Merge branch '83xx' into for_paulus
[deliverable/linux.git] / drivers / edac / edac_mc.h
1 /*
2 * MC kernel module
3 * (C) 2003 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * NMI handling support added by
12 * Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
13 *
14 * $Id: edac_mc.h,v 1.4.2.10 2005/10/05 00:43:44 dsp_llnl Exp $
15 *
16 */
17
18 #ifndef _EDAC_MC_H_
19 #define _EDAC_MC_H_
20
21 #include <linux/kernel.h>
22 #include <linux/types.h>
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/smp.h>
26 #include <linux/pci.h>
27 #include <linux/time.h>
28 #include <linux/nmi.h>
29 #include <linux/rcupdate.h>
30 #include <linux/completion.h>
31 #include <linux/kobject.h>
32
33 #define EDAC_MC_LABEL_LEN 31
34 #define MC_PROC_NAME_MAX_LEN 7
35
36 #if PAGE_SHIFT < 20
37 #define PAGES_TO_MiB( pages ) ( ( pages ) >> ( 20 - PAGE_SHIFT ) )
38 #else /* PAGE_SHIFT > 20 */
39 #define PAGES_TO_MiB( pages ) ( ( pages ) << ( PAGE_SHIFT - 20 ) )
40 #endif
41
42 #define edac_printk(level, prefix, fmt, arg...) \
43 printk(level "EDAC " prefix ": " fmt, ##arg)
44
45 #define edac_mc_printk(mci, level, fmt, arg...) \
46 printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)
47
48 #define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
49 printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)
50
51 /* prefixes for edac_printk() and edac_mc_printk() */
52 #define EDAC_MC "MC"
53 #define EDAC_PCI "PCI"
54 #define EDAC_DEBUG "DEBUG"
55
56 #ifdef CONFIG_EDAC_DEBUG
57 extern int edac_debug_level;
58
59 #define edac_debug_printk(level, fmt, arg...) \
60 do { \
61 if (level <= edac_debug_level) \
62 edac_printk(KERN_DEBUG, EDAC_DEBUG, fmt, ##arg); \
63 } while(0)
64
65 #define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ )
66 #define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ )
67 #define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ )
68 #define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ )
69 #define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ )
70
71 #else /* !CONFIG_EDAC_DEBUG */
72
73 #define debugf0( ... )
74 #define debugf1( ... )
75 #define debugf2( ... )
76 #define debugf3( ... )
77 #define debugf4( ... )
78
79 #endif /* !CONFIG_EDAC_DEBUG */
80
81 #define BIT(x) (1 << (x))
82
83 #define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
84 PCI_DEVICE_ID_ ## vend ## _ ## dev
85
86 #if defined(CONFIG_X86) && defined(CONFIG_PCI)
87 #define dev_name(dev) pci_name(to_pci_dev(dev))
88 #else
89 #define dev_name(dev) to_platform_device(dev)->name
90 #endif
91
92 /* memory devices */
93 enum dev_type {
94 DEV_UNKNOWN = 0,
95 DEV_X1,
96 DEV_X2,
97 DEV_X4,
98 DEV_X8,
99 DEV_X16,
100 DEV_X32, /* Do these parts exist? */
101 DEV_X64 /* Do these parts exist? */
102 };
103
104 #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
105 #define DEV_FLAG_X1 BIT(DEV_X1)
106 #define DEV_FLAG_X2 BIT(DEV_X2)
107 #define DEV_FLAG_X4 BIT(DEV_X4)
108 #define DEV_FLAG_X8 BIT(DEV_X8)
109 #define DEV_FLAG_X16 BIT(DEV_X16)
110 #define DEV_FLAG_X32 BIT(DEV_X32)
111 #define DEV_FLAG_X64 BIT(DEV_X64)
112
113 /* memory types */
114 enum mem_type {
115 MEM_EMPTY = 0, /* Empty csrow */
116 MEM_RESERVED, /* Reserved csrow type */
117 MEM_UNKNOWN, /* Unknown csrow type */
118 MEM_FPM, /* Fast page mode */
119 MEM_EDO, /* Extended data out */
120 MEM_BEDO, /* Burst Extended data out */
121 MEM_SDR, /* Single data rate SDRAM */
122 MEM_RDR, /* Registered single data rate SDRAM */
123 MEM_DDR, /* Double data rate SDRAM */
124 MEM_RDDR, /* Registered Double data rate SDRAM */
125 MEM_RMBS /* Rambus DRAM */
126 };
127
128 #define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
129 #define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
130 #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
131 #define MEM_FLAG_FPM BIT(MEM_FPM)
132 #define MEM_FLAG_EDO BIT(MEM_EDO)
133 #define MEM_FLAG_BEDO BIT(MEM_BEDO)
134 #define MEM_FLAG_SDR BIT(MEM_SDR)
135 #define MEM_FLAG_RDR BIT(MEM_RDR)
136 #define MEM_FLAG_DDR BIT(MEM_DDR)
137 #define MEM_FLAG_RDDR BIT(MEM_RDDR)
138 #define MEM_FLAG_RMBS BIT(MEM_RMBS)
139
140 /* chipset Error Detection and Correction capabilities and mode */
141 enum edac_type {
142 EDAC_UNKNOWN = 0, /* Unknown if ECC is available */
143 EDAC_NONE, /* Doesnt support ECC */
144 EDAC_RESERVED, /* Reserved ECC type */
145 EDAC_PARITY, /* Detects parity errors */
146 EDAC_EC, /* Error Checking - no correction */
147 EDAC_SECDED, /* Single bit error correction, Double detection */
148 EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */
149 EDAC_S4ECD4ED, /* Chipkill x4 devices */
150 EDAC_S8ECD8ED, /* Chipkill x8 devices */
151 EDAC_S16ECD16ED, /* Chipkill x16 devices */
152 };
153
154 #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
155 #define EDAC_FLAG_NONE BIT(EDAC_NONE)
156 #define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
157 #define EDAC_FLAG_EC BIT(EDAC_EC)
158 #define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
159 #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
160 #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
161 #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
162 #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
163
164 /* scrubbing capabilities */
165 enum scrub_type {
166 SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */
167 SCRUB_NONE, /* No scrubber */
168 SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */
169 SCRUB_SW_SRC, /* Software scrub only errors */
170 SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */
171 SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */
172 SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */
173 SCRUB_HW_SRC, /* Hardware scrub only errors */
174 SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */
175 SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */
176 };
177
178 #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
179 #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC_CORR)
180 #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC_CORR)
181 #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
182 #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
183 #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC_CORR)
184 #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC_CORR)
185 #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
186
187 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
188
189 /*
190 * There are several things to be aware of that aren't at all obvious:
191 *
192 *
193 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
194 *
195 * These are some of the many terms that are thrown about that don't always
196 * mean what people think they mean (Inconceivable!). In the interest of
197 * creating a common ground for discussion, terms and their definitions
198 * will be established.
199 *
200 * Memory devices: The individual chip on a memory stick. These devices
201 * commonly output 4 and 8 bits each. Grouping several
202 * of these in parallel provides 64 bits which is common
203 * for a memory stick.
204 *
205 * Memory Stick: A printed circuit board that agregates multiple
206 * memory devices in parallel. This is the atomic
207 * memory component that is purchaseable by Joe consumer
208 * and loaded into a memory socket.
209 *
210 * Socket: A physical connector on the motherboard that accepts
211 * a single memory stick.
212 *
213 * Channel: Set of memory devices on a memory stick that must be
214 * grouped in parallel with one or more additional
215 * channels from other memory sticks. This parallel
216 * grouping of the output from multiple channels are
217 * necessary for the smallest granularity of memory access.
218 * Some memory controllers are capable of single channel -
219 * which means that memory sticks can be loaded
220 * individually. Other memory controllers are only
221 * capable of dual channel - which means that memory
222 * sticks must be loaded as pairs (see "socket set").
223 *
224 * Chip-select row: All of the memory devices that are selected together.
225 * for a single, minimum grain of memory access.
226 * This selects all of the parallel memory devices across
227 * all of the parallel channels. Common chip-select rows
228 * for single channel are 64 bits, for dual channel 128
229 * bits.
230 *
231 * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memmory.
232 * Motherboards commonly drive two chip-select pins to
233 * a memory stick. A single-ranked stick, will occupy
234 * only one of those rows. The other will be unused.
235 *
236 * Double-Ranked stick: A double-ranked stick has two chip-select rows which
237 * access different sets of memory devices. The two
238 * rows cannot be accessed concurrently.
239 *
240 * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick.
241 * A double-sided stick has two chip-select rows which
242 * access different sets of memory devices. The two
243 * rows cannot be accessed concurrently. "Double-sided"
244 * is irrespective of the memory devices being mounted
245 * on both sides of the memory stick.
246 *
247 * Socket set: All of the memory sticks that are required for for
248 * a single memory access or all of the memory sticks
249 * spanned by a chip-select row. A single socket set
250 * has two chip-select rows and if double-sided sticks
251 * are used these will occupy those chip-select rows.
252 *
253 * Bank: This term is avoided because it is unclear when
254 * needing to distinguish between chip-select rows and
255 * socket sets.
256 *
257 * Controller pages:
258 *
259 * Physical pages:
260 *
261 * Virtual pages:
262 *
263 *
264 * STRUCTURE ORGANIZATION AND CHOICES
265 *
266 *
267 *
268 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
269 */
270
271 struct channel_info {
272 int chan_idx; /* channel index */
273 u32 ce_count; /* Correctable Errors for this CHANNEL */
274 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
275 struct csrow_info *csrow; /* the parent */
276 };
277
278 struct csrow_info {
279 unsigned long first_page; /* first page number in dimm */
280 unsigned long last_page; /* last page number in dimm */
281 unsigned long page_mask; /* used for interleaving -
282 * 0UL for non intlv
283 */
284 u32 nr_pages; /* number of pages in csrow */
285 u32 grain; /* granularity of reported error in bytes */
286 int csrow_idx; /* the chip-select row */
287 enum dev_type dtype; /* memory device type */
288 u32 ue_count; /* Uncorrectable Errors for this csrow */
289 u32 ce_count; /* Correctable Errors for this csrow */
290 enum mem_type mtype; /* memory csrow type */
291 enum edac_type edac_mode; /* EDAC mode for this csrow */
292 struct mem_ctl_info *mci; /* the parent */
293
294 struct kobject kobj; /* sysfs kobject for this csrow */
295 struct completion kobj_complete;
296
297 /* FIXME the number of CHANNELs might need to become dynamic */
298 u32 nr_channels;
299 struct channel_info *channels;
300 };
301
302 struct mem_ctl_info {
303 struct list_head link; /* for global list of mem_ctl_info structs */
304 unsigned long mtype_cap; /* memory types supported by mc */
305 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
306 unsigned long edac_cap; /* configuration capabilities - this is
307 * closely related to edac_ctl_cap. The
308 * difference is that the controller may be
309 * capable of s4ecd4ed which would be listed
310 * in edac_ctl_cap, but if channels aren't
311 * capable of s4ecd4ed then the edac_cap would
312 * not have that capability.
313 */
314 unsigned long scrub_cap; /* chipset scrub capabilities */
315 enum scrub_type scrub_mode; /* current scrub mode */
316
317 /* pointer to edac checking routine */
318 void (*edac_check) (struct mem_ctl_info * mci);
319 /*
320 * Remaps memory pages: controller pages to physical pages.
321 * For most MC's, this will be NULL.
322 */
323 /* FIXME - why not send the phys page to begin with? */
324 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
325 unsigned long page);
326 int mc_idx;
327 int nr_csrows;
328 struct csrow_info *csrows;
329 /*
330 * FIXME - what about controllers on other busses? - IDs must be
331 * unique. dev pointer should be sufficiently unique, but
332 * BUS:SLOT.FUNC numbers may not be unique.
333 */
334 struct device *dev;
335 const char *mod_name;
336 const char *mod_ver;
337 const char *ctl_name;
338 char proc_name[MC_PROC_NAME_MAX_LEN + 1];
339 void *pvt_info;
340 u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */
341 u32 ce_noinfo_count; /* Correctable Errors w/o info */
342 u32 ue_count; /* Total Uncorrectable Errors for this MC */
343 u32 ce_count; /* Total Correctable Errors for this MC */
344 unsigned long start_time; /* mci load start time (in jiffies) */
345
346 /* this stuff is for safe removal of mc devices from global list while
347 * NMI handlers may be traversing list
348 */
349 struct rcu_head rcu;
350 struct completion complete;
351
352 /* edac sysfs device control */
353 struct kobject edac_mci_kobj;
354 struct completion kobj_complete;
355 };
356
357 #ifdef CONFIG_PCI
358
359 /* write all or some bits in a byte-register*/
360 static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
361 u8 mask)
362 {
363 if (mask != 0xff) {
364 u8 buf;
365
366 pci_read_config_byte(pdev, offset, &buf);
367 value &= mask;
368 buf &= ~mask;
369 value |= buf;
370 }
371
372 pci_write_config_byte(pdev, offset, value);
373 }
374
375 /* write all or some bits in a word-register*/
376 static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
377 u16 value, u16 mask)
378 {
379 if (mask != 0xffff) {
380 u16 buf;
381
382 pci_read_config_word(pdev, offset, &buf);
383 value &= mask;
384 buf &= ~mask;
385 value |= buf;
386 }
387
388 pci_write_config_word(pdev, offset, value);
389 }
390
391 /* write all or some bits in a dword-register*/
392 static inline void pci_write_bits32(struct pci_dev *pdev, int offset,
393 u32 value, u32 mask)
394 {
395 if (mask != 0xffff) {
396 u32 buf;
397
398 pci_read_config_dword(pdev, offset, &buf);
399 value &= mask;
400 buf &= ~mask;
401 value |= buf;
402 }
403
404 pci_write_config_dword(pdev, offset, value);
405 }
406
407 #endif /* CONFIG_PCI */
408
409 #ifdef CONFIG_EDAC_DEBUG
410 void edac_mc_dump_channel(struct channel_info *chan);
411 void edac_mc_dump_mci(struct mem_ctl_info *mci);
412 void edac_mc_dump_csrow(struct csrow_info *csrow);
413 #endif /* CONFIG_EDAC_DEBUG */
414
415 extern int edac_mc_add_mc(struct mem_ctl_info *mci,int mc_idx);
416 extern struct mem_ctl_info * edac_mc_del_mc(struct device *dev);
417 extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
418 unsigned long page);
419 extern void edac_mc_scrub_block(unsigned long page, unsigned long offset,
420 u32 size);
421
422 /*
423 * The no info errors are used when error overflows are reported.
424 * There are a limited number of error logging registers that can
425 * be exausted. When all registers are exhausted and an additional
426 * error occurs then an error overflow register records that an
427 * error occured and the type of error, but doesn't have any
428 * further information. The ce/ue versions make for cleaner
429 * reporting logic and function interface - reduces conditional
430 * statement clutter and extra function arguments.
431 */
432 extern void edac_mc_handle_ce(struct mem_ctl_info *mci,
433 unsigned long page_frame_number, unsigned long offset_in_page,
434 unsigned long syndrome, int row, int channel,
435 const char *msg);
436 extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
437 const char *msg);
438 extern void edac_mc_handle_ue(struct mem_ctl_info *mci,
439 unsigned long page_frame_number, unsigned long offset_in_page,
440 int row, const char *msg);
441 extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
442 const char *msg);
443
444 /*
445 * This kmalloc's and initializes all the structures.
446 * Can't be used if all structures don't have the same lifetime.
447 */
448 extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
449 unsigned nr_chans);
450
451 /* Free an mc previously allocated by edac_mc_alloc() */
452 extern void edac_mc_free(struct mem_ctl_info *mci);
453
454 #endif /* _EDAC_MC_H_ */
This page took 0.040364 seconds and 5 git commands to generate.