edac: change the mem allocation scheme to make Documentation/kobject.txt happy
[deliverable/linux.git] / drivers / edac / edac_mc_sysfs.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
4 *
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9 *
10 * (c) 2012 - Mauro Carvalho Chehab <mchehab@redhat.com>
11 * The entire API were re-written, and ported to use struct device
12 *
13 */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_core.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 return edac_mc_log_ue;
35 }
36
37 int edac_mc_get_log_ce(void)
38 {
39 return edac_mc_log_ce;
40 }
41
42 int edac_mc_get_panic_on_ue(void)
43 {
44 return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50 return edac_mc_poll_msec;
51 }
52
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55 long l;
56 int ret;
57
58 if (!val)
59 return -EINVAL;
60
61 ret = strict_strtol(val, 0, &l);
62 if (ret == -EINVAL || ((int)l != l))
63 return -EINVAL;
64 *((int *)kp->arg) = l;
65
66 /* notify edac_mc engine to reset the poll period */
67 edac_mc_reset_delay_period(l);
68
69 return 0;
70 }
71
72 /* Parameter declarations for above */
73 module_param(edac_mc_panic_on_ue, int, 0644);
74 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
75 module_param(edac_mc_log_ue, int, 0644);
76 MODULE_PARM_DESC(edac_mc_log_ue,
77 "Log uncorrectable error to console: 0=off 1=on");
78 module_param(edac_mc_log_ce, int, 0644);
79 MODULE_PARM_DESC(edac_mc_log_ce,
80 "Log correctable error to console: 0=off 1=on");
81 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
82 &edac_mc_poll_msec, 0644);
83 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
84
85 static struct device *mci_pdev;
86
87 /*
88 * various constants for Memory Controllers
89 */
90 static const char *mem_types[] = {
91 [MEM_EMPTY] = "Empty",
92 [MEM_RESERVED] = "Reserved",
93 [MEM_UNKNOWN] = "Unknown",
94 [MEM_FPM] = "FPM",
95 [MEM_EDO] = "EDO",
96 [MEM_BEDO] = "BEDO",
97 [MEM_SDR] = "Unbuffered-SDR",
98 [MEM_RDR] = "Registered-SDR",
99 [MEM_DDR] = "Unbuffered-DDR",
100 [MEM_RDDR] = "Registered-DDR",
101 [MEM_RMBS] = "RMBS",
102 [MEM_DDR2] = "Unbuffered-DDR2",
103 [MEM_FB_DDR2] = "FullyBuffered-DDR2",
104 [MEM_RDDR2] = "Registered-DDR2",
105 [MEM_XDR] = "XDR",
106 [MEM_DDR3] = "Unbuffered-DDR3",
107 [MEM_RDDR3] = "Registered-DDR3"
108 };
109
110 static const char *dev_types[] = {
111 [DEV_UNKNOWN] = "Unknown",
112 [DEV_X1] = "x1",
113 [DEV_X2] = "x2",
114 [DEV_X4] = "x4",
115 [DEV_X8] = "x8",
116 [DEV_X16] = "x16",
117 [DEV_X32] = "x32",
118 [DEV_X64] = "x64"
119 };
120
121 static const char *edac_caps[] = {
122 [EDAC_UNKNOWN] = "Unknown",
123 [EDAC_NONE] = "None",
124 [EDAC_RESERVED] = "Reserved",
125 [EDAC_PARITY] = "PARITY",
126 [EDAC_EC] = "EC",
127 [EDAC_SECDED] = "SECDED",
128 [EDAC_S2ECD2ED] = "S2ECD2ED",
129 [EDAC_S4ECD4ED] = "S4ECD4ED",
130 [EDAC_S8ECD8ED] = "S8ECD8ED",
131 [EDAC_S16ECD16ED] = "S16ECD16ED"
132 };
133
134 #ifdef CONFIG_EDAC_LEGACY_SYSFS
135 /*
136 * EDAC sysfs CSROW data structures and methods
137 */
138
139 #define to_csrow(k) container_of(k, struct csrow_info, dev)
140
141 /*
142 * We need it to avoid namespace conflicts between the legacy API
143 * and the per-dimm/per-rank one
144 */
145 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
146 struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
147
148 struct dev_ch_attribute {
149 struct device_attribute attr;
150 int channel;
151 };
152
153 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
154 struct dev_ch_attribute dev_attr_legacy_##_name = \
155 { __ATTR(_name, _mode, _show, _store), (_var) }
156
157 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
158
159 /* Set of more default csrow<id> attribute show/store functions */
160 static ssize_t csrow_ue_count_show(struct device *dev,
161 struct device_attribute *mattr, char *data)
162 {
163 struct csrow_info *csrow = to_csrow(dev);
164
165 return sprintf(data, "%u\n", csrow->ue_count);
166 }
167
168 static ssize_t csrow_ce_count_show(struct device *dev,
169 struct device_attribute *mattr, char *data)
170 {
171 struct csrow_info *csrow = to_csrow(dev);
172
173 return sprintf(data, "%u\n", csrow->ce_count);
174 }
175
176 static ssize_t csrow_size_show(struct device *dev,
177 struct device_attribute *mattr, char *data)
178 {
179 struct csrow_info *csrow = to_csrow(dev);
180 int i;
181 u32 nr_pages = 0;
182
183 for (i = 0; i < csrow->nr_channels; i++)
184 nr_pages += csrow->channels[i]->dimm->nr_pages;
185 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
186 }
187
188 static ssize_t csrow_mem_type_show(struct device *dev,
189 struct device_attribute *mattr, char *data)
190 {
191 struct csrow_info *csrow = to_csrow(dev);
192
193 return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
194 }
195
196 static ssize_t csrow_dev_type_show(struct device *dev,
197 struct device_attribute *mattr, char *data)
198 {
199 struct csrow_info *csrow = to_csrow(dev);
200
201 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
202 }
203
204 static ssize_t csrow_edac_mode_show(struct device *dev,
205 struct device_attribute *mattr,
206 char *data)
207 {
208 struct csrow_info *csrow = to_csrow(dev);
209
210 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
211 }
212
213 /* show/store functions for DIMM Label attributes */
214 static ssize_t channel_dimm_label_show(struct device *dev,
215 struct device_attribute *mattr,
216 char *data)
217 {
218 struct csrow_info *csrow = to_csrow(dev);
219 unsigned chan = to_channel(mattr);
220 struct rank_info *rank = csrow->channels[chan];
221
222 /* if field has not been initialized, there is nothing to send */
223 if (!rank->dimm->label[0])
224 return 0;
225
226 return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
227 rank->dimm->label);
228 }
229
230 static ssize_t channel_dimm_label_store(struct device *dev,
231 struct device_attribute *mattr,
232 const char *data, size_t count)
233 {
234 struct csrow_info *csrow = to_csrow(dev);
235 unsigned chan = to_channel(mattr);
236 struct rank_info *rank = csrow->channels[chan];
237
238 ssize_t max_size = 0;
239
240 max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
241 strncpy(rank->dimm->label, data, max_size);
242 rank->dimm->label[max_size] = '\0';
243
244 return max_size;
245 }
246
247 /* show function for dynamic chX_ce_count attribute */
248 static ssize_t channel_ce_count_show(struct device *dev,
249 struct device_attribute *mattr, char *data)
250 {
251 struct csrow_info *csrow = to_csrow(dev);
252 unsigned chan = to_channel(mattr);
253 struct rank_info *rank = csrow->channels[chan];
254
255 return sprintf(data, "%u\n", rank->ce_count);
256 }
257
258 /* cwrow<id>/attribute files */
259 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
260 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
261 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
262 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
263 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
264 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
265
266 /* default attributes of the CSROW<id> object */
267 static struct attribute *csrow_attrs[] = {
268 &dev_attr_legacy_dev_type.attr,
269 &dev_attr_legacy_mem_type.attr,
270 &dev_attr_legacy_edac_mode.attr,
271 &dev_attr_legacy_size_mb.attr,
272 &dev_attr_legacy_ue_count.attr,
273 &dev_attr_legacy_ce_count.attr,
274 NULL,
275 };
276
277 static struct attribute_group csrow_attr_grp = {
278 .attrs = csrow_attrs,
279 };
280
281 static const struct attribute_group *csrow_attr_groups[] = {
282 &csrow_attr_grp,
283 NULL
284 };
285
286 static void csrow_attr_release(struct device *dev)
287 {
288 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
289
290 debugf1("Releasing csrow device %s\n", dev_name(dev));
291 kfree(csrow);
292 }
293
294 static struct device_type csrow_attr_type = {
295 .groups = csrow_attr_groups,
296 .release = csrow_attr_release,
297 };
298
299 /*
300 * possible dynamic channel DIMM Label attribute files
301 *
302 */
303
304 #define EDAC_NR_CHANNELS 6
305
306 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
307 channel_dimm_label_show, channel_dimm_label_store, 0);
308 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
309 channel_dimm_label_show, channel_dimm_label_store, 1);
310 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
311 channel_dimm_label_show, channel_dimm_label_store, 2);
312 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
313 channel_dimm_label_show, channel_dimm_label_store, 3);
314 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
315 channel_dimm_label_show, channel_dimm_label_store, 4);
316 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
317 channel_dimm_label_show, channel_dimm_label_store, 5);
318
319 /* Total possible dynamic DIMM Label attribute file table */
320 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
321 &dev_attr_legacy_ch0_dimm_label.attr,
322 &dev_attr_legacy_ch1_dimm_label.attr,
323 &dev_attr_legacy_ch2_dimm_label.attr,
324 &dev_attr_legacy_ch3_dimm_label.attr,
325 &dev_attr_legacy_ch4_dimm_label.attr,
326 &dev_attr_legacy_ch5_dimm_label.attr
327 };
328
329 /* possible dynamic channel ce_count attribute files */
330 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO | S_IWUSR,
331 channel_ce_count_show, NULL, 0);
332 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO | S_IWUSR,
333 channel_ce_count_show, NULL, 1);
334 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO | S_IWUSR,
335 channel_ce_count_show, NULL, 2);
336 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO | S_IWUSR,
337 channel_ce_count_show, NULL, 3);
338 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO | S_IWUSR,
339 channel_ce_count_show, NULL, 4);
340 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO | S_IWUSR,
341 channel_ce_count_show, NULL, 5);
342
343 /* Total possible dynamic ce_count attribute file table */
344 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
345 &dev_attr_legacy_ch0_ce_count.attr,
346 &dev_attr_legacy_ch1_ce_count.attr,
347 &dev_attr_legacy_ch2_ce_count.attr,
348 &dev_attr_legacy_ch3_ce_count.attr,
349 &dev_attr_legacy_ch4_ce_count.attr,
350 &dev_attr_legacy_ch5_ce_count.attr
351 };
352
353 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
354 {
355 int chan, nr_pages = 0;
356
357 for (chan = 0; chan < csrow->nr_channels; chan++)
358 nr_pages += csrow->channels[chan]->dimm->nr_pages;
359
360 return nr_pages;
361 }
362
363 /* Create a CSROW object under specifed edac_mc_device */
364 static int edac_create_csrow_object(struct mem_ctl_info *mci,
365 struct csrow_info *csrow, int index)
366 {
367 int err, chan;
368
369 if (csrow->nr_channels >= EDAC_NR_CHANNELS)
370 return -ENODEV;
371
372 csrow->dev.type = &csrow_attr_type;
373 csrow->dev.bus = &mci->bus;
374 device_initialize(&csrow->dev);
375 csrow->dev.parent = &mci->dev;
376 dev_set_name(&csrow->dev, "csrow%d", index);
377 dev_set_drvdata(&csrow->dev, csrow);
378
379 debugf0("%s(): creating (virtual) csrow node %s\n", __func__,
380 dev_name(&csrow->dev));
381
382 err = device_add(&csrow->dev);
383 if (err < 0)
384 return err;
385
386 for (chan = 0; chan < csrow->nr_channels; chan++) {
387 /* Only expose populated DIMMs */
388 if (!csrow->channels[chan]->dimm->nr_pages)
389 continue;
390 err = device_create_file(&csrow->dev,
391 dynamic_csrow_dimm_attr[chan]);
392 if (err < 0)
393 goto error;
394 err = device_create_file(&csrow->dev,
395 dynamic_csrow_ce_count_attr[chan]);
396 if (err < 0) {
397 device_remove_file(&csrow->dev,
398 dynamic_csrow_dimm_attr[chan]);
399 goto error;
400 }
401 }
402
403 return 0;
404
405 error:
406 for (--chan; chan >= 0; chan--) {
407 device_remove_file(&csrow->dev,
408 dynamic_csrow_dimm_attr[chan]);
409 device_remove_file(&csrow->dev,
410 dynamic_csrow_ce_count_attr[chan]);
411 }
412 put_device(&csrow->dev);
413
414 return err;
415 }
416
417 /* Create a CSROW object under specifed edac_mc_device */
418 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
419 {
420 int err, i, chan;
421 struct csrow_info *csrow;
422
423 for (i = 0; i < mci->nr_csrows; i++) {
424 csrow = mci->csrows[i];
425 if (!nr_pages_per_csrow(csrow))
426 continue;
427 err = edac_create_csrow_object(mci, mci->csrows[i], i);
428 if (err < 0)
429 goto error;
430 }
431 return 0;
432
433 error:
434 for (--i; i >= 0; i--) {
435 csrow = mci->csrows[i];
436 if (!nr_pages_per_csrow(csrow))
437 continue;
438 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
439 if (!csrow->channels[chan]->dimm->nr_pages)
440 continue;
441 device_remove_file(&csrow->dev,
442 dynamic_csrow_dimm_attr[chan]);
443 device_remove_file(&csrow->dev,
444 dynamic_csrow_ce_count_attr[chan]);
445 }
446 put_device(&mci->csrows[i]->dev);
447 }
448
449 return err;
450 }
451
452 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
453 {
454 int i, chan;
455 struct csrow_info *csrow;
456
457 for (i = mci->nr_csrows - 1; i >= 0; i--) {
458 csrow = mci->csrows[i];
459 if (!nr_pages_per_csrow(csrow))
460 continue;
461 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
462 if (!csrow->channels[chan]->dimm->nr_pages)
463 continue;
464 debugf1("Removing csrow %d channel %d sysfs nodes\n",
465 i, chan);
466 device_remove_file(&csrow->dev,
467 dynamic_csrow_dimm_attr[chan]);
468 device_remove_file(&csrow->dev,
469 dynamic_csrow_ce_count_attr[chan]);
470 }
471 put_device(&mci->csrows[i]->dev);
472 device_del(&mci->csrows[i]->dev);
473 }
474 }
475 #endif
476
477 /*
478 * Per-dimm (or per-rank) devices
479 */
480
481 #define to_dimm(k) container_of(k, struct dimm_info, dev)
482
483 /* show/store functions for DIMM Label attributes */
484 static ssize_t dimmdev_location_show(struct device *dev,
485 struct device_attribute *mattr, char *data)
486 {
487 struct dimm_info *dimm = to_dimm(dev);
488 struct mem_ctl_info *mci = dimm->mci;
489 int i;
490 char *p = data;
491
492 for (i = 0; i < mci->n_layers; i++) {
493 p += sprintf(p, "%s %d ",
494 edac_layer_name[mci->layers[i].type],
495 dimm->location[i]);
496 }
497
498 return p - data;
499 }
500
501 static ssize_t dimmdev_label_show(struct device *dev,
502 struct device_attribute *mattr, char *data)
503 {
504 struct dimm_info *dimm = to_dimm(dev);
505
506 /* if field has not been initialized, there is nothing to send */
507 if (!dimm->label[0])
508 return 0;
509
510 return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
511 }
512
513 static ssize_t dimmdev_label_store(struct device *dev,
514 struct device_attribute *mattr,
515 const char *data,
516 size_t count)
517 {
518 struct dimm_info *dimm = to_dimm(dev);
519
520 ssize_t max_size = 0;
521
522 max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
523 strncpy(dimm->label, data, max_size);
524 dimm->label[max_size] = '\0';
525
526 return max_size;
527 }
528
529 static ssize_t dimmdev_size_show(struct device *dev,
530 struct device_attribute *mattr, char *data)
531 {
532 struct dimm_info *dimm = to_dimm(dev);
533
534 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
535 }
536
537 static ssize_t dimmdev_mem_type_show(struct device *dev,
538 struct device_attribute *mattr, char *data)
539 {
540 struct dimm_info *dimm = to_dimm(dev);
541
542 return sprintf(data, "%s\n", mem_types[dimm->mtype]);
543 }
544
545 static ssize_t dimmdev_dev_type_show(struct device *dev,
546 struct device_attribute *mattr, char *data)
547 {
548 struct dimm_info *dimm = to_dimm(dev);
549
550 return sprintf(data, "%s\n", dev_types[dimm->dtype]);
551 }
552
553 static ssize_t dimmdev_edac_mode_show(struct device *dev,
554 struct device_attribute *mattr,
555 char *data)
556 {
557 struct dimm_info *dimm = to_dimm(dev);
558
559 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
560 }
561
562 /* dimm/rank attribute files */
563 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
564 dimmdev_label_show, dimmdev_label_store);
565 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
566 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
567 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
568 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
569 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
570
571 /* attributes of the dimm<id>/rank<id> object */
572 static struct attribute *dimm_attrs[] = {
573 &dev_attr_dimm_label.attr,
574 &dev_attr_dimm_location.attr,
575 &dev_attr_size.attr,
576 &dev_attr_dimm_mem_type.attr,
577 &dev_attr_dimm_dev_type.attr,
578 &dev_attr_dimm_edac_mode.attr,
579 NULL,
580 };
581
582 static struct attribute_group dimm_attr_grp = {
583 .attrs = dimm_attrs,
584 };
585
586 static const struct attribute_group *dimm_attr_groups[] = {
587 &dimm_attr_grp,
588 NULL
589 };
590
591 static void dimm_attr_release(struct device *dev)
592 {
593 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
594
595 debugf1("Releasing dimm device %s\n", dev_name(dev));
596 kfree(dimm);
597 }
598
599 static struct device_type dimm_attr_type = {
600 .groups = dimm_attr_groups,
601 .release = dimm_attr_release,
602 };
603
604 /* Create a DIMM object under specifed memory controller device */
605 static int edac_create_dimm_object(struct mem_ctl_info *mci,
606 struct dimm_info *dimm,
607 int index)
608 {
609 int err;
610 dimm->mci = mci;
611
612 dimm->dev.type = &dimm_attr_type;
613 dimm->dev.bus = &mci->bus;
614 device_initialize(&dimm->dev);
615
616 dimm->dev.parent = &mci->dev;
617 if (mci->mem_is_per_rank)
618 dev_set_name(&dimm->dev, "rank%d", index);
619 else
620 dev_set_name(&dimm->dev, "dimm%d", index);
621 dev_set_drvdata(&dimm->dev, dimm);
622 pm_runtime_forbid(&mci->dev);
623
624 err = device_add(&dimm->dev);
625
626 debugf0("%s(): creating rank/dimm device %s\n", __func__,
627 dev_name(&dimm->dev));
628
629 return err;
630 }
631
632 /*
633 * Memory controller device
634 */
635
636 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
637
638 static ssize_t mci_reset_counters_store(struct device *dev,
639 struct device_attribute *mattr,
640 const char *data, size_t count)
641 {
642 struct mem_ctl_info *mci = to_mci(dev);
643 int cnt, row, chan, i;
644 mci->ue_mc = 0;
645 mci->ce_mc = 0;
646 mci->ue_noinfo_count = 0;
647 mci->ce_noinfo_count = 0;
648
649 for (row = 0; row < mci->nr_csrows; row++) {
650 struct csrow_info *ri = mci->csrows[row];
651
652 ri->ue_count = 0;
653 ri->ce_count = 0;
654
655 for (chan = 0; chan < ri->nr_channels; chan++)
656 ri->channels[chan]->ce_count = 0;
657 }
658
659 cnt = 1;
660 for (i = 0; i < mci->n_layers; i++) {
661 cnt *= mci->layers[i].size;
662 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
663 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
664 }
665
666 mci->start_time = jiffies;
667 return count;
668 }
669
670 /* Memory scrubbing interface:
671 *
672 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
673 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
674 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
675 *
676 * Negative value still means that an error has occurred while setting
677 * the scrub rate.
678 */
679 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
680 struct device_attribute *mattr,
681 const char *data, size_t count)
682 {
683 struct mem_ctl_info *mci = to_mci(dev);
684 unsigned long bandwidth = 0;
685 int new_bw = 0;
686
687 if (!mci->set_sdram_scrub_rate)
688 return -ENODEV;
689
690 if (strict_strtoul(data, 10, &bandwidth) < 0)
691 return -EINVAL;
692
693 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
694 if (new_bw < 0) {
695 edac_printk(KERN_WARNING, EDAC_MC,
696 "Error setting scrub rate to: %lu\n", bandwidth);
697 return -EINVAL;
698 }
699
700 return count;
701 }
702
703 /*
704 * ->get_sdram_scrub_rate() return value semantics same as above.
705 */
706 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
707 struct device_attribute *mattr,
708 char *data)
709 {
710 struct mem_ctl_info *mci = to_mci(dev);
711 int bandwidth = 0;
712
713 if (!mci->get_sdram_scrub_rate)
714 return -ENODEV;
715
716 bandwidth = mci->get_sdram_scrub_rate(mci);
717 if (bandwidth < 0) {
718 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
719 return bandwidth;
720 }
721
722 return sprintf(data, "%d\n", bandwidth);
723 }
724
725 /* default attribute files for the MCI object */
726 static ssize_t mci_ue_count_show(struct device *dev,
727 struct device_attribute *mattr,
728 char *data)
729 {
730 struct mem_ctl_info *mci = to_mci(dev);
731
732 return sprintf(data, "%d\n", mci->ue_mc);
733 }
734
735 static ssize_t mci_ce_count_show(struct device *dev,
736 struct device_attribute *mattr,
737 char *data)
738 {
739 struct mem_ctl_info *mci = to_mci(dev);
740
741 return sprintf(data, "%d\n", mci->ce_mc);
742 }
743
744 static ssize_t mci_ce_noinfo_show(struct device *dev,
745 struct device_attribute *mattr,
746 char *data)
747 {
748 struct mem_ctl_info *mci = to_mci(dev);
749
750 return sprintf(data, "%d\n", mci->ce_noinfo_count);
751 }
752
753 static ssize_t mci_ue_noinfo_show(struct device *dev,
754 struct device_attribute *mattr,
755 char *data)
756 {
757 struct mem_ctl_info *mci = to_mci(dev);
758
759 return sprintf(data, "%d\n", mci->ue_noinfo_count);
760 }
761
762 static ssize_t mci_seconds_show(struct device *dev,
763 struct device_attribute *mattr,
764 char *data)
765 {
766 struct mem_ctl_info *mci = to_mci(dev);
767
768 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
769 }
770
771 static ssize_t mci_ctl_name_show(struct device *dev,
772 struct device_attribute *mattr,
773 char *data)
774 {
775 struct mem_ctl_info *mci = to_mci(dev);
776
777 return sprintf(data, "%s\n", mci->ctl_name);
778 }
779
780 static ssize_t mci_size_mb_show(struct device *dev,
781 struct device_attribute *mattr,
782 char *data)
783 {
784 struct mem_ctl_info *mci = to_mci(dev);
785 int total_pages = 0, csrow_idx, j;
786
787 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
788 struct csrow_info *csrow = mci->csrows[csrow_idx];
789
790 for (j = 0; j < csrow->nr_channels; j++) {
791 struct dimm_info *dimm = csrow->channels[j]->dimm;
792
793 total_pages += dimm->nr_pages;
794 }
795 }
796
797 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
798 }
799
800 static ssize_t mci_max_location_show(struct device *dev,
801 struct device_attribute *mattr,
802 char *data)
803 {
804 struct mem_ctl_info *mci = to_mci(dev);
805 int i;
806 char *p = data;
807
808 for (i = 0; i < mci->n_layers; i++) {
809 p += sprintf(p, "%s %d ",
810 edac_layer_name[mci->layers[i].type],
811 mci->layers[i].size - 1);
812 }
813
814 return p - data;
815 }
816
817 #ifdef CONFIG_EDAC_DEBUG
818 static ssize_t edac_fake_inject_write(struct file *file,
819 const char __user *data,
820 size_t count, loff_t *ppos)
821 {
822 struct device *dev = file->private_data;
823 struct mem_ctl_info *mci = to_mci(dev);
824 static enum hw_event_mc_err_type type;
825
826 type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
827 : HW_EVENT_ERR_CORRECTED;
828
829 printk(KERN_DEBUG
830 "Generating a %s fake error to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
831 (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
832 mci->fake_inject_layer[0],
833 mci->fake_inject_layer[1],
834 mci->fake_inject_layer[2]
835 );
836 edac_mc_handle_error(type, mci, 0, 0, 0,
837 mci->fake_inject_layer[0],
838 mci->fake_inject_layer[1],
839 mci->fake_inject_layer[2],
840 "FAKE ERROR", "for EDAC testing only", NULL);
841
842 return count;
843 }
844
845 static int debugfs_open(struct inode *inode, struct file *file)
846 {
847 file->private_data = inode->i_private;
848 return 0;
849 }
850
851 static const struct file_operations debug_fake_inject_fops = {
852 .open = debugfs_open,
853 .write = edac_fake_inject_write,
854 .llseek = generic_file_llseek,
855 };
856 #endif
857
858 /* default Control file */
859 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
860
861 /* default Attribute files */
862 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
863 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
864 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
865 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
866 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
867 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
868 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
869 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
870
871 /* memory scrubber attribute file */
872 DEVICE_ATTR(sdram_scrub_rate, S_IRUGO | S_IWUSR, mci_sdram_scrub_rate_show,
873 mci_sdram_scrub_rate_store);
874
875 static struct attribute *mci_attrs[] = {
876 &dev_attr_reset_counters.attr,
877 &dev_attr_mc_name.attr,
878 &dev_attr_size_mb.attr,
879 &dev_attr_seconds_since_reset.attr,
880 &dev_attr_ue_noinfo_count.attr,
881 &dev_attr_ce_noinfo_count.attr,
882 &dev_attr_ue_count.attr,
883 &dev_attr_ce_count.attr,
884 &dev_attr_sdram_scrub_rate.attr,
885 &dev_attr_max_location.attr,
886 NULL
887 };
888
889 static struct attribute_group mci_attr_grp = {
890 .attrs = mci_attrs,
891 };
892
893 static const struct attribute_group *mci_attr_groups[] = {
894 &mci_attr_grp,
895 NULL
896 };
897
898 static void mci_attr_release(struct device *dev)
899 {
900 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
901
902 debugf1("Releasing csrow device %s\n", dev_name(dev));
903 kfree(mci);
904 }
905
906 static struct device_type mci_attr_type = {
907 .groups = mci_attr_groups,
908 .release = mci_attr_release,
909 };
910
911 #ifdef CONFIG_EDAC_DEBUG
912 int edac_create_debug_nodes(struct mem_ctl_info *mci)
913 {
914 struct dentry *d, *parent;
915 char name[80];
916 int i;
917
918 d = debugfs_create_dir(mci->dev.kobj.name, mci->debugfs);
919 if (!d)
920 return -ENOMEM;
921 parent = d;
922
923 for (i = 0; i < mci->n_layers; i++) {
924 sprintf(name, "fake_inject_%s",
925 edac_layer_name[mci->layers[i].type]);
926 d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
927 &mci->fake_inject_layer[i]);
928 if (!d)
929 goto nomem;
930 }
931
932 d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
933 &mci->fake_inject_ue);
934 if (!d)
935 goto nomem;
936
937 d = debugfs_create_file("fake_inject", S_IWUSR, parent,
938 &mci->dev,
939 &debug_fake_inject_fops);
940 if (!d)
941 goto nomem;
942
943 return 0;
944 nomem:
945 debugfs_remove(mci->debugfs);
946 return -ENOMEM;
947 }
948 #endif
949
950 /*
951 * Create a new Memory Controller kobject instance,
952 * mc<id> under the 'mc' directory
953 *
954 * Return:
955 * 0 Success
956 * !0 Failure
957 */
958 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
959 {
960 int i, err;
961
962 /*
963 * The memory controller needs its own bus, in order to avoid
964 * namespace conflicts at /sys/bus/edac.
965 */
966 mci->bus.name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
967 if (!mci->bus.name)
968 return -ENOMEM;
969 debugf0("creating bus %s\n",mci->bus.name);
970 err = bus_register(&mci->bus);
971 if (err < 0)
972 return err;
973
974 /* get the /sys/devices/system/edac subsys reference */
975 mci->dev.type = &mci_attr_type;
976 device_initialize(&mci->dev);
977
978 mci->dev.parent = mci_pdev;
979 mci->dev.bus = &mci->bus;
980 dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
981 dev_set_drvdata(&mci->dev, mci);
982 pm_runtime_forbid(&mci->dev);
983
984 debugf0("%s(): creating device %s\n", __func__,
985 dev_name(&mci->dev));
986 err = device_add(&mci->dev);
987 if (err < 0) {
988 bus_unregister(&mci->bus);
989 kfree(mci->bus.name);
990 return err;
991 }
992
993 /*
994 * Create the dimm/rank devices
995 */
996 for (i = 0; i < mci->tot_dimms; i++) {
997 struct dimm_info *dimm = mci->dimms[i];
998 /* Only expose populated DIMMs */
999 if (dimm->nr_pages == 0)
1000 continue;
1001 #ifdef CONFIG_EDAC_DEBUG
1002 debugf1("%s creating dimm%d, located at ",
1003 __func__, i);
1004 if (edac_debug_level >= 1) {
1005 int lay;
1006 for (lay = 0; lay < mci->n_layers; lay++)
1007 printk(KERN_CONT "%s %d ",
1008 edac_layer_name[mci->layers[lay].type],
1009 dimm->location[lay]);
1010 printk(KERN_CONT "\n");
1011 }
1012 #endif
1013 err = edac_create_dimm_object(mci, dimm, i);
1014 if (err) {
1015 debugf1("%s() failure: create dimm %d obj\n",
1016 __func__, i);
1017 goto fail;
1018 }
1019 }
1020
1021 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1022 err = edac_create_csrow_objects(mci);
1023 if (err < 0)
1024 goto fail;
1025 #endif
1026
1027 #ifdef CONFIG_EDAC_DEBUG
1028 edac_create_debug_nodes(mci);
1029 #endif
1030 return 0;
1031
1032 fail:
1033 for (i--; i >= 0; i--) {
1034 struct dimm_info *dimm = mci->dimms[i];
1035 if (dimm->nr_pages == 0)
1036 continue;
1037 put_device(&dimm->dev);
1038 device_del(&dimm->dev);
1039 }
1040 put_device(&mci->dev);
1041 device_del(&mci->dev);
1042 bus_unregister(&mci->bus);
1043 kfree(mci->bus.name);
1044 return err;
1045 }
1046
1047 /*
1048 * remove a Memory Controller instance
1049 */
1050 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1051 {
1052 int i;
1053
1054 debugf0("%s()\n", __func__);
1055
1056 #ifdef CONFIG_EDAC_DEBUG
1057 debugfs_remove(mci->debugfs);
1058 #endif
1059 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1060 edac_delete_csrow_objects(mci);
1061 #endif
1062
1063 for (i = 0; i < mci->tot_dimms; i++) {
1064 struct dimm_info *dimm = mci->dimms[i];
1065 if (dimm->nr_pages == 0)
1066 continue;
1067 debugf0("%s(): removing device %s\n", __func__,
1068 dev_name(&dimm->dev));
1069 put_device(&dimm->dev);
1070 device_del(&dimm->dev);
1071 }
1072 }
1073
1074 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1075 {
1076 debugf1("Unregistering device %s\n", dev_name(&mci->dev));
1077 put_device(&mci->dev);
1078 device_del(&mci->dev);
1079 bus_unregister(&mci->bus);
1080 kfree(mci->bus.name);
1081 }
1082
1083 static void mc_attr_release(struct device *dev)
1084 {
1085 /*
1086 * There's no container structure here, as this is just the mci
1087 * parent device, used to create the /sys/devices/mc sysfs node.
1088 * So, there are no attributes on it.
1089 */
1090 debugf1("Releasing device %s\n", dev_name(dev));
1091 kfree(dev);
1092 }
1093
1094 static struct device_type mc_attr_type = {
1095 .release = mc_attr_release,
1096 };
1097 /*
1098 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1099 */
1100 int __init edac_mc_sysfs_init(void)
1101 {
1102 struct bus_type *edac_subsys;
1103 int err;
1104
1105 /* get the /sys/devices/system/edac subsys reference */
1106 edac_subsys = edac_get_sysfs_subsys();
1107 if (edac_subsys == NULL) {
1108 debugf1("%s() no edac_subsys\n", __func__);
1109 return -EINVAL;
1110 }
1111
1112 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1113
1114 mci_pdev->bus = edac_subsys;
1115 mci_pdev->type = &mc_attr_type;
1116 device_initialize(mci_pdev);
1117 dev_set_name(mci_pdev, "mc");
1118
1119 err = device_add(mci_pdev);
1120 if (err < 0)
1121 return err;
1122
1123 debugf0("device %s created\n", dev_name(mci_pdev));
1124
1125 return 0;
1126 }
1127
1128 void __exit edac_mc_sysfs_exit(void)
1129 {
1130 put_device(mci_pdev);
1131 device_del(mci_pdev);
1132 edac_put_sysfs_subsys();
1133 }
This page took 0.057321 seconds and 5 git commands to generate.