1653 if (unlikely(p->mc_idx == mci->mc_idx))
1654 goto fail1;
1655
1656 insert_before = item;
1657 break;
1658 }
1659 }
1660
1661 list_add_tail_rcu(&mci->link, insert_before);
1662 return 0;
1663
1664 fail0:
1665 edac_printk(KERN_WARNING, EDAC_MC,
1666 "%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
1667 dev_name(p->dev), p->mod_name, p->ctl_name, p->mc_idx);
1668 return 1;
1669
1670 fail1:
1671 edac_printk(KERN_WARNING, EDAC_MC,
1672 "bug in low-level driver: attempt to assign\n"
1673 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
1674 return 1;
1675 }
1676
1677 static void complete_mc_list_del(struct rcu_head *head)
1678 {
1679 struct mem_ctl_info *mci;
1680
1681 mci = container_of(head, struct mem_ctl_info, rcu);
1682 INIT_LIST_HEAD(&mci->link);
1683 complete(&mci->complete);
1684 }
1685
1686 static void del_mc_from_global_list(struct mem_ctl_info *mci)
1687 {
1688 list_del_rcu(&mci->link);
1689 init_completion(&mci->complete);
1690 call_rcu(&mci->rcu, complete_mc_list_del);
1691 wait_for_completion(&mci->complete);
1692 }
1693
1694 /**
1695 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1696 * create sysfs entries associated with mci structure
1697 * @mci: pointer to the mci structure to be added to the list
1698 * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
1699 *
1700 * Return:
1701 * 0 Success
1702 * !0 Failure
1703 */
1704
1705 /* FIXME - should a warning be printed if no error detection? correction? */
1706 int edac_mc_add_mc(struct mem_ctl_info *mci, int mc_idx)
1707 {
1708 debugf0("%s()\n", __func__);
1709 mci->mc_idx = mc_idx;
1710 #ifdef CONFIG_EDAC_DEBUG
1711 if (edac_debug_level >= 3)
1712 edac_mc_dump_mci(mci);
1713
1714 if (edac_debug_level >= 4) {
1715 int i;
1716
1717 for (i = 0; i < mci->nr_csrows; i++) {
1718 int j;
1719
1720 edac_mc_dump_csrow(&mci->csrows[i]);
1721 for (j = 0; j < mci->csrows[i].nr_channels; j++)
1722 edac_mc_dump_channel(
1723 &mci->csrows[i].channels[j]);
1724 }
1725 }
1726 #endif
1727 down(&mem_ctls_mutex);
1728
1729 if (add_mc_to_global_list(mci))
1730 goto fail0;
1731
1732 /* set load time so that error rate can be tracked */
1733 mci->start_time = jiffies;
1734
1735 if (edac_create_sysfs_mci_device(mci)) {
1736 edac_mc_printk(mci, KERN_WARNING,
1737 "failed to create sysfs device\n");
1738 goto fail1;
1739 }
1740
1741 /* Report action taken */
1742 edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: DEV %s\n",
1743 mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1744
1745 up(&mem_ctls_mutex);
1746 return 0;
1747
1748 fail1:
1749 del_mc_from_global_list(mci);
1750
1751 fail0:
1752 up(&mem_ctls_mutex);
1753 return 1;
1754 }
1755 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
1756
1757 /**
1758 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1759 * remove mci structure from global list
1760 * @pdev: Pointer to 'struct device' representing mci structure to remove.
1761 *
1762 * Return pointer to removed mci structure, or NULL if device not found.
1763 */
1764 struct mem_ctl_info * edac_mc_del_mc(struct device *dev)
1765 {
1766 struct mem_ctl_info *mci;
1767
1768 debugf0("MC: %s()\n", __func__);
1769 down(&mem_ctls_mutex);
1770
1771 if ((mci = find_mci_by_dev(dev)) == NULL) {
1772 up(&mem_ctls_mutex);
1773 return NULL;
1774 }
1775
1776 edac_remove_sysfs_mci_device(mci);
1777 del_mc_from_global_list(mci);
1778 up(&mem_ctls_mutex);
1779 edac_printk(KERN_INFO, EDAC_MC,
1780 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
1781 mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1782 return mci;
1783 }
1784 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
1785
1786 void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size)
1787 {
1788 struct page *pg;
1789 void *virt_addr;
1790 unsigned long flags = 0;
1791
1792 debugf3("%s()\n", __func__);
1793
1794 /* ECC error page was not in our memory. Ignore it. */
1795 if(!pfn_valid(page))
1796 return;
1797
1798 /* Find the actual page structure then map it and fix */
1799 pg = pfn_to_page(page);
1800
1801 if (PageHighMem(pg))
1802 local_irq_save(flags);
1803
1804 virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1805
1806 /* Perform architecture specific atomic scrub operation */
1807 atomic_scrub(virt_addr + offset, size);
1808
1809 /* Unmap and complete */
1810 kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1811
1812 if (PageHighMem(pg))
1813 local_irq_restore(flags);
1814 }
1815 EXPORT_SYMBOL_GPL(edac_mc_scrub_block);
1816
1817 /* FIXME - should return -1 */
1818 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
1819 {
1820 struct csrow_info *csrows = mci->csrows;
1821 int row, i;
1822
1823 debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1824 row = -1;
1825
1826 for (i = 0; i < mci->nr_csrows; i++) {
1827 struct csrow_info *csrow = &csrows[i];
1828
1829 if (csrow->nr_pages == 0)
1830 continue;
1831
1832 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1833 "mask(0x%lx)\n", mci->mc_idx, __func__,
1834 csrow->first_page, page, csrow->last_page,
1835 csrow->page_mask);
1836
1837 if ((page >= csrow->first_page) &&
1838 (page <= csrow->last_page) &&
1839 ((page & csrow->page_mask) ==
1840 (csrow->first_page & csrow->page_mask))) {
1841 row = i;
1842 break;
1843 }
1844 }
1845
1846 if (row == -1)
1847 edac_mc_printk(mci, KERN_ERR,
1848 "could not look up page error address %lx\n",
1849 (unsigned long) page);
1850
1851 return row;
1852 }
1853 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
1854
1855 /* FIXME - setable log (warning/emerg) levels */
1856 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1857 void edac_mc_handle_ce(struct mem_ctl_info *mci,
1858 unsigned long page_frame_number, unsigned long offset_in_page,
1859 unsigned long syndrome, int row, int channel, const char *msg)
1860 {
1861 unsigned long remapped_page;
1862
1863 debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1864
1865 /* FIXME - maybe make panic on INTERNAL ERROR an option */
1866 if (row >= mci->nr_csrows || row < 0) {
1867 /* something is wrong */
1868 edac_mc_printk(mci, KERN_ERR,
1869 "INTERNAL ERROR: row out of range "
1870 "(%d >= %d)\n", row, mci->nr_csrows);
1871 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1872 return;
1873 }
1874
1875 if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1876 /* something is wrong */
1877 edac_mc_printk(mci, KERN_ERR,
1878 "INTERNAL ERROR: channel out of range "
1879 "(%d >= %d)\n", channel,
1880 mci->csrows[row].nr_channels);
1881 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1882 return;
1883 }
1884
1885 if (log_ce)
1886 /* FIXME - put in DIMM location */
1887 edac_mc_printk(mci, KERN_WARNING,
1888 "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1889 "0x%lx, row %d, channel %d, label \"%s\": %s\n",
1890 page_frame_number, offset_in_page,
1891 mci->csrows[row].grain, syndrome, row, channel,
1892 mci->csrows[row].channels[channel].label, msg);
1893
1894 mci->ce_count++;
1895 mci->csrows[row].ce_count++;
1896 mci->csrows[row].channels[channel].ce_count++;
1897
1898 if (mci->scrub_mode & SCRUB_SW_SRC) {
1899 /*
1900 * Some MC's can remap memory so that it is still available
1901 * at a different address when PCI devices map into memory.
1902 * MC's that can't do this lose the memory where PCI devices
1903 * are mapped. This mapping is MC dependant and so we call
1904 * back into the MC driver for it to map the MC page to
1905 * a physical (CPU) page which can then be mapped to a virtual
1906 * page - which can then be scrubbed.
1907 */
1908 remapped_page = mci->ctl_page_to_phys ?
1909 mci->ctl_page_to_phys(mci, page_frame_number) :
1910 page_frame_number;
1911
1912 edac_mc_scrub_block(remapped_page, offset_in_page,
1913 mci->csrows[row].grain);
1914 }
1915 }
1916 EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
1917
1918 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
1919 {
1920 if (log_ce)
1921 edac_mc_printk(mci, KERN_WARNING,
1922 "CE - no information available: %s\n", msg);
1923
1924 mci->ce_noinfo_count++;
1925 mci->ce_count++;
1926 }
1927 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
1928
1929 void edac_mc_handle_ue(struct mem_ctl_info *mci,
1930 unsigned long page_frame_number, unsigned long offset_in_page,
1931 int row, const char *msg)
1932 {
1933 int len = EDAC_MC_LABEL_LEN * 4;
1934 char labels[len + 1];
1935 char *pos = labels;
1936 int chan;
1937 int chars;
1938
1939 debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1940
1941 /* FIXME - maybe make panic on INTERNAL ERROR an option */
1942 if (row >= mci->nr_csrows || row < 0) {
1943 /* something is wrong */
1944 edac_mc_printk(mci, KERN_ERR,
1945 "INTERNAL ERROR: row out of range "
1946 "(%d >= %d)\n", row, mci->nr_csrows);
1947 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1948 return;
1949 }
1950
1951 chars = snprintf(pos, len + 1, "%s",
1952 mci->csrows[row].channels[0].label);
1953 len -= chars;
1954 pos += chars;
1955
1956 for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1957 chan++) {
1958 chars = snprintf(pos, len + 1, ":%s",
1959 mci->csrows[row].channels[chan].label);
1960 len -= chars;
1961 pos += chars;
1962 }
1963
1964 if (log_ue)
1965 edac_mc_printk(mci, KERN_EMERG,
1966 "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1967 "labels \"%s\": %s\n", page_frame_number,
1968 offset_in_page, mci->csrows[row].grain, row, labels,
1969 msg);
1970
1971 if (panic_on_ue)
1972 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
1973 "row %d, labels \"%s\": %s\n", mci->mc_idx,
1974 page_frame_number, offset_in_page,
1975 mci->csrows[row].grain, row, labels, msg);
1976
1977 mci->ue_count++;
1978 mci->csrows[row].ue_count++;
1979 }
1980 EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
1981
1982 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
1983 {
1984 if (panic_on_ue)
1985 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1986
1987 if (log_ue)
1988 edac_mc_printk(mci, KERN_WARNING,
1989 "UE - no information available: %s\n", msg);
1990 mci->ue_noinfo_count++;
1991 mci->ue_count++;
1992 }
1993 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
1994
1995
1996 /*
1997 * Iterate over all MC instances and check for ECC, et al, errors
1998 */
1999 static inline void check_mc_devices(void)
2000 {
2001 struct list_head *item;
2002 struct mem_ctl_info *mci;
2003
2004 debugf3("%s()\n", __func__);
2005 down(&mem_ctls_mutex);
2006
2007 list_for_each(item, &mc_devices) {
2008 mci = list_entry(item, struct mem_ctl_info, link);
2009
2010 if (mci->edac_check != NULL)
2011 mci->edac_check(mci);
2012 }
2013
2014 up(&mem_ctls_mutex);
2015 }
2016
2017 /*
2018 * Check MC status every poll_msec.
2019 * Check PCI status every poll_msec as well.
2020 *
2021 * This where the work gets done for edac.
2022 *
2023 * SMP safe, doesn't use NMI, and auto-rate-limits.
2024 */
2025 static void do_edac_check(void)
2026 {
2027 debugf3("%s()\n", __func__);
2028 check_mc_devices();
2029 do_pci_parity_check();
2030 }
2031
2032 static int edac_kernel_thread(void *arg)
2033 {
2034 while (!kthread_should_stop()) {
2035 do_edac_check();
2036
2037 /* goto sleep for the interval */
2038 schedule_timeout_interruptible((HZ * poll_msec) / 1000);
2039 try_to_freeze();
2040 }
2041
2042 return 0;
2043 }
2044
2045 /*
2046 * edac_mc_init
2047 * module initialization entry point
2048 */
2049 static int __init edac_mc_init(void)
2050 {
2051 edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
2052
2053 /*
2054 * Harvest and clear any boot/initialization PCI parity errors
2055 *
2056 * FIXME: This only clears errors logged by devices present at time of
2057 * module initialization. We should also do an initial clear
2058 * of each newly hotplugged device.
2059 */
2060 clear_pci_parity_errors();
2061
2062 /* Create the MC sysfs entries */
2063 if (edac_sysfs_memctrl_setup()) {
2064 edac_printk(KERN_ERR, EDAC_MC,
2065 "Error initializing sysfs code\n");
2066 return -ENODEV;
2067 }
2068
2069 /* Create the PCI parity sysfs entries */
2070 if (edac_sysfs_pci_setup()) {
2071 edac_sysfs_memctrl_teardown();
2072 edac_printk(KERN_ERR, EDAC_MC,
2073 "EDAC PCI: Error initializing sysfs code\n");
2074 return -ENODEV;
2075 }
2076
2077 /* create our kernel thread */
2078 edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
2079
2080 if (IS_ERR(edac_thread)) {
2081 /* remove the sysfs entries */
2082 edac_sysfs_memctrl_teardown();
2083 edac_sysfs_pci_teardown();
2084 return PTR_ERR(edac_thread);
2085 }
2086
2087 return 0;
2088 }
2089
2090 /*
2091 * edac_mc_exit()
2092 * module exit/termination functioni
2093 */
2094 static void __exit edac_mc_exit(void)
2095 {
2096 debugf0("%s()\n", __func__);
2097 kthread_stop(edac_thread);
2098
2099 /* tear down the sysfs device */
2100 edac_sysfs_memctrl_teardown();
2101 edac_sysfs_pci_teardown();
2102 }
2103
2104 module_init(edac_mc_init);
2105 module_exit(edac_mc_exit);
2106
2107 MODULE_LICENSE("GPL");
2108 MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
2109 "Based on work by Dan Hollis et al");
2110 MODULE_DESCRIPTION("Core library routines for MC reporting");
2111
2112 module_param(panic_on_ue, int, 0644);
2113 MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
2114 #ifdef CONFIG_PCI
2115 module_param(check_pci_parity, int, 0644);
2116 MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
2117 module_param(panic_on_pci_parity, int, 0644);
2118 MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
2119 #endif
2120 module_param(log_ue, int, 0644);
2121 MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
2122 module_param(log_ce, int, 0644);
2123 MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
2124 module_param(poll_msec, int, 0644);
2125 MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
2126 #ifdef CONFIG_EDAC_DEBUG
2127 module_param(edac_debug_level, int, 0644);
2128 MODULE_PARM_DESC(edac_debug_level, "Debug level");
2129 #endif
This page took 0.116057 seconds and 6 git commands to generate.