sb_edac: enable multiple PCI id tables to be used
[deliverable/linux.git] / drivers / edac / edac_mc_sysfs.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
4 *
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9 *
10 * (c) 2012-2013 - Mauro Carvalho Chehab <mchehab@redhat.com>
11 * The entire API were re-written, and ported to use struct device
12 *
13 */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_core.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 return edac_mc_log_ue;
35 }
36
37 int edac_mc_get_log_ce(void)
38 {
39 return edac_mc_log_ce;
40 }
41
42 int edac_mc_get_panic_on_ue(void)
43 {
44 return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50 return edac_mc_poll_msec;
51 }
52
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55 long l;
56 int ret;
57
58 if (!val)
59 return -EINVAL;
60
61 ret = kstrtol(val, 0, &l);
62 if (ret)
63 return ret;
64 if ((int)l != l)
65 return -EINVAL;
66 *((int *)kp->arg) = l;
67
68 /* notify edac_mc engine to reset the poll period */
69 edac_mc_reset_delay_period(l);
70
71 return 0;
72 }
73
74 /* Parameter declarations for above */
75 module_param(edac_mc_panic_on_ue, int, 0644);
76 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
77 module_param(edac_mc_log_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_log_ue,
79 "Log uncorrectable error to console: 0=off 1=on");
80 module_param(edac_mc_log_ce, int, 0644);
81 MODULE_PARM_DESC(edac_mc_log_ce,
82 "Log correctable error to console: 0=off 1=on");
83 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
84 &edac_mc_poll_msec, 0644);
85 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
86
87 static struct device *mci_pdev;
88
89 /*
90 * various constants for Memory Controllers
91 */
92 static const char * const mem_types[] = {
93 [MEM_EMPTY] = "Empty",
94 [MEM_RESERVED] = "Reserved",
95 [MEM_UNKNOWN] = "Unknown",
96 [MEM_FPM] = "FPM",
97 [MEM_EDO] = "EDO",
98 [MEM_BEDO] = "BEDO",
99 [MEM_SDR] = "Unbuffered-SDR",
100 [MEM_RDR] = "Registered-SDR",
101 [MEM_DDR] = "Unbuffered-DDR",
102 [MEM_RDDR] = "Registered-DDR",
103 [MEM_RMBS] = "RMBS",
104 [MEM_DDR2] = "Unbuffered-DDR2",
105 [MEM_FB_DDR2] = "FullyBuffered-DDR2",
106 [MEM_RDDR2] = "Registered-DDR2",
107 [MEM_XDR] = "XDR",
108 [MEM_DDR3] = "Unbuffered-DDR3",
109 [MEM_RDDR3] = "Registered-DDR3"
110 };
111
112 static const char * const dev_types[] = {
113 [DEV_UNKNOWN] = "Unknown",
114 [DEV_X1] = "x1",
115 [DEV_X2] = "x2",
116 [DEV_X4] = "x4",
117 [DEV_X8] = "x8",
118 [DEV_X16] = "x16",
119 [DEV_X32] = "x32",
120 [DEV_X64] = "x64"
121 };
122
123 static const char * const edac_caps[] = {
124 [EDAC_UNKNOWN] = "Unknown",
125 [EDAC_NONE] = "None",
126 [EDAC_RESERVED] = "Reserved",
127 [EDAC_PARITY] = "PARITY",
128 [EDAC_EC] = "EC",
129 [EDAC_SECDED] = "SECDED",
130 [EDAC_S2ECD2ED] = "S2ECD2ED",
131 [EDAC_S4ECD4ED] = "S4ECD4ED",
132 [EDAC_S8ECD8ED] = "S8ECD8ED",
133 [EDAC_S16ECD16ED] = "S16ECD16ED"
134 };
135
136 #ifdef CONFIG_EDAC_LEGACY_SYSFS
137 /*
138 * EDAC sysfs CSROW data structures and methods
139 */
140
141 #define to_csrow(k) container_of(k, struct csrow_info, dev)
142
143 /*
144 * We need it to avoid namespace conflicts between the legacy API
145 * and the per-dimm/per-rank one
146 */
147 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
148 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
149
150 struct dev_ch_attribute {
151 struct device_attribute attr;
152 int channel;
153 };
154
155 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
156 struct dev_ch_attribute dev_attr_legacy_##_name = \
157 { __ATTR(_name, _mode, _show, _store), (_var) }
158
159 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
160
161 /* Set of more default csrow<id> attribute show/store functions */
162 static ssize_t csrow_ue_count_show(struct device *dev,
163 struct device_attribute *mattr, char *data)
164 {
165 struct csrow_info *csrow = to_csrow(dev);
166
167 return sprintf(data, "%u\n", csrow->ue_count);
168 }
169
170 static ssize_t csrow_ce_count_show(struct device *dev,
171 struct device_attribute *mattr, char *data)
172 {
173 struct csrow_info *csrow = to_csrow(dev);
174
175 return sprintf(data, "%u\n", csrow->ce_count);
176 }
177
178 static ssize_t csrow_size_show(struct device *dev,
179 struct device_attribute *mattr, char *data)
180 {
181 struct csrow_info *csrow = to_csrow(dev);
182 int i;
183 u32 nr_pages = 0;
184
185 for (i = 0; i < csrow->nr_channels; i++)
186 nr_pages += csrow->channels[i]->dimm->nr_pages;
187 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
188 }
189
190 static ssize_t csrow_mem_type_show(struct device *dev,
191 struct device_attribute *mattr, char *data)
192 {
193 struct csrow_info *csrow = to_csrow(dev);
194
195 return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
196 }
197
198 static ssize_t csrow_dev_type_show(struct device *dev,
199 struct device_attribute *mattr, char *data)
200 {
201 struct csrow_info *csrow = to_csrow(dev);
202
203 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
204 }
205
206 static ssize_t csrow_edac_mode_show(struct device *dev,
207 struct device_attribute *mattr,
208 char *data)
209 {
210 struct csrow_info *csrow = to_csrow(dev);
211
212 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
213 }
214
215 /* show/store functions for DIMM Label attributes */
216 static ssize_t channel_dimm_label_show(struct device *dev,
217 struct device_attribute *mattr,
218 char *data)
219 {
220 struct csrow_info *csrow = to_csrow(dev);
221 unsigned chan = to_channel(mattr);
222 struct rank_info *rank = csrow->channels[chan];
223
224 /* if field has not been initialized, there is nothing to send */
225 if (!rank->dimm->label[0])
226 return 0;
227
228 return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
229 rank->dimm->label);
230 }
231
232 static ssize_t channel_dimm_label_store(struct device *dev,
233 struct device_attribute *mattr,
234 const char *data, size_t count)
235 {
236 struct csrow_info *csrow = to_csrow(dev);
237 unsigned chan = to_channel(mattr);
238 struct rank_info *rank = csrow->channels[chan];
239
240 ssize_t max_size = 0;
241
242 max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
243 strncpy(rank->dimm->label, data, max_size);
244 rank->dimm->label[max_size] = '\0';
245
246 return max_size;
247 }
248
249 /* show function for dynamic chX_ce_count attribute */
250 static ssize_t channel_ce_count_show(struct device *dev,
251 struct device_attribute *mattr, char *data)
252 {
253 struct csrow_info *csrow = to_csrow(dev);
254 unsigned chan = to_channel(mattr);
255 struct rank_info *rank = csrow->channels[chan];
256
257 return sprintf(data, "%u\n", rank->ce_count);
258 }
259
260 /* cwrow<id>/attribute files */
261 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
262 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
263 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
264 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
265 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
266 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
267
268 /* default attributes of the CSROW<id> object */
269 static struct attribute *csrow_attrs[] = {
270 &dev_attr_legacy_dev_type.attr,
271 &dev_attr_legacy_mem_type.attr,
272 &dev_attr_legacy_edac_mode.attr,
273 &dev_attr_legacy_size_mb.attr,
274 &dev_attr_legacy_ue_count.attr,
275 &dev_attr_legacy_ce_count.attr,
276 NULL,
277 };
278
279 static struct attribute_group csrow_attr_grp = {
280 .attrs = csrow_attrs,
281 };
282
283 static const struct attribute_group *csrow_attr_groups[] = {
284 &csrow_attr_grp,
285 NULL
286 };
287
288 static void csrow_attr_release(struct device *dev)
289 {
290 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
291
292 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
293 kfree(csrow);
294 }
295
296 static struct device_type csrow_attr_type = {
297 .groups = csrow_attr_groups,
298 .release = csrow_attr_release,
299 };
300
301 /*
302 * possible dynamic channel DIMM Label attribute files
303 *
304 */
305
306 #define EDAC_NR_CHANNELS 6
307
308 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
309 channel_dimm_label_show, channel_dimm_label_store, 0);
310 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
311 channel_dimm_label_show, channel_dimm_label_store, 1);
312 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
313 channel_dimm_label_show, channel_dimm_label_store, 2);
314 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
315 channel_dimm_label_show, channel_dimm_label_store, 3);
316 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
317 channel_dimm_label_show, channel_dimm_label_store, 4);
318 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
319 channel_dimm_label_show, channel_dimm_label_store, 5);
320
321 /* Total possible dynamic DIMM Label attribute file table */
322 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
323 &dev_attr_legacy_ch0_dimm_label.attr,
324 &dev_attr_legacy_ch1_dimm_label.attr,
325 &dev_attr_legacy_ch2_dimm_label.attr,
326 &dev_attr_legacy_ch3_dimm_label.attr,
327 &dev_attr_legacy_ch4_dimm_label.attr,
328 &dev_attr_legacy_ch5_dimm_label.attr
329 };
330
331 /* possible dynamic channel ce_count attribute files */
332 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
333 channel_ce_count_show, NULL, 0);
334 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
335 channel_ce_count_show, NULL, 1);
336 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
337 channel_ce_count_show, NULL, 2);
338 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
339 channel_ce_count_show, NULL, 3);
340 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
341 channel_ce_count_show, NULL, 4);
342 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
343 channel_ce_count_show, NULL, 5);
344
345 /* Total possible dynamic ce_count attribute file table */
346 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
347 &dev_attr_legacy_ch0_ce_count.attr,
348 &dev_attr_legacy_ch1_ce_count.attr,
349 &dev_attr_legacy_ch2_ce_count.attr,
350 &dev_attr_legacy_ch3_ce_count.attr,
351 &dev_attr_legacy_ch4_ce_count.attr,
352 &dev_attr_legacy_ch5_ce_count.attr
353 };
354
355 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
356 {
357 int chan, nr_pages = 0;
358
359 for (chan = 0; chan < csrow->nr_channels; chan++)
360 nr_pages += csrow->channels[chan]->dimm->nr_pages;
361
362 return nr_pages;
363 }
364
365 /* Create a CSROW object under specifed edac_mc_device */
366 static int edac_create_csrow_object(struct mem_ctl_info *mci,
367 struct csrow_info *csrow, int index)
368 {
369 int err, chan;
370
371 if (csrow->nr_channels >= EDAC_NR_CHANNELS)
372 return -ENODEV;
373
374 csrow->dev.type = &csrow_attr_type;
375 csrow->dev.bus = mci->bus;
376 device_initialize(&csrow->dev);
377 csrow->dev.parent = &mci->dev;
378 csrow->mci = mci;
379 dev_set_name(&csrow->dev, "csrow%d", index);
380 dev_set_drvdata(&csrow->dev, csrow);
381
382 edac_dbg(0, "creating (virtual) csrow node %s\n",
383 dev_name(&csrow->dev));
384
385 err = device_add(&csrow->dev);
386 if (err < 0)
387 return err;
388
389 for (chan = 0; chan < csrow->nr_channels; chan++) {
390 /* Only expose populated DIMMs */
391 if (!csrow->channels[chan]->dimm->nr_pages)
392 continue;
393 err = device_create_file(&csrow->dev,
394 dynamic_csrow_dimm_attr[chan]);
395 if (err < 0)
396 goto error;
397 err = device_create_file(&csrow->dev,
398 dynamic_csrow_ce_count_attr[chan]);
399 if (err < 0) {
400 device_remove_file(&csrow->dev,
401 dynamic_csrow_dimm_attr[chan]);
402 goto error;
403 }
404 }
405
406 return 0;
407
408 error:
409 for (--chan; chan >= 0; chan--) {
410 device_remove_file(&csrow->dev,
411 dynamic_csrow_dimm_attr[chan]);
412 device_remove_file(&csrow->dev,
413 dynamic_csrow_ce_count_attr[chan]);
414 }
415 put_device(&csrow->dev);
416
417 return err;
418 }
419
420 /* Create a CSROW object under specifed edac_mc_device */
421 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
422 {
423 int err, i, chan;
424 struct csrow_info *csrow;
425
426 for (i = 0; i < mci->nr_csrows; i++) {
427 csrow = mci->csrows[i];
428 if (!nr_pages_per_csrow(csrow))
429 continue;
430 err = edac_create_csrow_object(mci, mci->csrows[i], i);
431 if (err < 0) {
432 edac_dbg(1,
433 "failure: create csrow objects for csrow %d\n",
434 i);
435 goto error;
436 }
437 }
438 return 0;
439
440 error:
441 for (--i; i >= 0; i--) {
442 csrow = mci->csrows[i];
443 if (!nr_pages_per_csrow(csrow))
444 continue;
445 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
446 if (!csrow->channels[chan]->dimm->nr_pages)
447 continue;
448 device_remove_file(&csrow->dev,
449 dynamic_csrow_dimm_attr[chan]);
450 device_remove_file(&csrow->dev,
451 dynamic_csrow_ce_count_attr[chan]);
452 }
453 put_device(&mci->csrows[i]->dev);
454 }
455
456 return err;
457 }
458
459 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
460 {
461 int i, chan;
462 struct csrow_info *csrow;
463
464 for (i = mci->nr_csrows - 1; i >= 0; i--) {
465 csrow = mci->csrows[i];
466 if (!nr_pages_per_csrow(csrow))
467 continue;
468 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
469 if (!csrow->channels[chan]->dimm->nr_pages)
470 continue;
471 edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
472 i, chan);
473 device_remove_file(&csrow->dev,
474 dynamic_csrow_dimm_attr[chan]);
475 device_remove_file(&csrow->dev,
476 dynamic_csrow_ce_count_attr[chan]);
477 }
478 device_unregister(&mci->csrows[i]->dev);
479 }
480 }
481 #endif
482
483 /*
484 * Per-dimm (or per-rank) devices
485 */
486
487 #define to_dimm(k) container_of(k, struct dimm_info, dev)
488
489 /* show/store functions for DIMM Label attributes */
490 static ssize_t dimmdev_location_show(struct device *dev,
491 struct device_attribute *mattr, char *data)
492 {
493 struct dimm_info *dimm = to_dimm(dev);
494
495 return edac_dimm_info_location(dimm, data, PAGE_SIZE);
496 }
497
498 static ssize_t dimmdev_label_show(struct device *dev,
499 struct device_attribute *mattr, char *data)
500 {
501 struct dimm_info *dimm = to_dimm(dev);
502
503 /* if field has not been initialized, there is nothing to send */
504 if (!dimm->label[0])
505 return 0;
506
507 return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
508 }
509
510 static ssize_t dimmdev_label_store(struct device *dev,
511 struct device_attribute *mattr,
512 const char *data,
513 size_t count)
514 {
515 struct dimm_info *dimm = to_dimm(dev);
516
517 ssize_t max_size = 0;
518
519 max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
520 strncpy(dimm->label, data, max_size);
521 dimm->label[max_size] = '\0';
522
523 return max_size;
524 }
525
526 static ssize_t dimmdev_size_show(struct device *dev,
527 struct device_attribute *mattr, char *data)
528 {
529 struct dimm_info *dimm = to_dimm(dev);
530
531 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
532 }
533
534 static ssize_t dimmdev_mem_type_show(struct device *dev,
535 struct device_attribute *mattr, char *data)
536 {
537 struct dimm_info *dimm = to_dimm(dev);
538
539 return sprintf(data, "%s\n", mem_types[dimm->mtype]);
540 }
541
542 static ssize_t dimmdev_dev_type_show(struct device *dev,
543 struct device_attribute *mattr, char *data)
544 {
545 struct dimm_info *dimm = to_dimm(dev);
546
547 return sprintf(data, "%s\n", dev_types[dimm->dtype]);
548 }
549
550 static ssize_t dimmdev_edac_mode_show(struct device *dev,
551 struct device_attribute *mattr,
552 char *data)
553 {
554 struct dimm_info *dimm = to_dimm(dev);
555
556 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
557 }
558
559 /* dimm/rank attribute files */
560 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
561 dimmdev_label_show, dimmdev_label_store);
562 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
563 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
564 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
565 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
566 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
567
568 /* attributes of the dimm<id>/rank<id> object */
569 static struct attribute *dimm_attrs[] = {
570 &dev_attr_dimm_label.attr,
571 &dev_attr_dimm_location.attr,
572 &dev_attr_size.attr,
573 &dev_attr_dimm_mem_type.attr,
574 &dev_attr_dimm_dev_type.attr,
575 &dev_attr_dimm_edac_mode.attr,
576 NULL,
577 };
578
579 static struct attribute_group dimm_attr_grp = {
580 .attrs = dimm_attrs,
581 };
582
583 static const struct attribute_group *dimm_attr_groups[] = {
584 &dimm_attr_grp,
585 NULL
586 };
587
588 static void dimm_attr_release(struct device *dev)
589 {
590 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
591
592 edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
593 kfree(dimm);
594 }
595
596 static struct device_type dimm_attr_type = {
597 .groups = dimm_attr_groups,
598 .release = dimm_attr_release,
599 };
600
601 /* Create a DIMM object under specifed memory controller device */
602 static int edac_create_dimm_object(struct mem_ctl_info *mci,
603 struct dimm_info *dimm,
604 int index)
605 {
606 int err;
607 dimm->mci = mci;
608
609 dimm->dev.type = &dimm_attr_type;
610 dimm->dev.bus = mci->bus;
611 device_initialize(&dimm->dev);
612
613 dimm->dev.parent = &mci->dev;
614 if (mci->csbased)
615 dev_set_name(&dimm->dev, "rank%d", index);
616 else
617 dev_set_name(&dimm->dev, "dimm%d", index);
618 dev_set_drvdata(&dimm->dev, dimm);
619 pm_runtime_forbid(&mci->dev);
620
621 err = device_add(&dimm->dev);
622
623 edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
624
625 return err;
626 }
627
628 /*
629 * Memory controller device
630 */
631
632 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
633
634 static ssize_t mci_reset_counters_store(struct device *dev,
635 struct device_attribute *mattr,
636 const char *data, size_t count)
637 {
638 struct mem_ctl_info *mci = to_mci(dev);
639 int cnt, row, chan, i;
640 mci->ue_mc = 0;
641 mci->ce_mc = 0;
642 mci->ue_noinfo_count = 0;
643 mci->ce_noinfo_count = 0;
644
645 for (row = 0; row < mci->nr_csrows; row++) {
646 struct csrow_info *ri = mci->csrows[row];
647
648 ri->ue_count = 0;
649 ri->ce_count = 0;
650
651 for (chan = 0; chan < ri->nr_channels; chan++)
652 ri->channels[chan]->ce_count = 0;
653 }
654
655 cnt = 1;
656 for (i = 0; i < mci->n_layers; i++) {
657 cnt *= mci->layers[i].size;
658 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
659 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
660 }
661
662 mci->start_time = jiffies;
663 return count;
664 }
665
666 /* Memory scrubbing interface:
667 *
668 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
669 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
670 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
671 *
672 * Negative value still means that an error has occurred while setting
673 * the scrub rate.
674 */
675 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
676 struct device_attribute *mattr,
677 const char *data, size_t count)
678 {
679 struct mem_ctl_info *mci = to_mci(dev);
680 unsigned long bandwidth = 0;
681 int new_bw = 0;
682
683 if (kstrtoul(data, 10, &bandwidth) < 0)
684 return -EINVAL;
685
686 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
687 if (new_bw < 0) {
688 edac_printk(KERN_WARNING, EDAC_MC,
689 "Error setting scrub rate to: %lu\n", bandwidth);
690 return -EINVAL;
691 }
692
693 return count;
694 }
695
696 /*
697 * ->get_sdram_scrub_rate() return value semantics same as above.
698 */
699 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
700 struct device_attribute *mattr,
701 char *data)
702 {
703 struct mem_ctl_info *mci = to_mci(dev);
704 int bandwidth = 0;
705
706 bandwidth = mci->get_sdram_scrub_rate(mci);
707 if (bandwidth < 0) {
708 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
709 return bandwidth;
710 }
711
712 return sprintf(data, "%d\n", bandwidth);
713 }
714
715 /* default attribute files for the MCI object */
716 static ssize_t mci_ue_count_show(struct device *dev,
717 struct device_attribute *mattr,
718 char *data)
719 {
720 struct mem_ctl_info *mci = to_mci(dev);
721
722 return sprintf(data, "%d\n", mci->ue_mc);
723 }
724
725 static ssize_t mci_ce_count_show(struct device *dev,
726 struct device_attribute *mattr,
727 char *data)
728 {
729 struct mem_ctl_info *mci = to_mci(dev);
730
731 return sprintf(data, "%d\n", mci->ce_mc);
732 }
733
734 static ssize_t mci_ce_noinfo_show(struct device *dev,
735 struct device_attribute *mattr,
736 char *data)
737 {
738 struct mem_ctl_info *mci = to_mci(dev);
739
740 return sprintf(data, "%d\n", mci->ce_noinfo_count);
741 }
742
743 static ssize_t mci_ue_noinfo_show(struct device *dev,
744 struct device_attribute *mattr,
745 char *data)
746 {
747 struct mem_ctl_info *mci = to_mci(dev);
748
749 return sprintf(data, "%d\n", mci->ue_noinfo_count);
750 }
751
752 static ssize_t mci_seconds_show(struct device *dev,
753 struct device_attribute *mattr,
754 char *data)
755 {
756 struct mem_ctl_info *mci = to_mci(dev);
757
758 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
759 }
760
761 static ssize_t mci_ctl_name_show(struct device *dev,
762 struct device_attribute *mattr,
763 char *data)
764 {
765 struct mem_ctl_info *mci = to_mci(dev);
766
767 return sprintf(data, "%s\n", mci->ctl_name);
768 }
769
770 static ssize_t mci_size_mb_show(struct device *dev,
771 struct device_attribute *mattr,
772 char *data)
773 {
774 struct mem_ctl_info *mci = to_mci(dev);
775 int total_pages = 0, csrow_idx, j;
776
777 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
778 struct csrow_info *csrow = mci->csrows[csrow_idx];
779
780 for (j = 0; j < csrow->nr_channels; j++) {
781 struct dimm_info *dimm = csrow->channels[j]->dimm;
782
783 total_pages += dimm->nr_pages;
784 }
785 }
786
787 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
788 }
789
790 static ssize_t mci_max_location_show(struct device *dev,
791 struct device_attribute *mattr,
792 char *data)
793 {
794 struct mem_ctl_info *mci = to_mci(dev);
795 int i;
796 char *p = data;
797
798 for (i = 0; i < mci->n_layers; i++) {
799 p += sprintf(p, "%s %d ",
800 edac_layer_name[mci->layers[i].type],
801 mci->layers[i].size - 1);
802 }
803
804 return p - data;
805 }
806
807 #ifdef CONFIG_EDAC_DEBUG
808 static ssize_t edac_fake_inject_write(struct file *file,
809 const char __user *data,
810 size_t count, loff_t *ppos)
811 {
812 struct device *dev = file->private_data;
813 struct mem_ctl_info *mci = to_mci(dev);
814 static enum hw_event_mc_err_type type;
815 u16 errcount = mci->fake_inject_count;
816
817 if (!errcount)
818 errcount = 1;
819
820 type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
821 : HW_EVENT_ERR_CORRECTED;
822
823 printk(KERN_DEBUG
824 "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
825 errcount,
826 (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
827 errcount > 1 ? "s" : "",
828 mci->fake_inject_layer[0],
829 mci->fake_inject_layer[1],
830 mci->fake_inject_layer[2]
831 );
832 edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
833 mci->fake_inject_layer[0],
834 mci->fake_inject_layer[1],
835 mci->fake_inject_layer[2],
836 "FAKE ERROR", "for EDAC testing only");
837
838 return count;
839 }
840
841 static const struct file_operations debug_fake_inject_fops = {
842 .open = simple_open,
843 .write = edac_fake_inject_write,
844 .llseek = generic_file_llseek,
845 };
846 #endif
847
848 /* default Control file */
849 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
850
851 /* default Attribute files */
852 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
853 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
854 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
855 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
856 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
857 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
858 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
859 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
860
861 /* memory scrubber attribute file */
862 DEVICE_ATTR(sdram_scrub_rate, 0, NULL, NULL);
863
864 static struct attribute *mci_attrs[] = {
865 &dev_attr_reset_counters.attr,
866 &dev_attr_mc_name.attr,
867 &dev_attr_size_mb.attr,
868 &dev_attr_seconds_since_reset.attr,
869 &dev_attr_ue_noinfo_count.attr,
870 &dev_attr_ce_noinfo_count.attr,
871 &dev_attr_ue_count.attr,
872 &dev_attr_ce_count.attr,
873 &dev_attr_max_location.attr,
874 NULL
875 };
876
877 static struct attribute_group mci_attr_grp = {
878 .attrs = mci_attrs,
879 };
880
881 static const struct attribute_group *mci_attr_groups[] = {
882 &mci_attr_grp,
883 NULL
884 };
885
886 static void mci_attr_release(struct device *dev)
887 {
888 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
889
890 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
891 kfree(mci);
892 }
893
894 static struct device_type mci_attr_type = {
895 .groups = mci_attr_groups,
896 .release = mci_attr_release,
897 };
898
899 #ifdef CONFIG_EDAC_DEBUG
900 static struct dentry *edac_debugfs;
901
902 int __init edac_debugfs_init(void)
903 {
904 edac_debugfs = debugfs_create_dir("edac", NULL);
905 if (IS_ERR(edac_debugfs)) {
906 edac_debugfs = NULL;
907 return -ENOMEM;
908 }
909 return 0;
910 }
911
912 void __exit edac_debugfs_exit(void)
913 {
914 debugfs_remove(edac_debugfs);
915 }
916
917 int edac_create_debug_nodes(struct mem_ctl_info *mci)
918 {
919 struct dentry *d, *parent;
920 char name[80];
921 int i;
922
923 if (!edac_debugfs)
924 return -ENODEV;
925
926 d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
927 if (!d)
928 return -ENOMEM;
929 parent = d;
930
931 for (i = 0; i < mci->n_layers; i++) {
932 sprintf(name, "fake_inject_%s",
933 edac_layer_name[mci->layers[i].type]);
934 d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
935 &mci->fake_inject_layer[i]);
936 if (!d)
937 goto nomem;
938 }
939
940 d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
941 &mci->fake_inject_ue);
942 if (!d)
943 goto nomem;
944
945 d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
946 &mci->fake_inject_count);
947 if (!d)
948 goto nomem;
949
950 d = debugfs_create_file("fake_inject", S_IWUSR, parent,
951 &mci->dev,
952 &debug_fake_inject_fops);
953 if (!d)
954 goto nomem;
955
956 mci->debugfs = parent;
957 return 0;
958 nomem:
959 debugfs_remove(mci->debugfs);
960 return -ENOMEM;
961 }
962 #endif
963
964 /*
965 * Create a new Memory Controller kobject instance,
966 * mc<id> under the 'mc' directory
967 *
968 * Return:
969 * 0 Success
970 * !0 Failure
971 */
972 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
973 {
974 int i, err;
975
976 /*
977 * The memory controller needs its own bus, in order to avoid
978 * namespace conflicts at /sys/bus/edac.
979 */
980 mci->bus->name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
981 if (!mci->bus->name)
982 return -ENOMEM;
983
984 edac_dbg(0, "creating bus %s\n", mci->bus->name);
985
986 err = bus_register(mci->bus);
987 if (err < 0)
988 return err;
989
990 /* get the /sys/devices/system/edac subsys reference */
991 mci->dev.type = &mci_attr_type;
992 device_initialize(&mci->dev);
993
994 mci->dev.parent = mci_pdev;
995 mci->dev.bus = mci->bus;
996 dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
997 dev_set_drvdata(&mci->dev, mci);
998 pm_runtime_forbid(&mci->dev);
999
1000 edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1001 err = device_add(&mci->dev);
1002 if (err < 0) {
1003 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
1004 bus_unregister(mci->bus);
1005 kfree(mci->bus->name);
1006 return err;
1007 }
1008
1009 if (mci->set_sdram_scrub_rate || mci->get_sdram_scrub_rate) {
1010 if (mci->get_sdram_scrub_rate) {
1011 dev_attr_sdram_scrub_rate.attr.mode |= S_IRUGO;
1012 dev_attr_sdram_scrub_rate.show = &mci_sdram_scrub_rate_show;
1013 }
1014 if (mci->set_sdram_scrub_rate) {
1015 dev_attr_sdram_scrub_rate.attr.mode |= S_IWUSR;
1016 dev_attr_sdram_scrub_rate.store = &mci_sdram_scrub_rate_store;
1017 }
1018 err = device_create_file(&mci->dev,
1019 &dev_attr_sdram_scrub_rate);
1020 if (err) {
1021 edac_dbg(1, "failure: create sdram_scrub_rate\n");
1022 goto fail2;
1023 }
1024 }
1025 /*
1026 * Create the dimm/rank devices
1027 */
1028 for (i = 0; i < mci->tot_dimms; i++) {
1029 struct dimm_info *dimm = mci->dimms[i];
1030 /* Only expose populated DIMMs */
1031 if (dimm->nr_pages == 0)
1032 continue;
1033 #ifdef CONFIG_EDAC_DEBUG
1034 edac_dbg(1, "creating dimm%d, located at ", i);
1035 if (edac_debug_level >= 1) {
1036 int lay;
1037 for (lay = 0; lay < mci->n_layers; lay++)
1038 printk(KERN_CONT "%s %d ",
1039 edac_layer_name[mci->layers[lay].type],
1040 dimm->location[lay]);
1041 printk(KERN_CONT "\n");
1042 }
1043 #endif
1044 err = edac_create_dimm_object(mci, dimm, i);
1045 if (err) {
1046 edac_dbg(1, "failure: create dimm %d obj\n", i);
1047 goto fail;
1048 }
1049 }
1050
1051 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1052 err = edac_create_csrow_objects(mci);
1053 if (err < 0)
1054 goto fail;
1055 #endif
1056
1057 #ifdef CONFIG_EDAC_DEBUG
1058 edac_create_debug_nodes(mci);
1059 #endif
1060 return 0;
1061
1062 fail:
1063 for (i--; i >= 0; i--) {
1064 struct dimm_info *dimm = mci->dimms[i];
1065 if (dimm->nr_pages == 0)
1066 continue;
1067 device_unregister(&dimm->dev);
1068 }
1069 fail2:
1070 device_unregister(&mci->dev);
1071 bus_unregister(mci->bus);
1072 kfree(mci->bus->name);
1073 return err;
1074 }
1075
1076 /*
1077 * remove a Memory Controller instance
1078 */
1079 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1080 {
1081 int i;
1082
1083 edac_dbg(0, "\n");
1084
1085 #ifdef CONFIG_EDAC_DEBUG
1086 debugfs_remove(mci->debugfs);
1087 #endif
1088 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1089 edac_delete_csrow_objects(mci);
1090 #endif
1091
1092 for (i = 0; i < mci->tot_dimms; i++) {
1093 struct dimm_info *dimm = mci->dimms[i];
1094 if (dimm->nr_pages == 0)
1095 continue;
1096 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1097 device_unregister(&dimm->dev);
1098 }
1099 }
1100
1101 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1102 {
1103 edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1104 device_unregister(&mci->dev);
1105 bus_unregister(mci->bus);
1106 kfree(mci->bus->name);
1107 }
1108
1109 static void mc_attr_release(struct device *dev)
1110 {
1111 /*
1112 * There's no container structure here, as this is just the mci
1113 * parent device, used to create the /sys/devices/mc sysfs node.
1114 * So, there are no attributes on it.
1115 */
1116 edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1117 kfree(dev);
1118 }
1119
1120 static struct device_type mc_attr_type = {
1121 .release = mc_attr_release,
1122 };
1123 /*
1124 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1125 */
1126 int __init edac_mc_sysfs_init(void)
1127 {
1128 struct bus_type *edac_subsys;
1129 int err;
1130
1131 /* get the /sys/devices/system/edac subsys reference */
1132 edac_subsys = edac_get_sysfs_subsys();
1133 if (edac_subsys == NULL) {
1134 edac_dbg(1, "no edac_subsys\n");
1135 err = -EINVAL;
1136 goto out;
1137 }
1138
1139 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1140 if (!mci_pdev) {
1141 err = -ENOMEM;
1142 goto out_put_sysfs;
1143 }
1144
1145 mci_pdev->bus = edac_subsys;
1146 mci_pdev->type = &mc_attr_type;
1147 device_initialize(mci_pdev);
1148 dev_set_name(mci_pdev, "mc");
1149
1150 err = device_add(mci_pdev);
1151 if (err < 0)
1152 goto out_dev_free;
1153
1154 edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1155
1156 return 0;
1157
1158 out_dev_free:
1159 kfree(mci_pdev);
1160 out_put_sysfs:
1161 edac_put_sysfs_subsys();
1162 out:
1163 return err;
1164 }
1165
1166 void __exit edac_mc_sysfs_exit(void)
1167 {
1168 device_unregister(mci_pdev);
1169 edac_put_sysfs_subsys();
1170 }
This page took 0.064734 seconds and 5 git commands to generate.