Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / drivers / edac / edac_mc.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <asm/uaccess.h>
31 #include <asm/page.h>
32 #include <asm/edac.h>
33 #include "edac_core.h"
34 #include "edac_module.h"
35
36 /* lock to memory controller's control array */
37 static DEFINE_MUTEX(mem_ctls_mutex);
38 static LIST_HEAD(mc_devices);
39
40 #ifdef CONFIG_EDAC_DEBUG
41
42 static void edac_mc_dump_channel(struct rank_info *chan)
43 {
44 debugf4("\tchannel = %p\n", chan);
45 debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
46 debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
47 debugf4("\tchannel->dimm = %p\n", chan->dimm);
48 }
49
50 static void edac_mc_dump_dimm(struct dimm_info *dimm)
51 {
52 int i;
53
54 debugf4("\tdimm = %p\n", dimm);
55 debugf4("\tdimm->label = '%s'\n", dimm->label);
56 debugf4("\tdimm->nr_pages = 0x%x\n", dimm->nr_pages);
57 debugf4("\tdimm location ");
58 for (i = 0; i < dimm->mci->n_layers; i++) {
59 printk(KERN_CONT "%d", dimm->location[i]);
60 if (i < dimm->mci->n_layers - 1)
61 printk(KERN_CONT ".");
62 }
63 printk(KERN_CONT "\n");
64 debugf4("\tdimm->grain = %d\n", dimm->grain);
65 debugf4("\tdimm->nr_pages = 0x%x\n", dimm->nr_pages);
66 }
67
68 static void edac_mc_dump_csrow(struct csrow_info *csrow)
69 {
70 debugf4("\tcsrow = %p\n", csrow);
71 debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
72 debugf4("\tcsrow->first_page = 0x%lx\n", csrow->first_page);
73 debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
74 debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
75 debugf4("\tcsrow->nr_channels = %d\n", csrow->nr_channels);
76 debugf4("\tcsrow->channels = %p\n", csrow->channels);
77 debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
78 }
79
80 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
81 {
82 debugf3("\tmci = %p\n", mci);
83 debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
84 debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
85 debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
86 debugf4("\tmci->edac_check = %p\n", mci->edac_check);
87 debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
88 mci->nr_csrows, mci->csrows);
89 debugf3("\tmci->nr_dimms = %d, dimms = %p\n",
90 mci->tot_dimms, mci->dimms);
91 debugf3("\tdev = %p\n", mci->dev);
92 debugf3("\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name);
93 debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
94 }
95
96 #endif /* CONFIG_EDAC_DEBUG */
97
98 /*
99 * keep those in sync with the enum mem_type
100 */
101 const char *edac_mem_types[] = {
102 "Empty csrow",
103 "Reserved csrow type",
104 "Unknown csrow type",
105 "Fast page mode RAM",
106 "Extended data out RAM",
107 "Burst Extended data out RAM",
108 "Single data rate SDRAM",
109 "Registered single data rate SDRAM",
110 "Double data rate SDRAM",
111 "Registered Double data rate SDRAM",
112 "Rambus DRAM",
113 "Unbuffered DDR2 RAM",
114 "Fully buffered DDR2",
115 "Registered DDR2 RAM",
116 "Rambus XDR",
117 "Unbuffered DDR3 RAM",
118 "Registered DDR3 RAM",
119 };
120 EXPORT_SYMBOL_GPL(edac_mem_types);
121
122 /**
123 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
124 * @p: pointer to a pointer with the memory offset to be used. At
125 * return, this will be incremented to point to the next offset
126 * @size: Size of the data structure to be reserved
127 * @n_elems: Number of elements that should be reserved
128 *
129 * If 'size' is a constant, the compiler will optimize this whole function
130 * down to either a no-op or the addition of a constant to the value of '*p'.
131 *
132 * The 'p' pointer is absolutely needed to keep the proper advancing
133 * further in memory to the proper offsets when allocating the struct along
134 * with its embedded structs, as edac_device_alloc_ctl_info() does it
135 * above, for example.
136 *
137 * At return, the pointer 'p' will be incremented to be used on a next call
138 * to this function.
139 */
140 void *edac_align_ptr(void **p, unsigned size, int n_elems)
141 {
142 unsigned align, r;
143 void *ptr = *p;
144
145 *p += size * n_elems;
146
147 /*
148 * 'p' can possibly be an unaligned item X such that sizeof(X) is
149 * 'size'. Adjust 'p' so that its alignment is at least as
150 * stringent as what the compiler would provide for X and return
151 * the aligned result.
152 * Here we assume that the alignment of a "long long" is the most
153 * stringent alignment that the compiler will ever provide by default.
154 * As far as I know, this is a reasonable assumption.
155 */
156 if (size > sizeof(long))
157 align = sizeof(long long);
158 else if (size > sizeof(int))
159 align = sizeof(long);
160 else if (size > sizeof(short))
161 align = sizeof(int);
162 else if (size > sizeof(char))
163 align = sizeof(short);
164 else
165 return (char *)ptr;
166
167 r = (unsigned long)p % align;
168
169 if (r == 0)
170 return (char *)ptr;
171
172 *p += align - r;
173
174 return (void *)(((unsigned long)ptr) + align - r);
175 }
176
177 /**
178 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
179 * @mc_num: Memory controller number
180 * @n_layers: Number of MC hierarchy layers
181 * layers: Describes each layer as seen by the Memory Controller
182 * @size_pvt: size of private storage needed
183 *
184 *
185 * Everything is kmalloc'ed as one big chunk - more efficient.
186 * Only can be used if all structures have the same lifetime - otherwise
187 * you have to allocate and initialize your own structures.
188 *
189 * Use edac_mc_free() to free mc structures allocated by this function.
190 *
191 * NOTE: drivers handle multi-rank memories in different ways: in some
192 * drivers, one multi-rank memory stick is mapped as one entry, while, in
193 * others, a single multi-rank memory stick would be mapped into several
194 * entries. Currently, this function will allocate multiple struct dimm_info
195 * on such scenarios, as grouping the multiple ranks require drivers change.
196 *
197 * Returns:
198 * On failure: NULL
199 * On success: struct mem_ctl_info pointer
200 */
201 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
202 unsigned n_layers,
203 struct edac_mc_layer *layers,
204 unsigned sz_pvt)
205 {
206 struct mem_ctl_info *mci;
207 struct edac_mc_layer *layer;
208 struct csrow_info *csi, *csr;
209 struct rank_info *chi, *chp, *chan;
210 struct dimm_info *dimm;
211 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
212 unsigned pos[EDAC_MAX_LAYERS];
213 unsigned size, tot_dimms = 1, count = 1;
214 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
215 void *pvt, *p, *ptr = NULL;
216 int i, j, err, row, chn, n, len;
217 bool per_rank = false;
218
219 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
220 /*
221 * Calculate the total amount of dimms and csrows/cschannels while
222 * in the old API emulation mode
223 */
224 for (i = 0; i < n_layers; i++) {
225 tot_dimms *= layers[i].size;
226 if (layers[i].is_virt_csrow)
227 tot_csrows *= layers[i].size;
228 else
229 tot_channels *= layers[i].size;
230
231 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
232 per_rank = true;
233 }
234
235 /* Figure out the offsets of the various items from the start of an mc
236 * structure. We want the alignment of each item to be at least as
237 * stringent as what the compiler would provide if we could simply
238 * hardcode everything into a single struct.
239 */
240 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
241 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
242 csi = edac_align_ptr(&ptr, sizeof(*csi), tot_csrows);
243 chi = edac_align_ptr(&ptr, sizeof(*chi), tot_csrows * tot_channels);
244 dimm = edac_align_ptr(&ptr, sizeof(*dimm), tot_dimms);
245 for (i = 0; i < n_layers; i++) {
246 count *= layers[i].size;
247 debugf4("%s: errcount layer %d size %d\n", __func__, i, count);
248 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
249 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
250 tot_errcount += 2 * count;
251 }
252
253 debugf4("%s: allocating %d error counters\n", __func__, tot_errcount);
254 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
255 size = ((unsigned long)pvt) + sz_pvt;
256
257 debugf1("%s(): allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
258 __func__, size,
259 tot_dimms,
260 per_rank ? "ranks" : "dimms",
261 tot_csrows * tot_channels);
262 mci = kzalloc(size, GFP_KERNEL);
263 if (mci == NULL)
264 return NULL;
265
266 /* Adjust pointers so they point within the memory we just allocated
267 * rather than an imaginary chunk of memory located at address 0.
268 */
269 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
270 csi = (struct csrow_info *)(((char *)mci) + ((unsigned long)csi));
271 chi = (struct rank_info *)(((char *)mci) + ((unsigned long)chi));
272 dimm = (struct dimm_info *)(((char *)mci) + ((unsigned long)dimm));
273 for (i = 0; i < n_layers; i++) {
274 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
275 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
276 }
277 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
278
279 /* setup index and various internal pointers */
280 mci->mc_idx = mc_num;
281 mci->csrows = csi;
282 mci->dimms = dimm;
283 mci->tot_dimms = tot_dimms;
284 mci->pvt_info = pvt;
285 mci->n_layers = n_layers;
286 mci->layers = layer;
287 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
288 mci->nr_csrows = tot_csrows;
289 mci->num_cschannel = tot_channels;
290 mci->mem_is_per_rank = per_rank;
291
292 /*
293 * Fill the csrow struct
294 */
295 for (row = 0; row < tot_csrows; row++) {
296 csr = &csi[row];
297 csr->csrow_idx = row;
298 csr->mci = mci;
299 csr->nr_channels = tot_channels;
300 chp = &chi[row * tot_channels];
301 csr->channels = chp;
302
303 for (chn = 0; chn < tot_channels; chn++) {
304 chan = &chp[chn];
305 chan->chan_idx = chn;
306 chan->csrow = csr;
307 }
308 }
309
310 /*
311 * Fill the dimm struct
312 */
313 memset(&pos, 0, sizeof(pos));
314 row = 0;
315 chn = 0;
316 debugf4("%s: initializing %d %s\n", __func__, tot_dimms,
317 per_rank ? "ranks" : "dimms");
318 for (i = 0; i < tot_dimms; i++) {
319 chan = &csi[row].channels[chn];
320 dimm = EDAC_DIMM_PTR(layer, mci->dimms, n_layers,
321 pos[0], pos[1], pos[2]);
322 dimm->mci = mci;
323
324 debugf2("%s: %d: %s%zd (%d:%d:%d): row %d, chan %d\n", __func__,
325 i, per_rank ? "rank" : "dimm", (dimm - mci->dimms),
326 pos[0], pos[1], pos[2], row, chn);
327
328 /*
329 * Copy DIMM location and initialize it.
330 */
331 len = sizeof(dimm->label);
332 p = dimm->label;
333 n = snprintf(p, len, "mc#%u", mc_num);
334 p += n;
335 len -= n;
336 for (j = 0; j < n_layers; j++) {
337 n = snprintf(p, len, "%s#%u",
338 edac_layer_name[layers[j].type],
339 pos[j]);
340 p += n;
341 len -= n;
342 dimm->location[j] = pos[j];
343
344 if (len <= 0)
345 break;
346 }
347
348 /* Link it to the csrows old API data */
349 chan->dimm = dimm;
350 dimm->csrow = row;
351 dimm->cschannel = chn;
352
353 /* Increment csrow location */
354 row++;
355 if (row == tot_csrows) {
356 row = 0;
357 chn++;
358 }
359
360 /* Increment dimm location */
361 for (j = n_layers - 1; j >= 0; j--) {
362 pos[j]++;
363 if (pos[j] < layers[j].size)
364 break;
365 pos[j] = 0;
366 }
367 }
368
369 mci->op_state = OP_ALLOC;
370 INIT_LIST_HEAD(&mci->grp_kobj_list);
371
372 /*
373 * Initialize the 'root' kobj for the edac_mc controller
374 */
375 err = edac_mc_register_sysfs_main_kobj(mci);
376 if (err) {
377 kfree(mci);
378 return NULL;
379 }
380
381 /* at this point, the root kobj is valid, and in order to
382 * 'free' the object, then the function:
383 * edac_mc_unregister_sysfs_main_kobj() must be called
384 * which will perform kobj unregistration and the actual free
385 * will occur during the kobject callback operation
386 */
387 return mci;
388 }
389 EXPORT_SYMBOL_GPL(edac_mc_alloc);
390
391 /**
392 * edac_mc_free
393 * 'Free' a previously allocated 'mci' structure
394 * @mci: pointer to a struct mem_ctl_info structure
395 */
396 void edac_mc_free(struct mem_ctl_info *mci)
397 {
398 debugf1("%s()\n", __func__);
399
400 edac_mc_unregister_sysfs_main_kobj(mci);
401
402 /* free the mci instance memory here */
403 kfree(mci);
404 }
405 EXPORT_SYMBOL_GPL(edac_mc_free);
406
407
408 /**
409 * find_mci_by_dev
410 *
411 * scan list of controllers looking for the one that manages
412 * the 'dev' device
413 * @dev: pointer to a struct device related with the MCI
414 */
415 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
416 {
417 struct mem_ctl_info *mci;
418 struct list_head *item;
419
420 debugf3("%s()\n", __func__);
421
422 list_for_each(item, &mc_devices) {
423 mci = list_entry(item, struct mem_ctl_info, link);
424
425 if (mci->dev == dev)
426 return mci;
427 }
428
429 return NULL;
430 }
431 EXPORT_SYMBOL_GPL(find_mci_by_dev);
432
433 /*
434 * handler for EDAC to check if NMI type handler has asserted interrupt
435 */
436 static int edac_mc_assert_error_check_and_clear(void)
437 {
438 int old_state;
439
440 if (edac_op_state == EDAC_OPSTATE_POLL)
441 return 1;
442
443 old_state = edac_err_assert;
444 edac_err_assert = 0;
445
446 return old_state;
447 }
448
449 /*
450 * edac_mc_workq_function
451 * performs the operation scheduled by a workq request
452 */
453 static void edac_mc_workq_function(struct work_struct *work_req)
454 {
455 struct delayed_work *d_work = to_delayed_work(work_req);
456 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
457
458 mutex_lock(&mem_ctls_mutex);
459
460 /* if this control struct has movd to offline state, we are done */
461 if (mci->op_state == OP_OFFLINE) {
462 mutex_unlock(&mem_ctls_mutex);
463 return;
464 }
465
466 /* Only poll controllers that are running polled and have a check */
467 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
468 mci->edac_check(mci);
469
470 mutex_unlock(&mem_ctls_mutex);
471
472 /* Reschedule */
473 queue_delayed_work(edac_workqueue, &mci->work,
474 msecs_to_jiffies(edac_mc_get_poll_msec()));
475 }
476
477 /*
478 * edac_mc_workq_setup
479 * initialize a workq item for this mci
480 * passing in the new delay period in msec
481 *
482 * locking model:
483 *
484 * called with the mem_ctls_mutex held
485 */
486 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
487 {
488 debugf0("%s()\n", __func__);
489
490 /* if this instance is not in the POLL state, then simply return */
491 if (mci->op_state != OP_RUNNING_POLL)
492 return;
493
494 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
495 queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
496 }
497
498 /*
499 * edac_mc_workq_teardown
500 * stop the workq processing on this mci
501 *
502 * locking model:
503 *
504 * called WITHOUT lock held
505 */
506 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
507 {
508 int status;
509
510 if (mci->op_state != OP_RUNNING_POLL)
511 return;
512
513 status = cancel_delayed_work(&mci->work);
514 if (status == 0) {
515 debugf0("%s() not canceled, flush the queue\n",
516 __func__);
517
518 /* workq instance might be running, wait for it */
519 flush_workqueue(edac_workqueue);
520 }
521 }
522
523 /*
524 * edac_mc_reset_delay_period(unsigned long value)
525 *
526 * user space has updated our poll period value, need to
527 * reset our workq delays
528 */
529 void edac_mc_reset_delay_period(int value)
530 {
531 struct mem_ctl_info *mci;
532 struct list_head *item;
533
534 mutex_lock(&mem_ctls_mutex);
535
536 /* scan the list and turn off all workq timers, doing so under lock
537 */
538 list_for_each(item, &mc_devices) {
539 mci = list_entry(item, struct mem_ctl_info, link);
540
541 if (mci->op_state == OP_RUNNING_POLL)
542 cancel_delayed_work(&mci->work);
543 }
544
545 mutex_unlock(&mem_ctls_mutex);
546
547
548 /* re-walk the list, and reset the poll delay */
549 mutex_lock(&mem_ctls_mutex);
550
551 list_for_each(item, &mc_devices) {
552 mci = list_entry(item, struct mem_ctl_info, link);
553
554 edac_mc_workq_setup(mci, (unsigned long) value);
555 }
556
557 mutex_unlock(&mem_ctls_mutex);
558 }
559
560
561
562 /* Return 0 on success, 1 on failure.
563 * Before calling this function, caller must
564 * assign a unique value to mci->mc_idx.
565 *
566 * locking model:
567 *
568 * called with the mem_ctls_mutex lock held
569 */
570 static int add_mc_to_global_list(struct mem_ctl_info *mci)
571 {
572 struct list_head *item, *insert_before;
573 struct mem_ctl_info *p;
574
575 insert_before = &mc_devices;
576
577 p = find_mci_by_dev(mci->dev);
578 if (unlikely(p != NULL))
579 goto fail0;
580
581 list_for_each(item, &mc_devices) {
582 p = list_entry(item, struct mem_ctl_info, link);
583
584 if (p->mc_idx >= mci->mc_idx) {
585 if (unlikely(p->mc_idx == mci->mc_idx))
586 goto fail1;
587
588 insert_before = item;
589 break;
590 }
591 }
592
593 list_add_tail_rcu(&mci->link, insert_before);
594 atomic_inc(&edac_handlers);
595 return 0;
596
597 fail0:
598 edac_printk(KERN_WARNING, EDAC_MC,
599 "%s (%s) %s %s already assigned %d\n", dev_name(p->dev),
600 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
601 return 1;
602
603 fail1:
604 edac_printk(KERN_WARNING, EDAC_MC,
605 "bug in low-level driver: attempt to assign\n"
606 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
607 return 1;
608 }
609
610 static void del_mc_from_global_list(struct mem_ctl_info *mci)
611 {
612 atomic_dec(&edac_handlers);
613 list_del_rcu(&mci->link);
614
615 /* these are for safe removal of devices from global list while
616 * NMI handlers may be traversing list
617 */
618 synchronize_rcu();
619 INIT_LIST_HEAD(&mci->link);
620 }
621
622 /**
623 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
624 *
625 * If found, return a pointer to the structure.
626 * Else return NULL.
627 *
628 * Caller must hold mem_ctls_mutex.
629 */
630 struct mem_ctl_info *edac_mc_find(int idx)
631 {
632 struct list_head *item;
633 struct mem_ctl_info *mci;
634
635 list_for_each(item, &mc_devices) {
636 mci = list_entry(item, struct mem_ctl_info, link);
637
638 if (mci->mc_idx >= idx) {
639 if (mci->mc_idx == idx)
640 return mci;
641
642 break;
643 }
644 }
645
646 return NULL;
647 }
648 EXPORT_SYMBOL(edac_mc_find);
649
650 /**
651 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
652 * create sysfs entries associated with mci structure
653 * @mci: pointer to the mci structure to be added to the list
654 *
655 * Return:
656 * 0 Success
657 * !0 Failure
658 */
659
660 /* FIXME - should a warning be printed if no error detection? correction? */
661 int edac_mc_add_mc(struct mem_ctl_info *mci)
662 {
663 debugf0("%s()\n", __func__);
664
665 #ifdef CONFIG_EDAC_DEBUG
666 if (edac_debug_level >= 3)
667 edac_mc_dump_mci(mci);
668
669 if (edac_debug_level >= 4) {
670 int i;
671
672 for (i = 0; i < mci->nr_csrows; i++) {
673 int j;
674
675 edac_mc_dump_csrow(&mci->csrows[i]);
676 for (j = 0; j < mci->csrows[i].nr_channels; j++)
677 edac_mc_dump_channel(&mci->csrows[i].
678 channels[j]);
679 }
680 for (i = 0; i < mci->tot_dimms; i++)
681 edac_mc_dump_dimm(&mci->dimms[i]);
682 }
683 #endif
684 mutex_lock(&mem_ctls_mutex);
685
686 if (add_mc_to_global_list(mci))
687 goto fail0;
688
689 /* set load time so that error rate can be tracked */
690 mci->start_time = jiffies;
691
692 if (edac_create_sysfs_mci_device(mci)) {
693 edac_mc_printk(mci, KERN_WARNING,
694 "failed to create sysfs device\n");
695 goto fail1;
696 }
697
698 /* If there IS a check routine, then we are running POLLED */
699 if (mci->edac_check != NULL) {
700 /* This instance is NOW RUNNING */
701 mci->op_state = OP_RUNNING_POLL;
702
703 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
704 } else {
705 mci->op_state = OP_RUNNING_INTERRUPT;
706 }
707
708 /* Report action taken */
709 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
710 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
711
712 mutex_unlock(&mem_ctls_mutex);
713 return 0;
714
715 fail1:
716 del_mc_from_global_list(mci);
717
718 fail0:
719 mutex_unlock(&mem_ctls_mutex);
720 return 1;
721 }
722 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
723
724 /**
725 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
726 * remove mci structure from global list
727 * @pdev: Pointer to 'struct device' representing mci structure to remove.
728 *
729 * Return pointer to removed mci structure, or NULL if device not found.
730 */
731 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
732 {
733 struct mem_ctl_info *mci;
734
735 debugf0("%s()\n", __func__);
736
737 mutex_lock(&mem_ctls_mutex);
738
739 /* find the requested mci struct in the global list */
740 mci = find_mci_by_dev(dev);
741 if (mci == NULL) {
742 mutex_unlock(&mem_ctls_mutex);
743 return NULL;
744 }
745
746 del_mc_from_global_list(mci);
747 mutex_unlock(&mem_ctls_mutex);
748
749 /* flush workq processes */
750 edac_mc_workq_teardown(mci);
751
752 /* marking MCI offline */
753 mci->op_state = OP_OFFLINE;
754
755 /* remove from sysfs */
756 edac_remove_sysfs_mci_device(mci);
757
758 edac_printk(KERN_INFO, EDAC_MC,
759 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
760 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
761
762 return mci;
763 }
764 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
765
766 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
767 u32 size)
768 {
769 struct page *pg;
770 void *virt_addr;
771 unsigned long flags = 0;
772
773 debugf3("%s()\n", __func__);
774
775 /* ECC error page was not in our memory. Ignore it. */
776 if (!pfn_valid(page))
777 return;
778
779 /* Find the actual page structure then map it and fix */
780 pg = pfn_to_page(page);
781
782 if (PageHighMem(pg))
783 local_irq_save(flags);
784
785 virt_addr = kmap_atomic(pg);
786
787 /* Perform architecture specific atomic scrub operation */
788 atomic_scrub(virt_addr + offset, size);
789
790 /* Unmap and complete */
791 kunmap_atomic(virt_addr);
792
793 if (PageHighMem(pg))
794 local_irq_restore(flags);
795 }
796
797 /* FIXME - should return -1 */
798 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
799 {
800 struct csrow_info *csrows = mci->csrows;
801 int row, i, j, n;
802
803 debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
804 row = -1;
805
806 for (i = 0; i < mci->nr_csrows; i++) {
807 struct csrow_info *csrow = &csrows[i];
808 n = 0;
809 for (j = 0; j < csrow->nr_channels; j++) {
810 struct dimm_info *dimm = csrow->channels[j].dimm;
811 n += dimm->nr_pages;
812 }
813 if (n == 0)
814 continue;
815
816 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
817 "mask(0x%lx)\n", mci->mc_idx, __func__,
818 csrow->first_page, page, csrow->last_page,
819 csrow->page_mask);
820
821 if ((page >= csrow->first_page) &&
822 (page <= csrow->last_page) &&
823 ((page & csrow->page_mask) ==
824 (csrow->first_page & csrow->page_mask))) {
825 row = i;
826 break;
827 }
828 }
829
830 if (row == -1)
831 edac_mc_printk(mci, KERN_ERR,
832 "could not look up page error address %lx\n",
833 (unsigned long)page);
834
835 return row;
836 }
837 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
838
839 const char *edac_layer_name[] = {
840 [EDAC_MC_LAYER_BRANCH] = "branch",
841 [EDAC_MC_LAYER_CHANNEL] = "channel",
842 [EDAC_MC_LAYER_SLOT] = "slot",
843 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
844 };
845 EXPORT_SYMBOL_GPL(edac_layer_name);
846
847 static void edac_inc_ce_error(struct mem_ctl_info *mci,
848 bool enable_per_layer_report,
849 const int pos[EDAC_MAX_LAYERS])
850 {
851 int i, index = 0;
852
853 mci->ce_mc++;
854
855 if (!enable_per_layer_report) {
856 mci->ce_noinfo_count++;
857 return;
858 }
859
860 for (i = 0; i < mci->n_layers; i++) {
861 if (pos[i] < 0)
862 break;
863 index += pos[i];
864 mci->ce_per_layer[i][index]++;
865
866 if (i < mci->n_layers - 1)
867 index *= mci->layers[i + 1].size;
868 }
869 }
870
871 static void edac_inc_ue_error(struct mem_ctl_info *mci,
872 bool enable_per_layer_report,
873 const int pos[EDAC_MAX_LAYERS])
874 {
875 int i, index = 0;
876
877 mci->ue_mc++;
878
879 if (!enable_per_layer_report) {
880 mci->ce_noinfo_count++;
881 return;
882 }
883
884 for (i = 0; i < mci->n_layers; i++) {
885 if (pos[i] < 0)
886 break;
887 index += pos[i];
888 mci->ue_per_layer[i][index]++;
889
890 if (i < mci->n_layers - 1)
891 index *= mci->layers[i + 1].size;
892 }
893 }
894
895 static void edac_ce_error(struct mem_ctl_info *mci,
896 const int pos[EDAC_MAX_LAYERS],
897 const char *msg,
898 const char *location,
899 const char *label,
900 const char *detail,
901 const char *other_detail,
902 const bool enable_per_layer_report,
903 const unsigned long page_frame_number,
904 const unsigned long offset_in_page,
905 u32 grain)
906 {
907 unsigned long remapped_page;
908
909 if (edac_mc_get_log_ce()) {
910 if (other_detail && *other_detail)
911 edac_mc_printk(mci, KERN_WARNING,
912 "CE %s on %s (%s%s - %s)\n",
913 msg, label, location,
914 detail, other_detail);
915 else
916 edac_mc_printk(mci, KERN_WARNING,
917 "CE %s on %s (%s%s)\n",
918 msg, label, location,
919 detail);
920 }
921 edac_inc_ce_error(mci, enable_per_layer_report, pos);
922
923 if (mci->scrub_mode & SCRUB_SW_SRC) {
924 /*
925 * Some memory controllers (called MCs below) can remap
926 * memory so that it is still available at a different
927 * address when PCI devices map into memory.
928 * MC's that can't do this, lose the memory where PCI
929 * devices are mapped. This mapping is MC-dependent
930 * and so we call back into the MC driver for it to
931 * map the MC page to a physical (CPU) page which can
932 * then be mapped to a virtual page - which can then
933 * be scrubbed.
934 */
935 remapped_page = mci->ctl_page_to_phys ?
936 mci->ctl_page_to_phys(mci, page_frame_number) :
937 page_frame_number;
938
939 edac_mc_scrub_block(remapped_page,
940 offset_in_page, grain);
941 }
942 }
943
944 static void edac_ue_error(struct mem_ctl_info *mci,
945 const int pos[EDAC_MAX_LAYERS],
946 const char *msg,
947 const char *location,
948 const char *label,
949 const char *detail,
950 const char *other_detail,
951 const bool enable_per_layer_report)
952 {
953 if (edac_mc_get_log_ue()) {
954 if (other_detail && *other_detail)
955 edac_mc_printk(mci, KERN_WARNING,
956 "UE %s on %s (%s%s - %s)\n",
957 msg, label, location, detail,
958 other_detail);
959 else
960 edac_mc_printk(mci, KERN_WARNING,
961 "UE %s on %s (%s%s)\n",
962 msg, label, location, detail);
963 }
964
965 if (edac_mc_get_panic_on_ue()) {
966 if (other_detail && *other_detail)
967 panic("UE %s on %s (%s%s - %s)\n",
968 msg, label, location, detail, other_detail);
969 else
970 panic("UE %s on %s (%s%s)\n",
971 msg, label, location, detail);
972 }
973
974 edac_inc_ue_error(mci, enable_per_layer_report, pos);
975 }
976
977 #define OTHER_LABEL " or "
978 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
979 struct mem_ctl_info *mci,
980 const unsigned long page_frame_number,
981 const unsigned long offset_in_page,
982 const unsigned long syndrome,
983 const int layer0,
984 const int layer1,
985 const int layer2,
986 const char *msg,
987 const char *other_detail,
988 const void *mcelog)
989 {
990 /* FIXME: too much for stack: move it to some pre-alocated area */
991 char detail[80], location[80];
992 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms];
993 char *p;
994 int row = -1, chan = -1;
995 int pos[EDAC_MAX_LAYERS] = { layer0, layer1, layer2 };
996 int i;
997 u32 grain;
998 bool enable_per_layer_report = false;
999
1000 debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1001
1002 /*
1003 * Check if the event report is consistent and if the memory
1004 * location is known. If it is known, enable_per_layer_report will be
1005 * true, the DIMM(s) label info will be filled and the per-layer
1006 * error counters will be incremented.
1007 */
1008 for (i = 0; i < mci->n_layers; i++) {
1009 if (pos[i] >= (int)mci->layers[i].size) {
1010 if (type == HW_EVENT_ERR_CORRECTED)
1011 p = "CE";
1012 else
1013 p = "UE";
1014
1015 edac_mc_printk(mci, KERN_ERR,
1016 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1017 edac_layer_name[mci->layers[i].type],
1018 pos[i], mci->layers[i].size);
1019 /*
1020 * Instead of just returning it, let's use what's
1021 * known about the error. The increment routines and
1022 * the DIMM filter logic will do the right thing by
1023 * pointing the likely damaged DIMMs.
1024 */
1025 pos[i] = -1;
1026 }
1027 if (pos[i] >= 0)
1028 enable_per_layer_report = true;
1029 }
1030
1031 /*
1032 * Get the dimm label/grain that applies to the match criteria.
1033 * As the error algorithm may not be able to point to just one memory
1034 * stick, the logic here will get all possible labels that could
1035 * pottentially be affected by the error.
1036 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1037 * to have only the MC channel and the MC dimm (also called "branch")
1038 * but the channel is not known, as the memory is arranged in pairs,
1039 * where each memory belongs to a separate channel within the same
1040 * branch.
1041 */
1042 grain = 0;
1043 p = label;
1044 *p = '\0';
1045 for (i = 0; i < mci->tot_dimms; i++) {
1046 struct dimm_info *dimm = &mci->dimms[i];
1047
1048 if (layer0 >= 0 && layer0 != dimm->location[0])
1049 continue;
1050 if (layer1 >= 0 && layer1 != dimm->location[1])
1051 continue;
1052 if (layer2 >= 0 && layer2 != dimm->location[2])
1053 continue;
1054
1055 /* get the max grain, over the error match range */
1056 if (dimm->grain > grain)
1057 grain = dimm->grain;
1058
1059 /*
1060 * If the error is memory-controller wide, there's no need to
1061 * seek for the affected DIMMs because the whole
1062 * channel/memory controller/... may be affected.
1063 * Also, don't show errors for empty DIMM slots.
1064 */
1065 if (enable_per_layer_report && dimm->nr_pages) {
1066 if (p != label) {
1067 strcpy(p, OTHER_LABEL);
1068 p += strlen(OTHER_LABEL);
1069 }
1070 strcpy(p, dimm->label);
1071 p += strlen(p);
1072 *p = '\0';
1073
1074 /*
1075 * get csrow/channel of the DIMM, in order to allow
1076 * incrementing the compat API counters
1077 */
1078 debugf4("%s: %s csrows map: (%d,%d)\n",
1079 __func__,
1080 mci->mem_is_per_rank ? "rank" : "dimm",
1081 dimm->csrow, dimm->cschannel);
1082
1083 if (row == -1)
1084 row = dimm->csrow;
1085 else if (row >= 0 && row != dimm->csrow)
1086 row = -2;
1087
1088 if (chan == -1)
1089 chan = dimm->cschannel;
1090 else if (chan >= 0 && chan != dimm->cschannel)
1091 chan = -2;
1092 }
1093 }
1094
1095 if (!enable_per_layer_report) {
1096 strcpy(label, "any memory");
1097 } else {
1098 debugf4("%s: csrow/channel to increment: (%d,%d)\n",
1099 __func__, row, chan);
1100 if (p == label)
1101 strcpy(label, "unknown memory");
1102 if (type == HW_EVENT_ERR_CORRECTED) {
1103 if (row >= 0) {
1104 mci->csrows[row].ce_count++;
1105 if (chan >= 0)
1106 mci->csrows[row].channels[chan].ce_count++;
1107 }
1108 } else
1109 if (row >= 0)
1110 mci->csrows[row].ue_count++;
1111 }
1112
1113 /* Fill the RAM location data */
1114 p = location;
1115 for (i = 0; i < mci->n_layers; i++) {
1116 if (pos[i] < 0)
1117 continue;
1118
1119 p += sprintf(p, "%s:%d ",
1120 edac_layer_name[mci->layers[i].type],
1121 pos[i]);
1122 }
1123
1124 /* Memory type dependent details about the error */
1125 if (type == HW_EVENT_ERR_CORRECTED) {
1126 snprintf(detail, sizeof(detail),
1127 "page:0x%lx offset:0x%lx grain:%d syndrome:0x%lx",
1128 page_frame_number, offset_in_page,
1129 grain, syndrome);
1130 edac_ce_error(mci, pos, msg, location, label, detail,
1131 other_detail, enable_per_layer_report,
1132 page_frame_number, offset_in_page, grain);
1133 } else {
1134 snprintf(detail, sizeof(detail),
1135 "page:0x%lx offset:0x%lx grain:%d",
1136 page_frame_number, offset_in_page, grain);
1137
1138 edac_ue_error(mci, pos, msg, location, label, detail,
1139 other_detail, enable_per_layer_report);
1140 }
1141 }
1142 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
This page took 0.05623 seconds and 6 git commands to generate.