Merge tag 'v3.16-rc1' into patchwork
[deliverable/linux.git] / drivers / edac / edac_mc_sysfs.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
4 *
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9 *
10 * (c) 2012-2013 - Mauro Carvalho Chehab
11 * The entire API were re-written, and ported to use struct device
12 *
13 */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_core.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 return edac_mc_log_ue;
35 }
36
37 int edac_mc_get_log_ce(void)
38 {
39 return edac_mc_log_ce;
40 }
41
42 int edac_mc_get_panic_on_ue(void)
43 {
44 return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50 return edac_mc_poll_msec;
51 }
52
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55 unsigned long l;
56 int ret;
57
58 if (!val)
59 return -EINVAL;
60
61 ret = kstrtoul(val, 0, &l);
62 if (ret)
63 return ret;
64
65 if (l < 1000)
66 return -EINVAL;
67
68 *((unsigned long *)kp->arg) = l;
69
70 /* notify edac_mc engine to reset the poll period */
71 edac_mc_reset_delay_period(l);
72
73 return 0;
74 }
75
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86 &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88
89 static struct device *mci_pdev;
90
91 /*
92 * various constants for Memory Controllers
93 */
94 static const char * const mem_types[] = {
95 [MEM_EMPTY] = "Empty",
96 [MEM_RESERVED] = "Reserved",
97 [MEM_UNKNOWN] = "Unknown",
98 [MEM_FPM] = "FPM",
99 [MEM_EDO] = "EDO",
100 [MEM_BEDO] = "BEDO",
101 [MEM_SDR] = "Unbuffered-SDR",
102 [MEM_RDR] = "Registered-SDR",
103 [MEM_DDR] = "Unbuffered-DDR",
104 [MEM_RDDR] = "Registered-DDR",
105 [MEM_RMBS] = "RMBS",
106 [MEM_DDR2] = "Unbuffered-DDR2",
107 [MEM_FB_DDR2] = "FullyBuffered-DDR2",
108 [MEM_RDDR2] = "Registered-DDR2",
109 [MEM_XDR] = "XDR",
110 [MEM_DDR3] = "Unbuffered-DDR3",
111 [MEM_RDDR3] = "Registered-DDR3"
112 };
113
114 static const char * const dev_types[] = {
115 [DEV_UNKNOWN] = "Unknown",
116 [DEV_X1] = "x1",
117 [DEV_X2] = "x2",
118 [DEV_X4] = "x4",
119 [DEV_X8] = "x8",
120 [DEV_X16] = "x16",
121 [DEV_X32] = "x32",
122 [DEV_X64] = "x64"
123 };
124
125 static const char * const edac_caps[] = {
126 [EDAC_UNKNOWN] = "Unknown",
127 [EDAC_NONE] = "None",
128 [EDAC_RESERVED] = "Reserved",
129 [EDAC_PARITY] = "PARITY",
130 [EDAC_EC] = "EC",
131 [EDAC_SECDED] = "SECDED",
132 [EDAC_S2ECD2ED] = "S2ECD2ED",
133 [EDAC_S4ECD4ED] = "S4ECD4ED",
134 [EDAC_S8ECD8ED] = "S8ECD8ED",
135 [EDAC_S16ECD16ED] = "S16ECD16ED"
136 };
137
138 #ifdef CONFIG_EDAC_LEGACY_SYSFS
139 /*
140 * EDAC sysfs CSROW data structures and methods
141 */
142
143 #define to_csrow(k) container_of(k, struct csrow_info, dev)
144
145 /*
146 * We need it to avoid namespace conflicts between the legacy API
147 * and the per-dimm/per-rank one
148 */
149 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
150 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
151
152 struct dev_ch_attribute {
153 struct device_attribute attr;
154 int channel;
155 };
156
157 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
158 struct dev_ch_attribute dev_attr_legacy_##_name = \
159 { __ATTR(_name, _mode, _show, _store), (_var) }
160
161 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
162
163 /* Set of more default csrow<id> attribute show/store functions */
164 static ssize_t csrow_ue_count_show(struct device *dev,
165 struct device_attribute *mattr, char *data)
166 {
167 struct csrow_info *csrow = to_csrow(dev);
168
169 return sprintf(data, "%u\n", csrow->ue_count);
170 }
171
172 static ssize_t csrow_ce_count_show(struct device *dev,
173 struct device_attribute *mattr, char *data)
174 {
175 struct csrow_info *csrow = to_csrow(dev);
176
177 return sprintf(data, "%u\n", csrow->ce_count);
178 }
179
180 static ssize_t csrow_size_show(struct device *dev,
181 struct device_attribute *mattr, char *data)
182 {
183 struct csrow_info *csrow = to_csrow(dev);
184 int i;
185 u32 nr_pages = 0;
186
187 for (i = 0; i < csrow->nr_channels; i++)
188 nr_pages += csrow->channels[i]->dimm->nr_pages;
189 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
190 }
191
192 static ssize_t csrow_mem_type_show(struct device *dev,
193 struct device_attribute *mattr, char *data)
194 {
195 struct csrow_info *csrow = to_csrow(dev);
196
197 return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
198 }
199
200 static ssize_t csrow_dev_type_show(struct device *dev,
201 struct device_attribute *mattr, char *data)
202 {
203 struct csrow_info *csrow = to_csrow(dev);
204
205 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
206 }
207
208 static ssize_t csrow_edac_mode_show(struct device *dev,
209 struct device_attribute *mattr,
210 char *data)
211 {
212 struct csrow_info *csrow = to_csrow(dev);
213
214 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
215 }
216
217 /* show/store functions for DIMM Label attributes */
218 static ssize_t channel_dimm_label_show(struct device *dev,
219 struct device_attribute *mattr,
220 char *data)
221 {
222 struct csrow_info *csrow = to_csrow(dev);
223 unsigned chan = to_channel(mattr);
224 struct rank_info *rank = csrow->channels[chan];
225
226 /* if field has not been initialized, there is nothing to send */
227 if (!rank->dimm->label[0])
228 return 0;
229
230 return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
231 rank->dimm->label);
232 }
233
234 static ssize_t channel_dimm_label_store(struct device *dev,
235 struct device_attribute *mattr,
236 const char *data, size_t count)
237 {
238 struct csrow_info *csrow = to_csrow(dev);
239 unsigned chan = to_channel(mattr);
240 struct rank_info *rank = csrow->channels[chan];
241
242 ssize_t max_size = 0;
243
244 max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
245 strncpy(rank->dimm->label, data, max_size);
246 rank->dimm->label[max_size] = '\0';
247
248 return max_size;
249 }
250
251 /* show function for dynamic chX_ce_count attribute */
252 static ssize_t channel_ce_count_show(struct device *dev,
253 struct device_attribute *mattr, char *data)
254 {
255 struct csrow_info *csrow = to_csrow(dev);
256 unsigned chan = to_channel(mattr);
257 struct rank_info *rank = csrow->channels[chan];
258
259 return sprintf(data, "%u\n", rank->ce_count);
260 }
261
262 /* cwrow<id>/attribute files */
263 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
264 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
265 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
266 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
267 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
268 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
269
270 /* default attributes of the CSROW<id> object */
271 static struct attribute *csrow_attrs[] = {
272 &dev_attr_legacy_dev_type.attr,
273 &dev_attr_legacy_mem_type.attr,
274 &dev_attr_legacy_edac_mode.attr,
275 &dev_attr_legacy_size_mb.attr,
276 &dev_attr_legacy_ue_count.attr,
277 &dev_attr_legacy_ce_count.attr,
278 NULL,
279 };
280
281 static struct attribute_group csrow_attr_grp = {
282 .attrs = csrow_attrs,
283 };
284
285 static const struct attribute_group *csrow_attr_groups[] = {
286 &csrow_attr_grp,
287 NULL
288 };
289
290 static void csrow_attr_release(struct device *dev)
291 {
292 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
293
294 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
295 kfree(csrow);
296 }
297
298 static struct device_type csrow_attr_type = {
299 .groups = csrow_attr_groups,
300 .release = csrow_attr_release,
301 };
302
303 /*
304 * possible dynamic channel DIMM Label attribute files
305 *
306 */
307
308 #define EDAC_NR_CHANNELS 6
309
310 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
311 channel_dimm_label_show, channel_dimm_label_store, 0);
312 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
313 channel_dimm_label_show, channel_dimm_label_store, 1);
314 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
315 channel_dimm_label_show, channel_dimm_label_store, 2);
316 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
317 channel_dimm_label_show, channel_dimm_label_store, 3);
318 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
319 channel_dimm_label_show, channel_dimm_label_store, 4);
320 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
321 channel_dimm_label_show, channel_dimm_label_store, 5);
322
323 /* Total possible dynamic DIMM Label attribute file table */
324 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
325 &dev_attr_legacy_ch0_dimm_label.attr,
326 &dev_attr_legacy_ch1_dimm_label.attr,
327 &dev_attr_legacy_ch2_dimm_label.attr,
328 &dev_attr_legacy_ch3_dimm_label.attr,
329 &dev_attr_legacy_ch4_dimm_label.attr,
330 &dev_attr_legacy_ch5_dimm_label.attr
331 };
332
333 /* possible dynamic channel ce_count attribute files */
334 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
335 channel_ce_count_show, NULL, 0);
336 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
337 channel_ce_count_show, NULL, 1);
338 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
339 channel_ce_count_show, NULL, 2);
340 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
341 channel_ce_count_show, NULL, 3);
342 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
343 channel_ce_count_show, NULL, 4);
344 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
345 channel_ce_count_show, NULL, 5);
346
347 /* Total possible dynamic ce_count attribute file table */
348 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
349 &dev_attr_legacy_ch0_ce_count.attr,
350 &dev_attr_legacy_ch1_ce_count.attr,
351 &dev_attr_legacy_ch2_ce_count.attr,
352 &dev_attr_legacy_ch3_ce_count.attr,
353 &dev_attr_legacy_ch4_ce_count.attr,
354 &dev_attr_legacy_ch5_ce_count.attr
355 };
356
357 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
358 {
359 int chan, nr_pages = 0;
360
361 for (chan = 0; chan < csrow->nr_channels; chan++)
362 nr_pages += csrow->channels[chan]->dimm->nr_pages;
363
364 return nr_pages;
365 }
366
367 /* Create a CSROW object under specifed edac_mc_device */
368 static int edac_create_csrow_object(struct mem_ctl_info *mci,
369 struct csrow_info *csrow, int index)
370 {
371 int err, chan;
372
373 if (csrow->nr_channels >= EDAC_NR_CHANNELS)
374 return -ENODEV;
375
376 csrow->dev.type = &csrow_attr_type;
377 csrow->dev.bus = mci->bus;
378 device_initialize(&csrow->dev);
379 csrow->dev.parent = &mci->dev;
380 csrow->mci = mci;
381 dev_set_name(&csrow->dev, "csrow%d", index);
382 dev_set_drvdata(&csrow->dev, csrow);
383
384 edac_dbg(0, "creating (virtual) csrow node %s\n",
385 dev_name(&csrow->dev));
386
387 err = device_add(&csrow->dev);
388 if (err < 0)
389 return err;
390
391 for (chan = 0; chan < csrow->nr_channels; chan++) {
392 /* Only expose populated DIMMs */
393 if (!csrow->channels[chan]->dimm->nr_pages)
394 continue;
395 err = device_create_file(&csrow->dev,
396 dynamic_csrow_dimm_attr[chan]);
397 if (err < 0)
398 goto error;
399 err = device_create_file(&csrow->dev,
400 dynamic_csrow_ce_count_attr[chan]);
401 if (err < 0) {
402 device_remove_file(&csrow->dev,
403 dynamic_csrow_dimm_attr[chan]);
404 goto error;
405 }
406 }
407
408 return 0;
409
410 error:
411 for (--chan; chan >= 0; chan--) {
412 device_remove_file(&csrow->dev,
413 dynamic_csrow_dimm_attr[chan]);
414 device_remove_file(&csrow->dev,
415 dynamic_csrow_ce_count_attr[chan]);
416 }
417 put_device(&csrow->dev);
418
419 return err;
420 }
421
422 /* Create a CSROW object under specifed edac_mc_device */
423 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
424 {
425 int err, i, chan;
426 struct csrow_info *csrow;
427
428 for (i = 0; i < mci->nr_csrows; i++) {
429 csrow = mci->csrows[i];
430 if (!nr_pages_per_csrow(csrow))
431 continue;
432 err = edac_create_csrow_object(mci, mci->csrows[i], i);
433 if (err < 0) {
434 edac_dbg(1,
435 "failure: create csrow objects for csrow %d\n",
436 i);
437 goto error;
438 }
439 }
440 return 0;
441
442 error:
443 for (--i; i >= 0; i--) {
444 csrow = mci->csrows[i];
445 if (!nr_pages_per_csrow(csrow))
446 continue;
447 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
448 if (!csrow->channels[chan]->dimm->nr_pages)
449 continue;
450 device_remove_file(&csrow->dev,
451 dynamic_csrow_dimm_attr[chan]);
452 device_remove_file(&csrow->dev,
453 dynamic_csrow_ce_count_attr[chan]);
454 }
455 put_device(&mci->csrows[i]->dev);
456 }
457
458 return err;
459 }
460
461 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
462 {
463 int i, chan;
464 struct csrow_info *csrow;
465
466 for (i = mci->nr_csrows - 1; i >= 0; i--) {
467 csrow = mci->csrows[i];
468 if (!nr_pages_per_csrow(csrow))
469 continue;
470 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
471 if (!csrow->channels[chan]->dimm->nr_pages)
472 continue;
473 edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
474 i, chan);
475 device_remove_file(&csrow->dev,
476 dynamic_csrow_dimm_attr[chan]);
477 device_remove_file(&csrow->dev,
478 dynamic_csrow_ce_count_attr[chan]);
479 }
480 device_unregister(&mci->csrows[i]->dev);
481 }
482 }
483 #endif
484
485 /*
486 * Per-dimm (or per-rank) devices
487 */
488
489 #define to_dimm(k) container_of(k, struct dimm_info, dev)
490
491 /* show/store functions for DIMM Label attributes */
492 static ssize_t dimmdev_location_show(struct device *dev,
493 struct device_attribute *mattr, char *data)
494 {
495 struct dimm_info *dimm = to_dimm(dev);
496
497 return edac_dimm_info_location(dimm, data, PAGE_SIZE);
498 }
499
500 static ssize_t dimmdev_label_show(struct device *dev,
501 struct device_attribute *mattr, char *data)
502 {
503 struct dimm_info *dimm = to_dimm(dev);
504
505 /* if field has not been initialized, there is nothing to send */
506 if (!dimm->label[0])
507 return 0;
508
509 return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
510 }
511
512 static ssize_t dimmdev_label_store(struct device *dev,
513 struct device_attribute *mattr,
514 const char *data,
515 size_t count)
516 {
517 struct dimm_info *dimm = to_dimm(dev);
518
519 ssize_t max_size = 0;
520
521 max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
522 strncpy(dimm->label, data, max_size);
523 dimm->label[max_size] = '\0';
524
525 return max_size;
526 }
527
528 static ssize_t dimmdev_size_show(struct device *dev,
529 struct device_attribute *mattr, char *data)
530 {
531 struct dimm_info *dimm = to_dimm(dev);
532
533 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
534 }
535
536 static ssize_t dimmdev_mem_type_show(struct device *dev,
537 struct device_attribute *mattr, char *data)
538 {
539 struct dimm_info *dimm = to_dimm(dev);
540
541 return sprintf(data, "%s\n", mem_types[dimm->mtype]);
542 }
543
544 static ssize_t dimmdev_dev_type_show(struct device *dev,
545 struct device_attribute *mattr, char *data)
546 {
547 struct dimm_info *dimm = to_dimm(dev);
548
549 return sprintf(data, "%s\n", dev_types[dimm->dtype]);
550 }
551
552 static ssize_t dimmdev_edac_mode_show(struct device *dev,
553 struct device_attribute *mattr,
554 char *data)
555 {
556 struct dimm_info *dimm = to_dimm(dev);
557
558 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
559 }
560
561 /* dimm/rank attribute files */
562 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
563 dimmdev_label_show, dimmdev_label_store);
564 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
565 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
566 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
567 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
568 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
569
570 /* attributes of the dimm<id>/rank<id> object */
571 static struct attribute *dimm_attrs[] = {
572 &dev_attr_dimm_label.attr,
573 &dev_attr_dimm_location.attr,
574 &dev_attr_size.attr,
575 &dev_attr_dimm_mem_type.attr,
576 &dev_attr_dimm_dev_type.attr,
577 &dev_attr_dimm_edac_mode.attr,
578 NULL,
579 };
580
581 static struct attribute_group dimm_attr_grp = {
582 .attrs = dimm_attrs,
583 };
584
585 static const struct attribute_group *dimm_attr_groups[] = {
586 &dimm_attr_grp,
587 NULL
588 };
589
590 static void dimm_attr_release(struct device *dev)
591 {
592 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
593
594 edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
595 kfree(dimm);
596 }
597
598 static struct device_type dimm_attr_type = {
599 .groups = dimm_attr_groups,
600 .release = dimm_attr_release,
601 };
602
603 /* Create a DIMM object under specifed memory controller device */
604 static int edac_create_dimm_object(struct mem_ctl_info *mci,
605 struct dimm_info *dimm,
606 int index)
607 {
608 int err;
609 dimm->mci = mci;
610
611 dimm->dev.type = &dimm_attr_type;
612 dimm->dev.bus = mci->bus;
613 device_initialize(&dimm->dev);
614
615 dimm->dev.parent = &mci->dev;
616 if (mci->csbased)
617 dev_set_name(&dimm->dev, "rank%d", index);
618 else
619 dev_set_name(&dimm->dev, "dimm%d", index);
620 dev_set_drvdata(&dimm->dev, dimm);
621 pm_runtime_forbid(&mci->dev);
622
623 err = device_add(&dimm->dev);
624
625 edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
626
627 return err;
628 }
629
630 /*
631 * Memory controller device
632 */
633
634 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
635
636 static ssize_t mci_reset_counters_store(struct device *dev,
637 struct device_attribute *mattr,
638 const char *data, size_t count)
639 {
640 struct mem_ctl_info *mci = to_mci(dev);
641 int cnt, row, chan, i;
642 mci->ue_mc = 0;
643 mci->ce_mc = 0;
644 mci->ue_noinfo_count = 0;
645 mci->ce_noinfo_count = 0;
646
647 for (row = 0; row < mci->nr_csrows; row++) {
648 struct csrow_info *ri = mci->csrows[row];
649
650 ri->ue_count = 0;
651 ri->ce_count = 0;
652
653 for (chan = 0; chan < ri->nr_channels; chan++)
654 ri->channels[chan]->ce_count = 0;
655 }
656
657 cnt = 1;
658 for (i = 0; i < mci->n_layers; i++) {
659 cnt *= mci->layers[i].size;
660 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
661 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
662 }
663
664 mci->start_time = jiffies;
665 return count;
666 }
667
668 /* Memory scrubbing interface:
669 *
670 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
671 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
672 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
673 *
674 * Negative value still means that an error has occurred while setting
675 * the scrub rate.
676 */
677 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
678 struct device_attribute *mattr,
679 const char *data, size_t count)
680 {
681 struct mem_ctl_info *mci = to_mci(dev);
682 unsigned long bandwidth = 0;
683 int new_bw = 0;
684
685 if (kstrtoul(data, 10, &bandwidth) < 0)
686 return -EINVAL;
687
688 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
689 if (new_bw < 0) {
690 edac_printk(KERN_WARNING, EDAC_MC,
691 "Error setting scrub rate to: %lu\n", bandwidth);
692 return -EINVAL;
693 }
694
695 return count;
696 }
697
698 /*
699 * ->get_sdram_scrub_rate() return value semantics same as above.
700 */
701 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
702 struct device_attribute *mattr,
703 char *data)
704 {
705 struct mem_ctl_info *mci = to_mci(dev);
706 int bandwidth = 0;
707
708 bandwidth = mci->get_sdram_scrub_rate(mci);
709 if (bandwidth < 0) {
710 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
711 return bandwidth;
712 }
713
714 return sprintf(data, "%d\n", bandwidth);
715 }
716
717 /* default attribute files for the MCI object */
718 static ssize_t mci_ue_count_show(struct device *dev,
719 struct device_attribute *mattr,
720 char *data)
721 {
722 struct mem_ctl_info *mci = to_mci(dev);
723
724 return sprintf(data, "%d\n", mci->ue_mc);
725 }
726
727 static ssize_t mci_ce_count_show(struct device *dev,
728 struct device_attribute *mattr,
729 char *data)
730 {
731 struct mem_ctl_info *mci = to_mci(dev);
732
733 return sprintf(data, "%d\n", mci->ce_mc);
734 }
735
736 static ssize_t mci_ce_noinfo_show(struct device *dev,
737 struct device_attribute *mattr,
738 char *data)
739 {
740 struct mem_ctl_info *mci = to_mci(dev);
741
742 return sprintf(data, "%d\n", mci->ce_noinfo_count);
743 }
744
745 static ssize_t mci_ue_noinfo_show(struct device *dev,
746 struct device_attribute *mattr,
747 char *data)
748 {
749 struct mem_ctl_info *mci = to_mci(dev);
750
751 return sprintf(data, "%d\n", mci->ue_noinfo_count);
752 }
753
754 static ssize_t mci_seconds_show(struct device *dev,
755 struct device_attribute *mattr,
756 char *data)
757 {
758 struct mem_ctl_info *mci = to_mci(dev);
759
760 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
761 }
762
763 static ssize_t mci_ctl_name_show(struct device *dev,
764 struct device_attribute *mattr,
765 char *data)
766 {
767 struct mem_ctl_info *mci = to_mci(dev);
768
769 return sprintf(data, "%s\n", mci->ctl_name);
770 }
771
772 static ssize_t mci_size_mb_show(struct device *dev,
773 struct device_attribute *mattr,
774 char *data)
775 {
776 struct mem_ctl_info *mci = to_mci(dev);
777 int total_pages = 0, csrow_idx, j;
778
779 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
780 struct csrow_info *csrow = mci->csrows[csrow_idx];
781
782 for (j = 0; j < csrow->nr_channels; j++) {
783 struct dimm_info *dimm = csrow->channels[j]->dimm;
784
785 total_pages += dimm->nr_pages;
786 }
787 }
788
789 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
790 }
791
792 static ssize_t mci_max_location_show(struct device *dev,
793 struct device_attribute *mattr,
794 char *data)
795 {
796 struct mem_ctl_info *mci = to_mci(dev);
797 int i;
798 char *p = data;
799
800 for (i = 0; i < mci->n_layers; i++) {
801 p += sprintf(p, "%s %d ",
802 edac_layer_name[mci->layers[i].type],
803 mci->layers[i].size - 1);
804 }
805
806 return p - data;
807 }
808
809 #ifdef CONFIG_EDAC_DEBUG
810 static ssize_t edac_fake_inject_write(struct file *file,
811 const char __user *data,
812 size_t count, loff_t *ppos)
813 {
814 struct device *dev = file->private_data;
815 struct mem_ctl_info *mci = to_mci(dev);
816 static enum hw_event_mc_err_type type;
817 u16 errcount = mci->fake_inject_count;
818
819 if (!errcount)
820 errcount = 1;
821
822 type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
823 : HW_EVENT_ERR_CORRECTED;
824
825 printk(KERN_DEBUG
826 "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
827 errcount,
828 (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
829 errcount > 1 ? "s" : "",
830 mci->fake_inject_layer[0],
831 mci->fake_inject_layer[1],
832 mci->fake_inject_layer[2]
833 );
834 edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
835 mci->fake_inject_layer[0],
836 mci->fake_inject_layer[1],
837 mci->fake_inject_layer[2],
838 "FAKE ERROR", "for EDAC testing only");
839
840 return count;
841 }
842
843 static const struct file_operations debug_fake_inject_fops = {
844 .open = simple_open,
845 .write = edac_fake_inject_write,
846 .llseek = generic_file_llseek,
847 };
848 #endif
849
850 /* default Control file */
851 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
852
853 /* default Attribute files */
854 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
855 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
856 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
857 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
858 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
859 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
860 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
861 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
862
863 /* memory scrubber attribute file */
864 DEVICE_ATTR(sdram_scrub_rate, 0, NULL, NULL);
865
866 static struct attribute *mci_attrs[] = {
867 &dev_attr_reset_counters.attr,
868 &dev_attr_mc_name.attr,
869 &dev_attr_size_mb.attr,
870 &dev_attr_seconds_since_reset.attr,
871 &dev_attr_ue_noinfo_count.attr,
872 &dev_attr_ce_noinfo_count.attr,
873 &dev_attr_ue_count.attr,
874 &dev_attr_ce_count.attr,
875 &dev_attr_max_location.attr,
876 NULL
877 };
878
879 static struct attribute_group mci_attr_grp = {
880 .attrs = mci_attrs,
881 };
882
883 static const struct attribute_group *mci_attr_groups[] = {
884 &mci_attr_grp,
885 NULL
886 };
887
888 static void mci_attr_release(struct device *dev)
889 {
890 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
891
892 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
893 kfree(mci);
894 }
895
896 static struct device_type mci_attr_type = {
897 .groups = mci_attr_groups,
898 .release = mci_attr_release,
899 };
900
901 #ifdef CONFIG_EDAC_DEBUG
902 static struct dentry *edac_debugfs;
903
904 int __init edac_debugfs_init(void)
905 {
906 edac_debugfs = debugfs_create_dir("edac", NULL);
907 if (IS_ERR(edac_debugfs)) {
908 edac_debugfs = NULL;
909 return -ENOMEM;
910 }
911 return 0;
912 }
913
914 void __exit edac_debugfs_exit(void)
915 {
916 debugfs_remove(edac_debugfs);
917 }
918
919 static int edac_create_debug_nodes(struct mem_ctl_info *mci)
920 {
921 struct dentry *d, *parent;
922 char name[80];
923 int i;
924
925 if (!edac_debugfs)
926 return -ENODEV;
927
928 d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
929 if (!d)
930 return -ENOMEM;
931 parent = d;
932
933 for (i = 0; i < mci->n_layers; i++) {
934 sprintf(name, "fake_inject_%s",
935 edac_layer_name[mci->layers[i].type]);
936 d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
937 &mci->fake_inject_layer[i]);
938 if (!d)
939 goto nomem;
940 }
941
942 d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
943 &mci->fake_inject_ue);
944 if (!d)
945 goto nomem;
946
947 d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
948 &mci->fake_inject_count);
949 if (!d)
950 goto nomem;
951
952 d = debugfs_create_file("fake_inject", S_IWUSR, parent,
953 &mci->dev,
954 &debug_fake_inject_fops);
955 if (!d)
956 goto nomem;
957
958 mci->debugfs = parent;
959 return 0;
960 nomem:
961 debugfs_remove(mci->debugfs);
962 return -ENOMEM;
963 }
964 #endif
965
966 /*
967 * Create a new Memory Controller kobject instance,
968 * mc<id> under the 'mc' directory
969 *
970 * Return:
971 * 0 Success
972 * !0 Failure
973 */
974 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
975 {
976 int i, err;
977
978 /*
979 * The memory controller needs its own bus, in order to avoid
980 * namespace conflicts at /sys/bus/edac.
981 */
982 mci->bus->name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
983 if (!mci->bus->name)
984 return -ENOMEM;
985
986 edac_dbg(0, "creating bus %s\n", mci->bus->name);
987
988 err = bus_register(mci->bus);
989 if (err < 0)
990 return err;
991
992 /* get the /sys/devices/system/edac subsys reference */
993 mci->dev.type = &mci_attr_type;
994 device_initialize(&mci->dev);
995
996 mci->dev.parent = mci_pdev;
997 mci->dev.bus = mci->bus;
998 dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
999 dev_set_drvdata(&mci->dev, mci);
1000 pm_runtime_forbid(&mci->dev);
1001
1002 edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1003 err = device_add(&mci->dev);
1004 if (err < 0) {
1005 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
1006 bus_unregister(mci->bus);
1007 kfree(mci->bus->name);
1008 return err;
1009 }
1010
1011 if (mci->set_sdram_scrub_rate || mci->get_sdram_scrub_rate) {
1012 if (mci->get_sdram_scrub_rate) {
1013 dev_attr_sdram_scrub_rate.attr.mode |= S_IRUGO;
1014 dev_attr_sdram_scrub_rate.show = &mci_sdram_scrub_rate_show;
1015 }
1016 if (mci->set_sdram_scrub_rate) {
1017 dev_attr_sdram_scrub_rate.attr.mode |= S_IWUSR;
1018 dev_attr_sdram_scrub_rate.store = &mci_sdram_scrub_rate_store;
1019 }
1020 err = device_create_file(&mci->dev,
1021 &dev_attr_sdram_scrub_rate);
1022 if (err) {
1023 edac_dbg(1, "failure: create sdram_scrub_rate\n");
1024 goto fail2;
1025 }
1026 }
1027 /*
1028 * Create the dimm/rank devices
1029 */
1030 for (i = 0; i < mci->tot_dimms; i++) {
1031 struct dimm_info *dimm = mci->dimms[i];
1032 /* Only expose populated DIMMs */
1033 if (dimm->nr_pages == 0)
1034 continue;
1035 #ifdef CONFIG_EDAC_DEBUG
1036 edac_dbg(1, "creating dimm%d, located at ", i);
1037 if (edac_debug_level >= 1) {
1038 int lay;
1039 for (lay = 0; lay < mci->n_layers; lay++)
1040 printk(KERN_CONT "%s %d ",
1041 edac_layer_name[mci->layers[lay].type],
1042 dimm->location[lay]);
1043 printk(KERN_CONT "\n");
1044 }
1045 #endif
1046 err = edac_create_dimm_object(mci, dimm, i);
1047 if (err) {
1048 edac_dbg(1, "failure: create dimm %d obj\n", i);
1049 goto fail;
1050 }
1051 }
1052
1053 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1054 err = edac_create_csrow_objects(mci);
1055 if (err < 0)
1056 goto fail;
1057 #endif
1058
1059 #ifdef CONFIG_EDAC_DEBUG
1060 edac_create_debug_nodes(mci);
1061 #endif
1062 return 0;
1063
1064 fail:
1065 for (i--; i >= 0; i--) {
1066 struct dimm_info *dimm = mci->dimms[i];
1067 if (dimm->nr_pages == 0)
1068 continue;
1069 device_unregister(&dimm->dev);
1070 }
1071 fail2:
1072 device_unregister(&mci->dev);
1073 bus_unregister(mci->bus);
1074 kfree(mci->bus->name);
1075 return err;
1076 }
1077
1078 /*
1079 * remove a Memory Controller instance
1080 */
1081 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1082 {
1083 int i;
1084
1085 edac_dbg(0, "\n");
1086
1087 #ifdef CONFIG_EDAC_DEBUG
1088 debugfs_remove(mci->debugfs);
1089 #endif
1090 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1091 edac_delete_csrow_objects(mci);
1092 #endif
1093
1094 for (i = 0; i < mci->tot_dimms; i++) {
1095 struct dimm_info *dimm = mci->dimms[i];
1096 if (dimm->nr_pages == 0)
1097 continue;
1098 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1099 device_unregister(&dimm->dev);
1100 }
1101 }
1102
1103 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1104 {
1105 edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1106 device_unregister(&mci->dev);
1107 bus_unregister(mci->bus);
1108 kfree(mci->bus->name);
1109 }
1110
1111 static void mc_attr_release(struct device *dev)
1112 {
1113 /*
1114 * There's no container structure here, as this is just the mci
1115 * parent device, used to create the /sys/devices/mc sysfs node.
1116 * So, there are no attributes on it.
1117 */
1118 edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1119 kfree(dev);
1120 }
1121
1122 static struct device_type mc_attr_type = {
1123 .release = mc_attr_release,
1124 };
1125 /*
1126 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1127 */
1128 int __init edac_mc_sysfs_init(void)
1129 {
1130 struct bus_type *edac_subsys;
1131 int err;
1132
1133 /* get the /sys/devices/system/edac subsys reference */
1134 edac_subsys = edac_get_sysfs_subsys();
1135 if (edac_subsys == NULL) {
1136 edac_dbg(1, "no edac_subsys\n");
1137 err = -EINVAL;
1138 goto out;
1139 }
1140
1141 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1142 if (!mci_pdev) {
1143 err = -ENOMEM;
1144 goto out_put_sysfs;
1145 }
1146
1147 mci_pdev->bus = edac_subsys;
1148 mci_pdev->type = &mc_attr_type;
1149 device_initialize(mci_pdev);
1150 dev_set_name(mci_pdev, "mc");
1151
1152 err = device_add(mci_pdev);
1153 if (err < 0)
1154 goto out_dev_free;
1155
1156 edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1157
1158 return 0;
1159
1160 out_dev_free:
1161 kfree(mci_pdev);
1162 out_put_sysfs:
1163 edac_put_sysfs_subsys();
1164 out:
1165 return err;
1166 }
1167
1168 void __exit edac_mc_sysfs_exit(void)
1169 {
1170 device_unregister(mci_pdev);
1171 edac_put_sysfs_subsys();
1172 }
This page took 0.056206 seconds and 5 git commands to generate.