Merge tag 'sound-3.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[deliverable/linux.git] / drivers / edac / edac_mc.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
36
37 #define CREATE_TRACE_POINTS
38 #define TRACE_INCLUDE_PATH ../../include/ras
39 #include <ras/ras_event.h>
40
41 /* lock to memory controller's control array */
42 static DEFINE_MUTEX(mem_ctls_mutex);
43 static LIST_HEAD(mc_devices);
44
45 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
46 unsigned len)
47 {
48 struct mem_ctl_info *mci = dimm->mci;
49 int i, n, count = 0;
50 char *p = buf;
51
52 for (i = 0; i < mci->n_layers; i++) {
53 n = snprintf(p, len, "%s %d ",
54 edac_layer_name[mci->layers[i].type],
55 dimm->location[i]);
56 p += n;
57 len -= n;
58 count += n;
59 if (!len)
60 break;
61 }
62
63 return count;
64 }
65
66 #ifdef CONFIG_EDAC_DEBUG
67
68 static void edac_mc_dump_channel(struct rank_info *chan)
69 {
70 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
71 edac_dbg(4, " channel = %p\n", chan);
72 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
73 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
74 }
75
76 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
77 {
78 char location[80];
79
80 edac_dimm_info_location(dimm, location, sizeof(location));
81
82 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
83 dimm->mci->mem_is_per_rank ? "rank" : "dimm",
84 number, location, dimm->csrow, dimm->cschannel);
85 edac_dbg(4, " dimm = %p\n", dimm);
86 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
87 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
88 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
89 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
90 }
91
92 static void edac_mc_dump_csrow(struct csrow_info *csrow)
93 {
94 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
95 edac_dbg(4, " csrow = %p\n", csrow);
96 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
97 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
98 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
99 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
100 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
101 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
102 }
103
104 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
105 {
106 edac_dbg(3, "\tmci = %p\n", mci);
107 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
108 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
109 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
110 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
111 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
112 mci->nr_csrows, mci->csrows);
113 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
114 mci->tot_dimms, mci->dimms);
115 edac_dbg(3, "\tdev = %p\n", mci->pdev);
116 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
117 mci->mod_name, mci->ctl_name);
118 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
119 }
120
121 #endif /* CONFIG_EDAC_DEBUG */
122
123 /*
124 * keep those in sync with the enum mem_type
125 */
126 const char *edac_mem_types[] = {
127 "Empty csrow",
128 "Reserved csrow type",
129 "Unknown csrow type",
130 "Fast page mode RAM",
131 "Extended data out RAM",
132 "Burst Extended data out RAM",
133 "Single data rate SDRAM",
134 "Registered single data rate SDRAM",
135 "Double data rate SDRAM",
136 "Registered Double data rate SDRAM",
137 "Rambus DRAM",
138 "Unbuffered DDR2 RAM",
139 "Fully buffered DDR2",
140 "Registered DDR2 RAM",
141 "Rambus XDR",
142 "Unbuffered DDR3 RAM",
143 "Registered DDR3 RAM",
144 };
145 EXPORT_SYMBOL_GPL(edac_mem_types);
146
147 /**
148 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
149 * @p: pointer to a pointer with the memory offset to be used. At
150 * return, this will be incremented to point to the next offset
151 * @size: Size of the data structure to be reserved
152 * @n_elems: Number of elements that should be reserved
153 *
154 * If 'size' is a constant, the compiler will optimize this whole function
155 * down to either a no-op or the addition of a constant to the value of '*p'.
156 *
157 * The 'p' pointer is absolutely needed to keep the proper advancing
158 * further in memory to the proper offsets when allocating the struct along
159 * with its embedded structs, as edac_device_alloc_ctl_info() does it
160 * above, for example.
161 *
162 * At return, the pointer 'p' will be incremented to be used on a next call
163 * to this function.
164 */
165 void *edac_align_ptr(void **p, unsigned size, int n_elems)
166 {
167 unsigned align, r;
168 void *ptr = *p;
169
170 *p += size * n_elems;
171
172 /*
173 * 'p' can possibly be an unaligned item X such that sizeof(X) is
174 * 'size'. Adjust 'p' so that its alignment is at least as
175 * stringent as what the compiler would provide for X and return
176 * the aligned result.
177 * Here we assume that the alignment of a "long long" is the most
178 * stringent alignment that the compiler will ever provide by default.
179 * As far as I know, this is a reasonable assumption.
180 */
181 if (size > sizeof(long))
182 align = sizeof(long long);
183 else if (size > sizeof(int))
184 align = sizeof(long);
185 else if (size > sizeof(short))
186 align = sizeof(int);
187 else if (size > sizeof(char))
188 align = sizeof(short);
189 else
190 return (char *)ptr;
191
192 r = (unsigned long)p % align;
193
194 if (r == 0)
195 return (char *)ptr;
196
197 *p += align - r;
198
199 return (void *)(((unsigned long)ptr) + align - r);
200 }
201
202 static void _edac_mc_free(struct mem_ctl_info *mci)
203 {
204 int i, chn, row;
205 struct csrow_info *csr;
206 const unsigned int tot_dimms = mci->tot_dimms;
207 const unsigned int tot_channels = mci->num_cschannel;
208 const unsigned int tot_csrows = mci->nr_csrows;
209
210 if (mci->dimms) {
211 for (i = 0; i < tot_dimms; i++)
212 kfree(mci->dimms[i]);
213 kfree(mci->dimms);
214 }
215 if (mci->csrows) {
216 for (row = 0; row < tot_csrows; row++) {
217 csr = mci->csrows[row];
218 if (csr) {
219 if (csr->channels) {
220 for (chn = 0; chn < tot_channels; chn++)
221 kfree(csr->channels[chn]);
222 kfree(csr->channels);
223 }
224 kfree(csr);
225 }
226 }
227 kfree(mci->csrows);
228 }
229 kfree(mci);
230 }
231
232 /**
233 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
234 * @mc_num: Memory controller number
235 * @n_layers: Number of MC hierarchy layers
236 * layers: Describes each layer as seen by the Memory Controller
237 * @size_pvt: size of private storage needed
238 *
239 *
240 * Everything is kmalloc'ed as one big chunk - more efficient.
241 * Only can be used if all structures have the same lifetime - otherwise
242 * you have to allocate and initialize your own structures.
243 *
244 * Use edac_mc_free() to free mc structures allocated by this function.
245 *
246 * NOTE: drivers handle multi-rank memories in different ways: in some
247 * drivers, one multi-rank memory stick is mapped as one entry, while, in
248 * others, a single multi-rank memory stick would be mapped into several
249 * entries. Currently, this function will allocate multiple struct dimm_info
250 * on such scenarios, as grouping the multiple ranks require drivers change.
251 *
252 * Returns:
253 * On failure: NULL
254 * On success: struct mem_ctl_info pointer
255 */
256 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
257 unsigned n_layers,
258 struct edac_mc_layer *layers,
259 unsigned sz_pvt)
260 {
261 struct mem_ctl_info *mci;
262 struct edac_mc_layer *layer;
263 struct csrow_info *csr;
264 struct rank_info *chan;
265 struct dimm_info *dimm;
266 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
267 unsigned pos[EDAC_MAX_LAYERS];
268 unsigned size, tot_dimms = 1, count = 1;
269 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
270 void *pvt, *p, *ptr = NULL;
271 int i, j, row, chn, n, len, off;
272 bool per_rank = false;
273
274 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
275 /*
276 * Calculate the total amount of dimms and csrows/cschannels while
277 * in the old API emulation mode
278 */
279 for (i = 0; i < n_layers; i++) {
280 tot_dimms *= layers[i].size;
281 if (layers[i].is_virt_csrow)
282 tot_csrows *= layers[i].size;
283 else
284 tot_channels *= layers[i].size;
285
286 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
287 per_rank = true;
288 }
289
290 /* Figure out the offsets of the various items from the start of an mc
291 * structure. We want the alignment of each item to be at least as
292 * stringent as what the compiler would provide if we could simply
293 * hardcode everything into a single struct.
294 */
295 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
296 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
297 for (i = 0; i < n_layers; i++) {
298 count *= layers[i].size;
299 edac_dbg(4, "errcount layer %d size %d\n", i, count);
300 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
301 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
302 tot_errcount += 2 * count;
303 }
304
305 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
306 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
307 size = ((unsigned long)pvt) + sz_pvt;
308
309 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
310 size,
311 tot_dimms,
312 per_rank ? "ranks" : "dimms",
313 tot_csrows * tot_channels);
314
315 mci = kzalloc(size, GFP_KERNEL);
316 if (mci == NULL)
317 return NULL;
318
319 /* Adjust pointers so they point within the memory we just allocated
320 * rather than an imaginary chunk of memory located at address 0.
321 */
322 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
323 for (i = 0; i < n_layers; i++) {
324 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
325 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
326 }
327 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
328
329 /* setup index and various internal pointers */
330 mci->mc_idx = mc_num;
331 mci->tot_dimms = tot_dimms;
332 mci->pvt_info = pvt;
333 mci->n_layers = n_layers;
334 mci->layers = layer;
335 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
336 mci->nr_csrows = tot_csrows;
337 mci->num_cschannel = tot_channels;
338 mci->mem_is_per_rank = per_rank;
339
340 /*
341 * Alocate and fill the csrow/channels structs
342 */
343 mci->csrows = kcalloc(sizeof(*mci->csrows), tot_csrows, GFP_KERNEL);
344 if (!mci->csrows)
345 goto error;
346 for (row = 0; row < tot_csrows; row++) {
347 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
348 if (!csr)
349 goto error;
350 mci->csrows[row] = csr;
351 csr->csrow_idx = row;
352 csr->mci = mci;
353 csr->nr_channels = tot_channels;
354 csr->channels = kcalloc(sizeof(*csr->channels), tot_channels,
355 GFP_KERNEL);
356 if (!csr->channels)
357 goto error;
358
359 for (chn = 0; chn < tot_channels; chn++) {
360 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
361 if (!chan)
362 goto error;
363 csr->channels[chn] = chan;
364 chan->chan_idx = chn;
365 chan->csrow = csr;
366 }
367 }
368
369 /*
370 * Allocate and fill the dimm structs
371 */
372 mci->dimms = kcalloc(sizeof(*mci->dimms), tot_dimms, GFP_KERNEL);
373 if (!mci->dimms)
374 goto error;
375
376 memset(&pos, 0, sizeof(pos));
377 row = 0;
378 chn = 0;
379 for (i = 0; i < tot_dimms; i++) {
380 chan = mci->csrows[row]->channels[chn];
381 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
382 if (off < 0 || off >= tot_dimms) {
383 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
384 goto error;
385 }
386
387 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
388 if (!dimm)
389 goto error;
390 mci->dimms[off] = dimm;
391 dimm->mci = mci;
392
393 /*
394 * Copy DIMM location and initialize it.
395 */
396 len = sizeof(dimm->label);
397 p = dimm->label;
398 n = snprintf(p, len, "mc#%u", mc_num);
399 p += n;
400 len -= n;
401 for (j = 0; j < n_layers; j++) {
402 n = snprintf(p, len, "%s#%u",
403 edac_layer_name[layers[j].type],
404 pos[j]);
405 p += n;
406 len -= n;
407 dimm->location[j] = pos[j];
408
409 if (len <= 0)
410 break;
411 }
412
413 /* Link it to the csrows old API data */
414 chan->dimm = dimm;
415 dimm->csrow = row;
416 dimm->cschannel = chn;
417
418 /* Increment csrow location */
419 row++;
420 if (row == tot_csrows) {
421 row = 0;
422 chn++;
423 }
424
425 /* Increment dimm location */
426 for (j = n_layers - 1; j >= 0; j--) {
427 pos[j]++;
428 if (pos[j] < layers[j].size)
429 break;
430 pos[j] = 0;
431 }
432 }
433
434 mci->op_state = OP_ALLOC;
435
436 /* at this point, the root kobj is valid, and in order to
437 * 'free' the object, then the function:
438 * edac_mc_unregister_sysfs_main_kobj() must be called
439 * which will perform kobj unregistration and the actual free
440 * will occur during the kobject callback operation
441 */
442
443 return mci;
444
445 error:
446 _edac_mc_free(mci);
447
448 return NULL;
449 }
450 EXPORT_SYMBOL_GPL(edac_mc_alloc);
451
452 /**
453 * edac_mc_free
454 * 'Free' a previously allocated 'mci' structure
455 * @mci: pointer to a struct mem_ctl_info structure
456 */
457 void edac_mc_free(struct mem_ctl_info *mci)
458 {
459 edac_dbg(1, "\n");
460
461 /* If we're not yet registered with sysfs free only what was allocated
462 * in edac_mc_alloc().
463 */
464 if (!device_is_registered(&mci->dev)) {
465 _edac_mc_free(mci);
466 return;
467 }
468
469 /* the mci instance is freed here, when the sysfs object is dropped */
470 edac_unregister_sysfs(mci);
471 }
472 EXPORT_SYMBOL_GPL(edac_mc_free);
473
474
475 /**
476 * find_mci_by_dev
477 *
478 * scan list of controllers looking for the one that manages
479 * the 'dev' device
480 * @dev: pointer to a struct device related with the MCI
481 */
482 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
483 {
484 struct mem_ctl_info *mci;
485 struct list_head *item;
486
487 edac_dbg(3, "\n");
488
489 list_for_each(item, &mc_devices) {
490 mci = list_entry(item, struct mem_ctl_info, link);
491
492 if (mci->pdev == dev)
493 return mci;
494 }
495
496 return NULL;
497 }
498 EXPORT_SYMBOL_GPL(find_mci_by_dev);
499
500 /*
501 * handler for EDAC to check if NMI type handler has asserted interrupt
502 */
503 static int edac_mc_assert_error_check_and_clear(void)
504 {
505 int old_state;
506
507 if (edac_op_state == EDAC_OPSTATE_POLL)
508 return 1;
509
510 old_state = edac_err_assert;
511 edac_err_assert = 0;
512
513 return old_state;
514 }
515
516 /*
517 * edac_mc_workq_function
518 * performs the operation scheduled by a workq request
519 */
520 static void edac_mc_workq_function(struct work_struct *work_req)
521 {
522 struct delayed_work *d_work = to_delayed_work(work_req);
523 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
524
525 mutex_lock(&mem_ctls_mutex);
526
527 /* if this control struct has movd to offline state, we are done */
528 if (mci->op_state == OP_OFFLINE) {
529 mutex_unlock(&mem_ctls_mutex);
530 return;
531 }
532
533 /* Only poll controllers that are running polled and have a check */
534 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
535 mci->edac_check(mci);
536
537 mutex_unlock(&mem_ctls_mutex);
538
539 /* Reschedule */
540 queue_delayed_work(edac_workqueue, &mci->work,
541 msecs_to_jiffies(edac_mc_get_poll_msec()));
542 }
543
544 /*
545 * edac_mc_workq_setup
546 * initialize a workq item for this mci
547 * passing in the new delay period in msec
548 *
549 * locking model:
550 *
551 * called with the mem_ctls_mutex held
552 */
553 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
554 {
555 edac_dbg(0, "\n");
556
557 /* if this instance is not in the POLL state, then simply return */
558 if (mci->op_state != OP_RUNNING_POLL)
559 return;
560
561 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
562 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
563 }
564
565 /*
566 * edac_mc_workq_teardown
567 * stop the workq processing on this mci
568 *
569 * locking model:
570 *
571 * called WITHOUT lock held
572 */
573 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
574 {
575 int status;
576
577 if (mci->op_state != OP_RUNNING_POLL)
578 return;
579
580 status = cancel_delayed_work(&mci->work);
581 if (status == 0) {
582 edac_dbg(0, "not canceled, flush the queue\n");
583
584 /* workq instance might be running, wait for it */
585 flush_workqueue(edac_workqueue);
586 }
587 }
588
589 /*
590 * edac_mc_reset_delay_period(unsigned long value)
591 *
592 * user space has updated our poll period value, need to
593 * reset our workq delays
594 */
595 void edac_mc_reset_delay_period(int value)
596 {
597 struct mem_ctl_info *mci;
598 struct list_head *item;
599
600 mutex_lock(&mem_ctls_mutex);
601
602 list_for_each(item, &mc_devices) {
603 mci = list_entry(item, struct mem_ctl_info, link);
604
605 edac_mc_workq_setup(mci, (unsigned long) value);
606 }
607
608 mutex_unlock(&mem_ctls_mutex);
609 }
610
611
612
613 /* Return 0 on success, 1 on failure.
614 * Before calling this function, caller must
615 * assign a unique value to mci->mc_idx.
616 *
617 * locking model:
618 *
619 * called with the mem_ctls_mutex lock held
620 */
621 static int add_mc_to_global_list(struct mem_ctl_info *mci)
622 {
623 struct list_head *item, *insert_before;
624 struct mem_ctl_info *p;
625
626 insert_before = &mc_devices;
627
628 p = find_mci_by_dev(mci->pdev);
629 if (unlikely(p != NULL))
630 goto fail0;
631
632 list_for_each(item, &mc_devices) {
633 p = list_entry(item, struct mem_ctl_info, link);
634
635 if (p->mc_idx >= mci->mc_idx) {
636 if (unlikely(p->mc_idx == mci->mc_idx))
637 goto fail1;
638
639 insert_before = item;
640 break;
641 }
642 }
643
644 list_add_tail_rcu(&mci->link, insert_before);
645 atomic_inc(&edac_handlers);
646 return 0;
647
648 fail0:
649 edac_printk(KERN_WARNING, EDAC_MC,
650 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
651 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
652 return 1;
653
654 fail1:
655 edac_printk(KERN_WARNING, EDAC_MC,
656 "bug in low-level driver: attempt to assign\n"
657 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
658 return 1;
659 }
660
661 static void del_mc_from_global_list(struct mem_ctl_info *mci)
662 {
663 atomic_dec(&edac_handlers);
664 list_del_rcu(&mci->link);
665
666 /* these are for safe removal of devices from global list while
667 * NMI handlers may be traversing list
668 */
669 synchronize_rcu();
670 INIT_LIST_HEAD(&mci->link);
671 }
672
673 /**
674 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
675 *
676 * If found, return a pointer to the structure.
677 * Else return NULL.
678 *
679 * Caller must hold mem_ctls_mutex.
680 */
681 struct mem_ctl_info *edac_mc_find(int idx)
682 {
683 struct list_head *item;
684 struct mem_ctl_info *mci;
685
686 list_for_each(item, &mc_devices) {
687 mci = list_entry(item, struct mem_ctl_info, link);
688
689 if (mci->mc_idx >= idx) {
690 if (mci->mc_idx == idx)
691 return mci;
692
693 break;
694 }
695 }
696
697 return NULL;
698 }
699 EXPORT_SYMBOL(edac_mc_find);
700
701 /**
702 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
703 * create sysfs entries associated with mci structure
704 * @mci: pointer to the mci structure to be added to the list
705 *
706 * Return:
707 * 0 Success
708 * !0 Failure
709 */
710
711 /* FIXME - should a warning be printed if no error detection? correction? */
712 int edac_mc_add_mc(struct mem_ctl_info *mci)
713 {
714 edac_dbg(0, "\n");
715
716 #ifdef CONFIG_EDAC_DEBUG
717 if (edac_debug_level >= 3)
718 edac_mc_dump_mci(mci);
719
720 if (edac_debug_level >= 4) {
721 int i;
722
723 for (i = 0; i < mci->nr_csrows; i++) {
724 struct csrow_info *csrow = mci->csrows[i];
725 u32 nr_pages = 0;
726 int j;
727
728 for (j = 0; j < csrow->nr_channels; j++)
729 nr_pages += csrow->channels[j]->dimm->nr_pages;
730 if (!nr_pages)
731 continue;
732 edac_mc_dump_csrow(csrow);
733 for (j = 0; j < csrow->nr_channels; j++)
734 if (csrow->channels[j]->dimm->nr_pages)
735 edac_mc_dump_channel(csrow->channels[j]);
736 }
737 for (i = 0; i < mci->tot_dimms; i++)
738 if (mci->dimms[i]->nr_pages)
739 edac_mc_dump_dimm(mci->dimms[i], i);
740 }
741 #endif
742 mutex_lock(&mem_ctls_mutex);
743
744 if (add_mc_to_global_list(mci))
745 goto fail0;
746
747 /* set load time so that error rate can be tracked */
748 mci->start_time = jiffies;
749
750 if (edac_create_sysfs_mci_device(mci)) {
751 edac_mc_printk(mci, KERN_WARNING,
752 "failed to create sysfs device\n");
753 goto fail1;
754 }
755
756 /* If there IS a check routine, then we are running POLLED */
757 if (mci->edac_check != NULL) {
758 /* This instance is NOW RUNNING */
759 mci->op_state = OP_RUNNING_POLL;
760
761 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
762 } else {
763 mci->op_state = OP_RUNNING_INTERRUPT;
764 }
765
766 /* Report action taken */
767 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
768 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
769
770 mutex_unlock(&mem_ctls_mutex);
771 return 0;
772
773 fail1:
774 del_mc_from_global_list(mci);
775
776 fail0:
777 mutex_unlock(&mem_ctls_mutex);
778 return 1;
779 }
780 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
781
782 /**
783 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
784 * remove mci structure from global list
785 * @pdev: Pointer to 'struct device' representing mci structure to remove.
786 *
787 * Return pointer to removed mci structure, or NULL if device not found.
788 */
789 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
790 {
791 struct mem_ctl_info *mci;
792
793 edac_dbg(0, "\n");
794
795 mutex_lock(&mem_ctls_mutex);
796
797 /* find the requested mci struct in the global list */
798 mci = find_mci_by_dev(dev);
799 if (mci == NULL) {
800 mutex_unlock(&mem_ctls_mutex);
801 return NULL;
802 }
803
804 del_mc_from_global_list(mci);
805 mutex_unlock(&mem_ctls_mutex);
806
807 /* flush workq processes */
808 edac_mc_workq_teardown(mci);
809
810 /* marking MCI offline */
811 mci->op_state = OP_OFFLINE;
812
813 /* remove from sysfs */
814 edac_remove_sysfs_mci_device(mci);
815
816 edac_printk(KERN_INFO, EDAC_MC,
817 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
818 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
819
820 return mci;
821 }
822 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
823
824 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
825 u32 size)
826 {
827 struct page *pg;
828 void *virt_addr;
829 unsigned long flags = 0;
830
831 edac_dbg(3, "\n");
832
833 /* ECC error page was not in our memory. Ignore it. */
834 if (!pfn_valid(page))
835 return;
836
837 /* Find the actual page structure then map it and fix */
838 pg = pfn_to_page(page);
839
840 if (PageHighMem(pg))
841 local_irq_save(flags);
842
843 virt_addr = kmap_atomic(pg);
844
845 /* Perform architecture specific atomic scrub operation */
846 atomic_scrub(virt_addr + offset, size);
847
848 /* Unmap and complete */
849 kunmap_atomic(virt_addr);
850
851 if (PageHighMem(pg))
852 local_irq_restore(flags);
853 }
854
855 /* FIXME - should return -1 */
856 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
857 {
858 struct csrow_info **csrows = mci->csrows;
859 int row, i, j, n;
860
861 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
862 row = -1;
863
864 for (i = 0; i < mci->nr_csrows; i++) {
865 struct csrow_info *csrow = csrows[i];
866 n = 0;
867 for (j = 0; j < csrow->nr_channels; j++) {
868 struct dimm_info *dimm = csrow->channels[j]->dimm;
869 n += dimm->nr_pages;
870 }
871 if (n == 0)
872 continue;
873
874 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
875 mci->mc_idx,
876 csrow->first_page, page, csrow->last_page,
877 csrow->page_mask);
878
879 if ((page >= csrow->first_page) &&
880 (page <= csrow->last_page) &&
881 ((page & csrow->page_mask) ==
882 (csrow->first_page & csrow->page_mask))) {
883 row = i;
884 break;
885 }
886 }
887
888 if (row == -1)
889 edac_mc_printk(mci, KERN_ERR,
890 "could not look up page error address %lx\n",
891 (unsigned long)page);
892
893 return row;
894 }
895 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
896
897 const char *edac_layer_name[] = {
898 [EDAC_MC_LAYER_BRANCH] = "branch",
899 [EDAC_MC_LAYER_CHANNEL] = "channel",
900 [EDAC_MC_LAYER_SLOT] = "slot",
901 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
902 };
903 EXPORT_SYMBOL_GPL(edac_layer_name);
904
905 static void edac_inc_ce_error(struct mem_ctl_info *mci,
906 bool enable_per_layer_report,
907 const int pos[EDAC_MAX_LAYERS],
908 const u16 count)
909 {
910 int i, index = 0;
911
912 mci->ce_mc += count;
913
914 if (!enable_per_layer_report) {
915 mci->ce_noinfo_count += count;
916 return;
917 }
918
919 for (i = 0; i < mci->n_layers; i++) {
920 if (pos[i] < 0)
921 break;
922 index += pos[i];
923 mci->ce_per_layer[i][index] += count;
924
925 if (i < mci->n_layers - 1)
926 index *= mci->layers[i + 1].size;
927 }
928 }
929
930 static void edac_inc_ue_error(struct mem_ctl_info *mci,
931 bool enable_per_layer_report,
932 const int pos[EDAC_MAX_LAYERS],
933 const u16 count)
934 {
935 int i, index = 0;
936
937 mci->ue_mc += count;
938
939 if (!enable_per_layer_report) {
940 mci->ce_noinfo_count += count;
941 return;
942 }
943
944 for (i = 0; i < mci->n_layers; i++) {
945 if (pos[i] < 0)
946 break;
947 index += pos[i];
948 mci->ue_per_layer[i][index] += count;
949
950 if (i < mci->n_layers - 1)
951 index *= mci->layers[i + 1].size;
952 }
953 }
954
955 static void edac_ce_error(struct mem_ctl_info *mci,
956 const u16 error_count,
957 const int pos[EDAC_MAX_LAYERS],
958 const char *msg,
959 const char *location,
960 const char *label,
961 const char *detail,
962 const char *other_detail,
963 const bool enable_per_layer_report,
964 const unsigned long page_frame_number,
965 const unsigned long offset_in_page,
966 long grain)
967 {
968 unsigned long remapped_page;
969
970 if (edac_mc_get_log_ce()) {
971 if (other_detail && *other_detail)
972 edac_mc_printk(mci, KERN_WARNING,
973 "%d CE %s on %s (%s %s - %s)\n",
974 error_count,
975 msg, label, location,
976 detail, other_detail);
977 else
978 edac_mc_printk(mci, KERN_WARNING,
979 "%d CE %s on %s (%s %s)\n",
980 error_count,
981 msg, label, location,
982 detail);
983 }
984 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
985
986 if (mci->scrub_mode & SCRUB_SW_SRC) {
987 /*
988 * Some memory controllers (called MCs below) can remap
989 * memory so that it is still available at a different
990 * address when PCI devices map into memory.
991 * MC's that can't do this, lose the memory where PCI
992 * devices are mapped. This mapping is MC-dependent
993 * and so we call back into the MC driver for it to
994 * map the MC page to a physical (CPU) page which can
995 * then be mapped to a virtual page - which can then
996 * be scrubbed.
997 */
998 remapped_page = mci->ctl_page_to_phys ?
999 mci->ctl_page_to_phys(mci, page_frame_number) :
1000 page_frame_number;
1001
1002 edac_mc_scrub_block(remapped_page,
1003 offset_in_page, grain);
1004 }
1005 }
1006
1007 static void edac_ue_error(struct mem_ctl_info *mci,
1008 const u16 error_count,
1009 const int pos[EDAC_MAX_LAYERS],
1010 const char *msg,
1011 const char *location,
1012 const char *label,
1013 const char *detail,
1014 const char *other_detail,
1015 const bool enable_per_layer_report)
1016 {
1017 if (edac_mc_get_log_ue()) {
1018 if (other_detail && *other_detail)
1019 edac_mc_printk(mci, KERN_WARNING,
1020 "%d UE %s on %s (%s %s - %s)\n",
1021 error_count,
1022 msg, label, location, detail,
1023 other_detail);
1024 else
1025 edac_mc_printk(mci, KERN_WARNING,
1026 "%d UE %s on %s (%s %s)\n",
1027 error_count,
1028 msg, label, location, detail);
1029 }
1030
1031 if (edac_mc_get_panic_on_ue()) {
1032 if (other_detail && *other_detail)
1033 panic("UE %s on %s (%s%s - %s)\n",
1034 msg, label, location, detail, other_detail);
1035 else
1036 panic("UE %s on %s (%s%s)\n",
1037 msg, label, location, detail);
1038 }
1039
1040 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1041 }
1042
1043 #define OTHER_LABEL " or "
1044
1045 /**
1046 * edac_mc_handle_error - reports a memory event to userspace
1047 *
1048 * @type: severity of the error (CE/UE/Fatal)
1049 * @mci: a struct mem_ctl_info pointer
1050 * @error_count: Number of errors of the same type
1051 * @page_frame_number: mem page where the error occurred
1052 * @offset_in_page: offset of the error inside the page
1053 * @syndrome: ECC syndrome
1054 * @top_layer: Memory layer[0] position
1055 * @mid_layer: Memory layer[1] position
1056 * @low_layer: Memory layer[2] position
1057 * @msg: Message meaningful to the end users that
1058 * explains the event
1059 * @other_detail: Technical details about the event that
1060 * may help hardware manufacturers and
1061 * EDAC developers to analyse the event
1062 */
1063 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1064 struct mem_ctl_info *mci,
1065 const u16 error_count,
1066 const unsigned long page_frame_number,
1067 const unsigned long offset_in_page,
1068 const unsigned long syndrome,
1069 const int top_layer,
1070 const int mid_layer,
1071 const int low_layer,
1072 const char *msg,
1073 const char *other_detail)
1074 {
1075 /* FIXME: too much for stack: move it to some pre-alocated area */
1076 char detail[80], location[80];
1077 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms];
1078 char *p;
1079 int row = -1, chan = -1;
1080 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1081 int i;
1082 long grain;
1083 bool enable_per_layer_report = false;
1084 u8 grain_bits;
1085
1086 edac_dbg(3, "MC%d\n", mci->mc_idx);
1087
1088 /*
1089 * Check if the event report is consistent and if the memory
1090 * location is known. If it is known, enable_per_layer_report will be
1091 * true, the DIMM(s) label info will be filled and the per-layer
1092 * error counters will be incremented.
1093 */
1094 for (i = 0; i < mci->n_layers; i++) {
1095 if (pos[i] >= (int)mci->layers[i].size) {
1096 if (type == HW_EVENT_ERR_CORRECTED)
1097 p = "CE";
1098 else
1099 p = "UE";
1100
1101 edac_mc_printk(mci, KERN_ERR,
1102 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1103 edac_layer_name[mci->layers[i].type],
1104 pos[i], mci->layers[i].size);
1105 /*
1106 * Instead of just returning it, let's use what's
1107 * known about the error. The increment routines and
1108 * the DIMM filter logic will do the right thing by
1109 * pointing the likely damaged DIMMs.
1110 */
1111 pos[i] = -1;
1112 }
1113 if (pos[i] >= 0)
1114 enable_per_layer_report = true;
1115 }
1116
1117 /*
1118 * Get the dimm label/grain that applies to the match criteria.
1119 * As the error algorithm may not be able to point to just one memory
1120 * stick, the logic here will get all possible labels that could
1121 * pottentially be affected by the error.
1122 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1123 * to have only the MC channel and the MC dimm (also called "branch")
1124 * but the channel is not known, as the memory is arranged in pairs,
1125 * where each memory belongs to a separate channel within the same
1126 * branch.
1127 */
1128 grain = 0;
1129 p = label;
1130 *p = '\0';
1131 for (i = 0; i < mci->tot_dimms; i++) {
1132 struct dimm_info *dimm = mci->dimms[i];
1133
1134 if (top_layer >= 0 && top_layer != dimm->location[0])
1135 continue;
1136 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1137 continue;
1138 if (low_layer >= 0 && low_layer != dimm->location[2])
1139 continue;
1140
1141 /* get the max grain, over the error match range */
1142 if (dimm->grain > grain)
1143 grain = dimm->grain;
1144
1145 /*
1146 * If the error is memory-controller wide, there's no need to
1147 * seek for the affected DIMMs because the whole
1148 * channel/memory controller/... may be affected.
1149 * Also, don't show errors for empty DIMM slots.
1150 */
1151 if (enable_per_layer_report && dimm->nr_pages) {
1152 if (p != label) {
1153 strcpy(p, OTHER_LABEL);
1154 p += strlen(OTHER_LABEL);
1155 }
1156 strcpy(p, dimm->label);
1157 p += strlen(p);
1158 *p = '\0';
1159
1160 /*
1161 * get csrow/channel of the DIMM, in order to allow
1162 * incrementing the compat API counters
1163 */
1164 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1165 mci->mem_is_per_rank ? "rank" : "dimm",
1166 dimm->csrow, dimm->cschannel);
1167 if (row == -1)
1168 row = dimm->csrow;
1169 else if (row >= 0 && row != dimm->csrow)
1170 row = -2;
1171
1172 if (chan == -1)
1173 chan = dimm->cschannel;
1174 else if (chan >= 0 && chan != dimm->cschannel)
1175 chan = -2;
1176 }
1177 }
1178
1179 if (!enable_per_layer_report) {
1180 strcpy(label, "any memory");
1181 } else {
1182 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1183 if (p == label)
1184 strcpy(label, "unknown memory");
1185 if (type == HW_EVENT_ERR_CORRECTED) {
1186 if (row >= 0) {
1187 mci->csrows[row]->ce_count += error_count;
1188 if (chan >= 0)
1189 mci->csrows[row]->channels[chan]->ce_count += error_count;
1190 }
1191 } else
1192 if (row >= 0)
1193 mci->csrows[row]->ue_count += error_count;
1194 }
1195
1196 /* Fill the RAM location data */
1197 p = location;
1198 for (i = 0; i < mci->n_layers; i++) {
1199 if (pos[i] < 0)
1200 continue;
1201
1202 p += sprintf(p, "%s:%d ",
1203 edac_layer_name[mci->layers[i].type],
1204 pos[i]);
1205 }
1206 if (p > location)
1207 *(p - 1) = '\0';
1208
1209 /* Report the error via the trace interface */
1210
1211 grain_bits = fls_long(grain) + 1;
1212 trace_mc_event(type, msg, label, error_count,
1213 mci->mc_idx, top_layer, mid_layer, low_layer,
1214 PAGES_TO_MiB(page_frame_number) | offset_in_page,
1215 grain_bits, syndrome, other_detail);
1216
1217 /* Memory type dependent details about the error */
1218 if (type == HW_EVENT_ERR_CORRECTED) {
1219 snprintf(detail, sizeof(detail),
1220 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1221 page_frame_number, offset_in_page,
1222 grain, syndrome);
1223 edac_ce_error(mci, error_count, pos, msg, location, label,
1224 detail, other_detail, enable_per_layer_report,
1225 page_frame_number, offset_in_page, grain);
1226 } else {
1227 snprintf(detail, sizeof(detail),
1228 "page:0x%lx offset:0x%lx grain:%ld",
1229 page_frame_number, offset_in_page, grain);
1230
1231 edac_ue_error(mci, error_count, pos, msg, location, label,
1232 detail, other_detail, enable_per_layer_report);
1233 }
1234 }
1235 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
This page took 0.055838 seconds and 6 git commands to generate.