drivers-edac: i3000 code tidying
[deliverable/linux.git] / drivers / edac / i3000_edac.c
1 /*
2 * Intel 3000/3010 Memory Controller kernel module
3 * Copyright (C) 2007 Akamai Technologies, Inc.
4 * Shamelessly copied from:
5 * Intel D82875P Memory Controller kernel module
6 * (C) 2003 Linux Networx (http://lnxi.com)
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/slab.h>
17 #include "edac_core.h"
18
19 #define I3000_REVISION "1.1"
20
21 #define EDAC_MOD_STR "i3000_edac"
22
23 #define I3000_RANKS 8
24 #define I3000_RANKS_PER_CHANNEL 4
25 #define I3000_CHANNELS 2
26
27 /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
28
29 #define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
30 #define I3000_MCHBAR_MASK 0xffffc000
31 #define I3000_MMR_WINDOW_SIZE 16384
32
33 #define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
34 *
35 * 7:1 reserved
36 * 0 bit 32 of address
37 */
38 #define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
39 *
40 * 31:7 address
41 * 6:1 reserved
42 * 0 Error channel 0/1
43 */
44 #define I3000_DEAP_GRAIN (1 << 7)
45 #define I3000_DEAP_PFN(edeap, deap) ((((edeap) & 1) << (32 - PAGE_SHIFT)) \
46 | ((deap) >> PAGE_SHIFT))
47 #define I3000_DEAP_OFFSET(deap) ((deap) & ~(I3000_DEAP_GRAIN-1) & \
48 ~PAGE_MASK)
49 #define I3000_DEAP_CHANNEL(deap) ((deap) & 1)
50
51 #define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
52 *
53 * 7:0 DRAM ECC Syndrome
54 */
55
56 #define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
57 *
58 * 15:12 reserved
59 * 11 MCH Thermal Sensor Event
60 * for SMI/SCI/SERR
61 * 10 reserved
62 * 9 LOCK to non-DRAM Memory Flag (LCKF)
63 * 8 Received Refresh Timeout Flag (RRTOF)
64 * 7:2 reserved
65 * 1 Multi-bit DRAM ECC Error Flag (DMERR)
66 * 0 Single-bit DRAM ECC Error Flag (DSERR)
67 */
68 #define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
69 #define I3000_ERRSTS_UE 0x0002
70 #define I3000_ERRSTS_CE 0x0001
71
72 #define I3000_ERRCMD 0xca /* Error Command (16b)
73 *
74 * 15:12 reserved
75 * 11 SERR on MCH Thermal Sensor Event
76 * (TSESERR)
77 * 10 reserved
78 * 9 SERR on LOCK to non-DRAM Memory
79 * (LCKERR)
80 * 8 SERR on DRAM Refresh Timeout
81 * (DRTOERR)
82 * 7:2 reserved
83 * 1 SERR Multi-Bit DRAM ECC Error
84 * (DMERR)
85 * 0 SERR on Single-Bit ECC Error
86 * (DSERR)
87 */
88
89 /* Intel MMIO register space - device 0 function 0 - MMR space */
90
91 #define I3000_DRB_SHIFT 25 /* 32MiB grain */
92
93 #define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
94 *
95 * 7:0 Channel 0 DRAM Rank Boundary Address
96 */
97 #define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
98 *
99 * 7:0 Channel 1 DRAM Rank Boundary Address
100 */
101
102 #define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
103 *
104 * 7 reserved
105 * 6:4 DRAM odd Rank Attribute
106 * 3 reserved
107 * 2:0 DRAM even Rank Attribute
108 *
109 * Each attribute defines the page
110 * size of the corresponding rank:
111 * 000: unpopulated
112 * 001: reserved
113 * 010: 4 KB
114 * 011: 8 KB
115 * 100: 16 KB
116 * Others: reserved
117 */
118 #define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
119 #define ODD_RANK_ATTRIB(dra) (((dra) & 0x70) >> 4)
120 #define EVEN_RANK_ATTRIB(dra) ((dra) & 0x07)
121
122 #define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
123 *
124 * 31:30 reserved
125 * 29 Initialization Complete (IC)
126 * 28:11 reserved
127 * 10:8 Refresh Mode Select (RMS)
128 * 7 reserved
129 * 6:4 Mode Select (SMS)
130 * 3:2 reserved
131 * 1:0 DRAM Type (DT)
132 */
133
134 #define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
135 *
136 * 31 Enhanced Addressing Enable (ENHADE)
137 * 30:0 reserved
138 */
139
140 enum i3000p_chips {
141 I3000 = 0,
142 };
143
144 struct i3000_dev_info {
145 const char *ctl_name;
146 };
147
148 struct i3000_error_info {
149 u16 errsts;
150 u8 derrsyn;
151 u8 edeap;
152 u32 deap;
153 u16 errsts2;
154 };
155
156 static const struct i3000_dev_info i3000_devs[] = {
157 [I3000] = {
158 .ctl_name = "i3000"},
159 };
160
161 static struct pci_dev *mci_pdev;
162 static int i3000_registered = 1;
163 static struct edac_pci_ctl_info *i3000_pci;
164
165 static void i3000_get_error_info(struct mem_ctl_info *mci,
166 struct i3000_error_info *info)
167 {
168 struct pci_dev *pdev;
169
170 pdev = to_pci_dev(mci->dev);
171
172 /*
173 * This is a mess because there is no atomic way to read all the
174 * registers at once and the registers can transition from CE being
175 * overwritten by UE.
176 */
177 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
178 if (!(info->errsts & I3000_ERRSTS_BITS))
179 return;
180 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
181 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
182 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
183 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
184
185 /*
186 * If the error is the same for both reads then the first set
187 * of reads is valid. If there is a change then there is a CE
188 * with no info and the second set of reads is valid and
189 * should be UE info.
190 */
191 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
192 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
193 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
194 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
195 }
196
197 /*
198 * Clear any error bits.
199 * (Yes, we really clear bits by writing 1 to them.)
200 */
201 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
202 I3000_ERRSTS_BITS);
203 }
204
205 static int i3000_process_error_info(struct mem_ctl_info *mci,
206 struct i3000_error_info *info,
207 int handle_errors)
208 {
209 int row, multi_chan;
210 int pfn, offset, channel;
211
212 multi_chan = mci->csrows[0].nr_channels - 1;
213
214 if (!(info->errsts & I3000_ERRSTS_BITS))
215 return 0;
216
217 if (!handle_errors)
218 return 1;
219
220 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
221 edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
222 info->errsts = info->errsts2;
223 }
224
225 pfn = I3000_DEAP_PFN(info->edeap, info->deap);
226 offset = I3000_DEAP_OFFSET(info->deap);
227 channel = I3000_DEAP_CHANNEL(info->deap);
228
229 row = edac_mc_find_csrow_by_page(mci, pfn);
230
231 if (info->errsts & I3000_ERRSTS_UE)
232 edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
233 else
234 edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
235 multi_chan ? channel : 0, "i3000 CE");
236
237 return 1;
238 }
239
240 static void i3000_check(struct mem_ctl_info *mci)
241 {
242 struct i3000_error_info info;
243
244 debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
245 i3000_get_error_info(mci, &info);
246 i3000_process_error_info(mci, &info, 1);
247 }
248
249 static int i3000_is_interleaved(const unsigned char *c0dra,
250 const unsigned char *c1dra,
251 const unsigned char *c0drb,
252 const unsigned char *c1drb)
253 {
254 int i;
255
256 /*
257 * If the channels aren't populated identically then
258 * we're not interleaved.
259 */
260 for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
261 if (ODD_RANK_ATTRIB(c0dra[i]) != ODD_RANK_ATTRIB(c1dra[i]) ||
262 EVEN_RANK_ATTRIB(c0dra[i]) !=
263 EVEN_RANK_ATTRIB(c1dra[i]))
264 return 0;
265
266 /*
267 * If the rank boundaries for the two channels are different
268 * then we're not interleaved.
269 */
270 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
271 if (c0drb[i] != c1drb[i])
272 return 0;
273
274 return 1;
275 }
276
277 static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
278 {
279 int rc;
280 int i;
281 struct mem_ctl_info *mci = NULL;
282 unsigned long last_cumul_size;
283 int interleaved, nr_channels;
284 unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
285 unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
286 unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
287 unsigned long mchbar;
288 void __iomem *window;
289
290 debugf0("MC: %s()\n", __func__);
291
292 pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
293 mchbar &= I3000_MCHBAR_MASK;
294 window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
295 if (!window) {
296 printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
297 mchbar);
298 return -ENODEV;
299 }
300
301 c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
302 c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
303 c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
304 c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
305
306 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
307 c0drb[i] = readb(window + I3000_C0DRB + i);
308 c1drb[i] = readb(window + I3000_C1DRB + i);
309 }
310
311 iounmap(window);
312
313 /*
314 * Figure out how many channels we have.
315 *
316 * If we have what the datasheet calls "asymmetric channels"
317 * (essentially the same as what was called "virtual single
318 * channel mode" in the i82875) then it's a single channel as
319 * far as EDAC is concerned.
320 */
321 interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
322 nr_channels = interleaved ? 2 : 1;
323 mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels, 0);
324 if (!mci)
325 return -ENOMEM;
326
327 debugf3("MC: %s(): init mci\n", __func__);
328
329 mci->dev = &pdev->dev;
330 mci->mtype_cap = MEM_FLAG_DDR2;
331
332 mci->edac_ctl_cap = EDAC_FLAG_SECDED;
333 mci->edac_cap = EDAC_FLAG_SECDED;
334
335 mci->mod_name = EDAC_MOD_STR;
336 mci->mod_ver = I3000_REVISION;
337 mci->ctl_name = i3000_devs[dev_idx].ctl_name;
338 mci->dev_name = pci_name(pdev);
339 mci->edac_check = i3000_check;
340 mci->ctl_page_to_phys = NULL;
341
342 /*
343 * The dram rank boundary (DRB) reg values are boundary addresses
344 * for each DRAM rank with a granularity of 32MB. DRB regs are
345 * cumulative; the last one will contain the total memory
346 * contained in all ranks.
347 *
348 * If we're in interleaved mode then we're only walking through
349 * the ranks of controller 0, so we double all the values we see.
350 */
351 for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
352 u8 value;
353 u32 cumul_size;
354 struct csrow_info *csrow = &mci->csrows[i];
355
356 value = drb[i];
357 cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
358 if (interleaved)
359 cumul_size <<= 1;
360 debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
361 __func__, i, cumul_size);
362 if (cumul_size == last_cumul_size) {
363 csrow->mtype = MEM_EMPTY;
364 continue;
365 }
366
367 csrow->first_page = last_cumul_size;
368 csrow->last_page = cumul_size - 1;
369 csrow->nr_pages = cumul_size - last_cumul_size;
370 last_cumul_size = cumul_size;
371 csrow->grain = I3000_DEAP_GRAIN;
372 csrow->mtype = MEM_DDR2;
373 csrow->dtype = DEV_UNKNOWN;
374 csrow->edac_mode = EDAC_UNKNOWN;
375 }
376
377 /*
378 * Clear any error bits.
379 * (Yes, we really clear bits by writing 1 to them.)
380 */
381 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
382 I3000_ERRSTS_BITS);
383
384 rc = -ENODEV;
385 if (edac_mc_add_mc(mci)) {
386 debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
387 goto fail;
388 }
389
390 /* allocating generic PCI control info */
391 i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
392 if (!i3000_pci) {
393 printk(KERN_WARNING
394 "%s(): Unable to create PCI control\n",
395 __func__);
396 printk(KERN_WARNING
397 "%s(): PCI error report via EDAC not setup\n",
398 __func__);
399 }
400
401 /* get this far and it's successful */
402 debugf3("MC: %s(): success\n", __func__);
403 return 0;
404
405 fail:
406 if (mci)
407 edac_mc_free(mci);
408
409 return rc;
410 }
411
412 /* returns count (>= 0), or negative on error */
413 static int __devinit i3000_init_one(struct pci_dev *pdev,
414 const struct pci_device_id *ent)
415 {
416 int rc;
417
418 debugf0("MC: %s()\n", __func__);
419
420 if (pci_enable_device(pdev) < 0)
421 return -EIO;
422
423 rc = i3000_probe1(pdev, ent->driver_data);
424 if (!mci_pdev)
425 mci_pdev = pci_dev_get(pdev);
426
427 return rc;
428 }
429
430 static void __devexit i3000_remove_one(struct pci_dev *pdev)
431 {
432 struct mem_ctl_info *mci;
433
434 debugf0("%s()\n", __func__);
435
436 if (i3000_pci)
437 edac_pci_release_generic_ctl(i3000_pci);
438
439 mci = edac_mc_del_mc(&pdev->dev);
440 if (!mci)
441 return;
442
443 edac_mc_free(mci);
444 }
445
446 static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
447 {
448 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
449 I3000},
450 {
451 0,
452 } /* 0 terminated list. */
453 };
454
455 MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
456
457 static struct pci_driver i3000_driver = {
458 .name = EDAC_MOD_STR,
459 .probe = i3000_init_one,
460 .remove = __devexit_p(i3000_remove_one),
461 .id_table = i3000_pci_tbl,
462 };
463
464 static int __init i3000_init(void)
465 {
466 int pci_rc;
467
468 debugf3("MC: %s()\n", __func__);
469 pci_rc = pci_register_driver(&i3000_driver);
470 if (pci_rc < 0)
471 goto fail0;
472
473 if (!mci_pdev) {
474 i3000_registered = 0;
475 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
476 PCI_DEVICE_ID_INTEL_3000_HB, NULL);
477 if (!mci_pdev) {
478 debugf0("i3000 pci_get_device fail\n");
479 pci_rc = -ENODEV;
480 goto fail1;
481 }
482
483 pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
484 if (pci_rc < 0) {
485 debugf0("i3000 init fail\n");
486 pci_rc = -ENODEV;
487 goto fail1;
488 }
489 }
490
491 return 0;
492
493 fail1:
494 pci_unregister_driver(&i3000_driver);
495
496 fail0:
497 if (mci_pdev)
498 pci_dev_put(mci_pdev);
499
500 return pci_rc;
501 }
502
503 static void __exit i3000_exit(void)
504 {
505 debugf3("MC: %s()\n", __func__);
506
507 pci_unregister_driver(&i3000_driver);
508 if (!i3000_registered) {
509 i3000_remove_one(mci_pdev);
510 pci_dev_put(mci_pdev);
511 }
512 }
513
514 module_init(i3000_init);
515 module_exit(i3000_exit);
516
517 MODULE_LICENSE("GPL");
518 MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
519 MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
This page took 0.041932 seconds and 6 git commands to generate.