edac: move dimm properties to struct dimm_info
[deliverable/linux.git] / drivers / edac / i7300_edac.c
1 /*
2 * Intel 7300 class Memory Controllers kernel module (Clarksboro)
3 *
4 * This file may be distributed under the terms of the
5 * GNU General Public License version 2 only.
6 *
7 * Copyright (c) 2010 by:
8 * Mauro Carvalho Chehab <mchehab@redhat.com>
9 *
10 * Red Hat Inc. http://www.redhat.com
11 *
12 * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
13 * http://www.intel.com/Assets/PDF/datasheet/318082.pdf
14 *
15 * TODO: The chipset allow checking for PCI Express errors also. Currently,
16 * the driver covers only memory error errors
17 *
18 * This driver uses "csrows" EDAC attribute to represent DIMM slot#
19 */
20
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/pci.h>
24 #include <linux/pci_ids.h>
25 #include <linux/slab.h>
26 #include <linux/edac.h>
27 #include <linux/mmzone.h>
28
29 #include "edac_core.h"
30
31 /*
32 * Alter this version for the I7300 module when modifications are made
33 */
34 #define I7300_REVISION " Ver: 1.0.0"
35
36 #define EDAC_MOD_STR "i7300_edac"
37
38 #define i7300_printk(level, fmt, arg...) \
39 edac_printk(level, "i7300", fmt, ##arg)
40
41 #define i7300_mc_printk(mci, level, fmt, arg...) \
42 edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
43
44 /***********************************************
45 * i7300 Limit constants Structs and static vars
46 ***********************************************/
47
48 /*
49 * Memory topology is organized as:
50 * Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
51 * Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
52 * Each channel can have to 8 DIMM sets (called as SLOTS)
53 * Slots should generally be filled in pairs
54 * Except on Single Channel mode of operation
55 * just slot 0/channel0 filled on this mode
56 * On normal operation mode, the two channels on a branch should be
57 * filled together for the same SLOT#
58 * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
59 * channels on both branches should be filled
60 */
61
62 /* Limits for i7300 */
63 #define MAX_SLOTS 8
64 #define MAX_BRANCHES 2
65 #define MAX_CH_PER_BRANCH 2
66 #define MAX_CHANNELS (MAX_CH_PER_BRANCH * MAX_BRANCHES)
67 #define MAX_MIR 3
68
69 #define to_channel(ch, branch) ((((branch)) << 1) | (ch))
70
71 #define to_csrow(slot, ch, branch) \
72 (to_channel(ch, branch) | ((slot) << 2))
73
74 /* Device name and register DID (Device ID) */
75 struct i7300_dev_info {
76 const char *ctl_name; /* name for this device */
77 u16 fsb_mapping_errors; /* DID for the branchmap,control */
78 };
79
80 /* Table of devices attributes supported by this driver */
81 static const struct i7300_dev_info i7300_devs[] = {
82 {
83 .ctl_name = "I7300",
84 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
85 },
86 };
87
88 struct i7300_dimm_info {
89 int megabytes; /* size, 0 means not present */
90 };
91
92 /* driver private data structure */
93 struct i7300_pvt {
94 struct pci_dev *pci_dev_16_0_fsb_ctlr; /* 16.0 */
95 struct pci_dev *pci_dev_16_1_fsb_addr_map; /* 16.1 */
96 struct pci_dev *pci_dev_16_2_fsb_err_regs; /* 16.2 */
97 struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES]; /* 21.0 and 22.0 */
98
99 u16 tolm; /* top of low memory */
100 u64 ambase; /* AMB BAR */
101
102 u32 mc_settings; /* Report several settings */
103 u32 mc_settings_a;
104
105 u16 mir[MAX_MIR]; /* Memory Interleave Reg*/
106
107 u16 mtr[MAX_SLOTS][MAX_BRANCHES]; /* Memory Technlogy Reg */
108 u16 ambpresent[MAX_CHANNELS]; /* AMB present regs */
109
110 /* DIMM information matrix, allocating architecture maximums */
111 struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
112
113 /* Temporary buffer for use when preparing error messages */
114 char *tmp_prt_buffer;
115 };
116
117 /* FIXME: Why do we need to have this static? */
118 static struct edac_pci_ctl_info *i7300_pci;
119
120 /***************************************************
121 * i7300 Register definitions for memory enumeration
122 ***************************************************/
123
124 /*
125 * Device 16,
126 * Function 0: System Address (not documented)
127 * Function 1: Memory Branch Map, Control, Errors Register
128 */
129
130 /* OFFSETS for Function 0 */
131 #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
132 #define MAXCH 0x56 /* Max Channel Number */
133 #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
134
135 /* OFFSETS for Function 1 */
136 #define MC_SETTINGS 0x40
137 #define IS_MIRRORED(mc) ((mc) & (1 << 16))
138 #define IS_ECC_ENABLED(mc) ((mc) & (1 << 5))
139 #define IS_RETRY_ENABLED(mc) ((mc) & (1 << 31))
140 #define IS_SCRBALGO_ENHANCED(mc) ((mc) & (1 << 8))
141
142 #define MC_SETTINGS_A 0x58
143 #define IS_SINGLE_MODE(mca) ((mca) & (1 << 14))
144
145 #define TOLM 0x6C
146
147 #define MIR0 0x80
148 #define MIR1 0x84
149 #define MIR2 0x88
150
151 /*
152 * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
153 * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
154 * seems that we cannot use this information directly for the same usage.
155 * Each memory slot may have up to 2 AMB interfaces, one for income and another
156 * for outcome interface to the next slot.
157 * For now, the driver just stores the AMB present registers, but rely only at
158 * the MTR info to detect memory.
159 * Datasheet is also not clear about how to map each AMBPRESENT registers to
160 * one of the 4 available channels.
161 */
162 #define AMBPRESENT_0 0x64
163 #define AMBPRESENT_1 0x66
164
165 static const u16 mtr_regs[MAX_SLOTS] = {
166 0x80, 0x84, 0x88, 0x8c,
167 0x82, 0x86, 0x8a, 0x8e
168 };
169
170 /*
171 * Defines to extract the vaious fields from the
172 * MTRx - Memory Technology Registers
173 */
174 #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 8))
175 #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 7))
176 #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
177 #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 5)) ? 8 : 4)
178 #define MTR_DIMM_RANKS(mtr) (((mtr) & (1 << 4)) ? 1 : 0)
179 #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
180 #define MTR_DRAM_BANKS_ADDR_BITS 2
181 #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
182 #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
183 #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
184
185 #ifdef CONFIG_EDAC_DEBUG
186 /* MTR NUMROW */
187 static const char *numrow_toString[] = {
188 "8,192 - 13 rows",
189 "16,384 - 14 rows",
190 "32,768 - 15 rows",
191 "65,536 - 16 rows"
192 };
193
194 /* MTR NUMCOL */
195 static const char *numcol_toString[] = {
196 "1,024 - 10 columns",
197 "2,048 - 11 columns",
198 "4,096 - 12 columns",
199 "reserved"
200 };
201 #endif
202
203 /************************************************
204 * i7300 Register definitions for error detection
205 ************************************************/
206
207 /*
208 * Device 16.1: FBD Error Registers
209 */
210 #define FERR_FAT_FBD 0x98
211 static const char *ferr_fat_fbd_name[] = {
212 [22] = "Non-Redundant Fast Reset Timeout",
213 [2] = ">Tmid Thermal event with intelligent throttling disabled",
214 [1] = "Memory or FBD configuration CRC read error",
215 [0] = "Memory Write error on non-redundant retry or "
216 "FBD configuration Write error on retry",
217 };
218 #define GET_FBD_FAT_IDX(fbderr) (fbderr & (3 << 28))
219 #define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 3))
220
221 #define FERR_NF_FBD 0xa0
222 static const char *ferr_nf_fbd_name[] = {
223 [24] = "DIMM-Spare Copy Completed",
224 [23] = "DIMM-Spare Copy Initiated",
225 [22] = "Redundant Fast Reset Timeout",
226 [21] = "Memory Write error on redundant retry",
227 [18] = "SPD protocol Error",
228 [17] = "FBD Northbound parity error on FBD Sync Status",
229 [16] = "Correctable Patrol Data ECC",
230 [15] = "Correctable Resilver- or Spare-Copy Data ECC",
231 [14] = "Correctable Mirrored Demand Data ECC",
232 [13] = "Correctable Non-Mirrored Demand Data ECC",
233 [11] = "Memory or FBD configuration CRC read error",
234 [10] = "FBD Configuration Write error on first attempt",
235 [9] = "Memory Write error on first attempt",
236 [8] = "Non-Aliased Uncorrectable Patrol Data ECC",
237 [7] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
238 [6] = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
239 [5] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
240 [4] = "Aliased Uncorrectable Patrol Data ECC",
241 [3] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
242 [2] = "Aliased Uncorrectable Mirrored Demand Data ECC",
243 [1] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
244 [0] = "Uncorrectable Data ECC on Replay",
245 };
246 #define GET_FBD_NF_IDX(fbderr) (fbderr & (3 << 28))
247 #define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
248 (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
249 (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
250 (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
251 (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
252 (1 << 1) | (1 << 0))
253
254 #define EMASK_FBD 0xa8
255 #define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
256 (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
257 (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
258 (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
259 (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
260 (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
261 (1 << 1) | (1 << 0))
262
263 /*
264 * Device 16.2: Global Error Registers
265 */
266
267 #define FERR_GLOBAL_HI 0x48
268 static const char *ferr_global_hi_name[] = {
269 [3] = "FSB 3 Fatal Error",
270 [2] = "FSB 2 Fatal Error",
271 [1] = "FSB 1 Fatal Error",
272 [0] = "FSB 0 Fatal Error",
273 };
274 #define ferr_global_hi_is_fatal(errno) 1
275
276 #define FERR_GLOBAL_LO 0x40
277 static const char *ferr_global_lo_name[] = {
278 [31] = "Internal MCH Fatal Error",
279 [30] = "Intel QuickData Technology Device Fatal Error",
280 [29] = "FSB1 Fatal Error",
281 [28] = "FSB0 Fatal Error",
282 [27] = "FBD Channel 3 Fatal Error",
283 [26] = "FBD Channel 2 Fatal Error",
284 [25] = "FBD Channel 1 Fatal Error",
285 [24] = "FBD Channel 0 Fatal Error",
286 [23] = "PCI Express Device 7Fatal Error",
287 [22] = "PCI Express Device 6 Fatal Error",
288 [21] = "PCI Express Device 5 Fatal Error",
289 [20] = "PCI Express Device 4 Fatal Error",
290 [19] = "PCI Express Device 3 Fatal Error",
291 [18] = "PCI Express Device 2 Fatal Error",
292 [17] = "PCI Express Device 1 Fatal Error",
293 [16] = "ESI Fatal Error",
294 [15] = "Internal MCH Non-Fatal Error",
295 [14] = "Intel QuickData Technology Device Non Fatal Error",
296 [13] = "FSB1 Non-Fatal Error",
297 [12] = "FSB 0 Non-Fatal Error",
298 [11] = "FBD Channel 3 Non-Fatal Error",
299 [10] = "FBD Channel 2 Non-Fatal Error",
300 [9] = "FBD Channel 1 Non-Fatal Error",
301 [8] = "FBD Channel 0 Non-Fatal Error",
302 [7] = "PCI Express Device 7 Non-Fatal Error",
303 [6] = "PCI Express Device 6 Non-Fatal Error",
304 [5] = "PCI Express Device 5 Non-Fatal Error",
305 [4] = "PCI Express Device 4 Non-Fatal Error",
306 [3] = "PCI Express Device 3 Non-Fatal Error",
307 [2] = "PCI Express Device 2 Non-Fatal Error",
308 [1] = "PCI Express Device 1 Non-Fatal Error",
309 [0] = "ESI Non-Fatal Error",
310 };
311 #define ferr_global_lo_is_fatal(errno) ((errno < 16) ? 0 : 1)
312
313 #define NRECMEMA 0xbe
314 #define NRECMEMA_BANK(v) (((v) >> 12) & 7)
315 #define NRECMEMA_RANK(v) (((v) >> 8) & 15)
316
317 #define NRECMEMB 0xc0
318 #define NRECMEMB_IS_WR(v) ((v) & (1 << 31))
319 #define NRECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
320 #define NRECMEMB_RAS(v) ((v) & 0xffff)
321
322 #define REDMEMA 0xdc
323
324 #define REDMEMB 0x7c
325 #define IS_SECOND_CH(v) ((v) * (1 << 17))
326
327 #define RECMEMA 0xe0
328 #define RECMEMA_BANK(v) (((v) >> 12) & 7)
329 #define RECMEMA_RANK(v) (((v) >> 8) & 15)
330
331 #define RECMEMB 0xe4
332 #define RECMEMB_IS_WR(v) ((v) & (1 << 31))
333 #define RECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
334 #define RECMEMB_RAS(v) ((v) & 0xffff)
335
336 /********************************************
337 * i7300 Functions related to error detection
338 ********************************************/
339
340 /**
341 * get_err_from_table() - Gets the error message from a table
342 * @table: table name (array of char *)
343 * @size: number of elements at the table
344 * @pos: position of the element to be returned
345 *
346 * This is a small routine that gets the pos-th element of a table. If the
347 * element doesn't exist (or it is empty), it returns "reserved".
348 * Instead of calling it directly, the better is to call via the macro
349 * GET_ERR_FROM_TABLE(), that automatically checks the table size via
350 * ARRAY_SIZE() macro
351 */
352 static const char *get_err_from_table(const char *table[], int size, int pos)
353 {
354 if (unlikely(pos >= size))
355 return "Reserved";
356
357 if (unlikely(!table[pos]))
358 return "Reserved";
359
360 return table[pos];
361 }
362
363 #define GET_ERR_FROM_TABLE(table, pos) \
364 get_err_from_table(table, ARRAY_SIZE(table), pos)
365
366 /**
367 * i7300_process_error_global() - Retrieve the hardware error information from
368 * the hardware global error registers and
369 * sends it to dmesg
370 * @mci: struct mem_ctl_info pointer
371 */
372 static void i7300_process_error_global(struct mem_ctl_info *mci)
373 {
374 struct i7300_pvt *pvt;
375 u32 errnum, error_reg;
376 unsigned long errors;
377 const char *specific;
378 bool is_fatal;
379
380 pvt = mci->pvt_info;
381
382 /* read in the 1st FATAL error register */
383 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
384 FERR_GLOBAL_HI, &error_reg);
385 if (unlikely(error_reg)) {
386 errors = error_reg;
387 errnum = find_first_bit(&errors,
388 ARRAY_SIZE(ferr_global_hi_name));
389 specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
390 is_fatal = ferr_global_hi_is_fatal(errnum);
391
392 /* Clear the error bit */
393 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
394 FERR_GLOBAL_HI, error_reg);
395
396 goto error_global;
397 }
398
399 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
400 FERR_GLOBAL_LO, &error_reg);
401 if (unlikely(error_reg)) {
402 errors = error_reg;
403 errnum = find_first_bit(&errors,
404 ARRAY_SIZE(ferr_global_lo_name));
405 specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
406 is_fatal = ferr_global_lo_is_fatal(errnum);
407
408 /* Clear the error bit */
409 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
410 FERR_GLOBAL_LO, error_reg);
411
412 goto error_global;
413 }
414 return;
415
416 error_global:
417 i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
418 is_fatal ? "Fatal" : "NOT fatal", specific);
419 }
420
421 /**
422 * i7300_process_fbd_error() - Retrieve the hardware error information from
423 * the FBD error registers and sends it via
424 * EDAC error API calls
425 * @mci: struct mem_ctl_info pointer
426 */
427 static void i7300_process_fbd_error(struct mem_ctl_info *mci)
428 {
429 struct i7300_pvt *pvt;
430 u32 errnum, value, error_reg;
431 u16 val16;
432 unsigned branch, channel, bank, rank, cas, ras;
433 u32 syndrome;
434
435 unsigned long errors;
436 const char *specific;
437 bool is_wr;
438
439 pvt = mci->pvt_info;
440
441 /* read in the 1st FATAL error register */
442 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
443 FERR_FAT_FBD, &error_reg);
444 if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) {
445 errors = error_reg & FERR_FAT_FBD_ERR_MASK ;
446 errnum = find_first_bit(&errors,
447 ARRAY_SIZE(ferr_fat_fbd_name));
448 specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
449 branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
450
451 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
452 NRECMEMA, &val16);
453 bank = NRECMEMA_BANK(val16);
454 rank = NRECMEMA_RANK(val16);
455
456 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
457 NRECMEMB, &value);
458 is_wr = NRECMEMB_IS_WR(value);
459 cas = NRECMEMB_CAS(value);
460 ras = NRECMEMB_RAS(value);
461
462 /* Clean the error register */
463 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
464 FERR_FAT_FBD, error_reg);
465
466 snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
467 "FATAL (Branch=%d DRAM-Bank=%d %s "
468 "RAS=%d CAS=%d Err=0x%lx (%s))",
469 branch, bank,
470 is_wr ? "RDWR" : "RD",
471 ras, cas,
472 errors, specific);
473
474 /* Call the helper to output message */
475 edac_mc_handle_fbd_ue(mci, rank, branch << 1,
476 (branch << 1) + 1,
477 pvt->tmp_prt_buffer);
478 }
479
480 /* read in the 1st NON-FATAL error register */
481 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
482 FERR_NF_FBD, &error_reg);
483 if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) {
484 errors = error_reg & FERR_NF_FBD_ERR_MASK;
485 errnum = find_first_bit(&errors,
486 ARRAY_SIZE(ferr_nf_fbd_name));
487 specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
488 branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
489
490 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
491 REDMEMA, &syndrome);
492
493 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
494 RECMEMA, &val16);
495 bank = RECMEMA_BANK(val16);
496 rank = RECMEMA_RANK(val16);
497
498 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
499 RECMEMB, &value);
500 is_wr = RECMEMB_IS_WR(value);
501 cas = RECMEMB_CAS(value);
502 ras = RECMEMB_RAS(value);
503
504 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
505 REDMEMB, &value);
506 channel = (branch << 1);
507 if (IS_SECOND_CH(value))
508 channel++;
509
510 /* Clear the error bit */
511 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
512 FERR_NF_FBD, error_reg);
513
514 /* Form out message */
515 snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
516 "Corrected error (Branch=%d, Channel %d), "
517 " DRAM-Bank=%d %s "
518 "RAS=%d CAS=%d, CE Err=0x%lx, Syndrome=0x%08x(%s))",
519 branch, channel,
520 bank,
521 is_wr ? "RDWR" : "RD",
522 ras, cas,
523 errors, syndrome, specific);
524
525 /*
526 * Call the helper to output message
527 * NOTE: Errors are reported per-branch, and not per-channel
528 * Currently, we don't know how to identify the right
529 * channel.
530 */
531 edac_mc_handle_fbd_ce(mci, rank, channel,
532 pvt->tmp_prt_buffer);
533 }
534 return;
535 }
536
537 /**
538 * i7300_check_error() - Calls the error checking subroutines
539 * @mci: struct mem_ctl_info pointer
540 */
541 static void i7300_check_error(struct mem_ctl_info *mci)
542 {
543 i7300_process_error_global(mci);
544 i7300_process_fbd_error(mci);
545 };
546
547 /**
548 * i7300_clear_error() - Clears the error registers
549 * @mci: struct mem_ctl_info pointer
550 */
551 static void i7300_clear_error(struct mem_ctl_info *mci)
552 {
553 struct i7300_pvt *pvt = mci->pvt_info;
554 u32 value;
555 /*
556 * All error values are RWC - we need to read and write 1 to the
557 * bit that we want to cleanup
558 */
559
560 /* Clear global error registers */
561 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
562 FERR_GLOBAL_HI, &value);
563 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
564 FERR_GLOBAL_HI, value);
565
566 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
567 FERR_GLOBAL_LO, &value);
568 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
569 FERR_GLOBAL_LO, value);
570
571 /* Clear FBD error registers */
572 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
573 FERR_FAT_FBD, &value);
574 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
575 FERR_FAT_FBD, value);
576
577 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
578 FERR_NF_FBD, &value);
579 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
580 FERR_NF_FBD, value);
581 }
582
583 /**
584 * i7300_enable_error_reporting() - Enable the memory reporting logic at the
585 * hardware
586 * @mci: struct mem_ctl_info pointer
587 */
588 static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
589 {
590 struct i7300_pvt *pvt = mci->pvt_info;
591 u32 fbd_error_mask;
592
593 /* Read the FBD Error Mask Register */
594 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
595 EMASK_FBD, &fbd_error_mask);
596
597 /* Enable with a '0' */
598 fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
599
600 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
601 EMASK_FBD, fbd_error_mask);
602 }
603
604 /************************************************
605 * i7300 Functions related to memory enumberation
606 ************************************************/
607
608 /**
609 * decode_mtr() - Decodes the MTR descriptor, filling the edac structs
610 * @pvt: pointer to the private data struct used by i7300 driver
611 * @slot: DIMM slot (0 to 7)
612 * @ch: Channel number within the branch (0 or 1)
613 * @branch: Branch number (0 or 1)
614 * @dinfo: Pointer to DIMM info where dimm size is stored
615 * @p_csrow: Pointer to the struct csrow_info that corresponds to that element
616 */
617 static int decode_mtr(struct i7300_pvt *pvt,
618 int slot, int ch, int branch,
619 struct i7300_dimm_info *dinfo,
620 struct csrow_info *p_csrow,
621 struct dimm_info *dimm,
622 u32 *nr_pages)
623 {
624 int mtr, ans, addrBits, channel;
625
626 channel = to_channel(ch, branch);
627
628 mtr = pvt->mtr[slot][branch];
629 ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
630
631 debugf2("\tMTR%d CH%d: DIMMs are %s (mtr)\n",
632 slot, channel,
633 ans ? "Present" : "NOT Present");
634
635 /* Determine if there is a DIMM present in this DIMM slot */
636 if (!ans)
637 return 0;
638
639 /* Start with the number of bits for a Bank
640 * on the DRAM */
641 addrBits = MTR_DRAM_BANKS_ADDR_BITS;
642 /* Add thenumber of ROW bits */
643 addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
644 /* add the number of COLUMN bits */
645 addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
646 /* add the number of RANK bits */
647 addrBits += MTR_DIMM_RANKS(mtr);
648
649 addrBits += 6; /* add 64 bits per DIMM */
650 addrBits -= 20; /* divide by 2^^20 */
651 addrBits -= 3; /* 8 bits per bytes */
652
653 dinfo->megabytes = 1 << addrBits;
654 *nr_pages = dinfo->megabytes << 8;
655
656 debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
657
658 debugf2("\t\tELECTRICAL THROTTLING is %s\n",
659 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
660
661 debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
662 debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANKS(mtr) ? "double" : "single");
663 debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
664 debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
665 debugf2("\t\tSIZE: %d MB\n", dinfo->megabytes);
666
667 p_csrow->csrow_idx = slot;
668
669 /*
670 * The type of error detection actually depends of the
671 * mode of operation. When it is just one single memory chip, at
672 * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
673 * In normal or mirrored mode, it uses Lockstep mode,
674 * with the possibility of using an extended algorithm for x8 memories
675 * See datasheet Sections 7.3.6 to 7.3.8
676 */
677
678 dimm->grain = 8;
679 dimm->mtype = MEM_FB_DDR2;
680 if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
681 dimm->edac_mode = EDAC_SECDED;
682 debugf2("\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
683 } else {
684 debugf2("\t\tECC code is on Lockstep mode\n");
685 if (MTR_DRAM_WIDTH(mtr) == 8)
686 dimm->edac_mode = EDAC_S8ECD8ED;
687 else
688 dimm->edac_mode = EDAC_S4ECD4ED;
689 }
690
691 /* ask what device type on this row */
692 if (MTR_DRAM_WIDTH(mtr) == 8) {
693 debugf2("\t\tScrub algorithm for x8 is on %s mode\n",
694 IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
695 "enhanced" : "normal");
696
697 dimm->dtype = DEV_X8;
698 } else
699 dimm->dtype = DEV_X4;
700
701 return mtr;
702 }
703
704 /**
705 * print_dimm_size() - Prints dump of the memory organization
706 * @pvt: pointer to the private data struct used by i7300 driver
707 *
708 * Useful for debug. If debug is disabled, this routine do nothing
709 */
710 static void print_dimm_size(struct i7300_pvt *pvt)
711 {
712 #ifdef CONFIG_EDAC_DEBUG
713 struct i7300_dimm_info *dinfo;
714 char *p;
715 int space, n;
716 int channel, slot;
717
718 space = PAGE_SIZE;
719 p = pvt->tmp_prt_buffer;
720
721 n = snprintf(p, space, " ");
722 p += n;
723 space -= n;
724 for (channel = 0; channel < MAX_CHANNELS; channel++) {
725 n = snprintf(p, space, "channel %d | ", channel);
726 p += n;
727 space -= n;
728 }
729 debugf2("%s\n", pvt->tmp_prt_buffer);
730 p = pvt->tmp_prt_buffer;
731 space = PAGE_SIZE;
732 n = snprintf(p, space, "-------------------------------"
733 "------------------------------");
734 p += n;
735 space -= n;
736 debugf2("%s\n", pvt->tmp_prt_buffer);
737 p = pvt->tmp_prt_buffer;
738 space = PAGE_SIZE;
739
740 for (slot = 0; slot < MAX_SLOTS; slot++) {
741 n = snprintf(p, space, "csrow/SLOT %d ", slot);
742 p += n;
743 space -= n;
744
745 for (channel = 0; channel < MAX_CHANNELS; channel++) {
746 dinfo = &pvt->dimm_info[slot][channel];
747 n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
748 p += n;
749 space -= n;
750 }
751
752 debugf2("%s\n", pvt->tmp_prt_buffer);
753 p = pvt->tmp_prt_buffer;
754 space = PAGE_SIZE;
755 }
756
757 n = snprintf(p, space, "-------------------------------"
758 "------------------------------");
759 p += n;
760 space -= n;
761 debugf2("%s\n", pvt->tmp_prt_buffer);
762 p = pvt->tmp_prt_buffer;
763 space = PAGE_SIZE;
764 #endif
765 }
766
767 /**
768 * i7300_init_csrows() - Initialize the 'csrows' table within
769 * the mci control structure with the
770 * addressing of memory.
771 * @mci: struct mem_ctl_info pointer
772 */
773 static int i7300_init_csrows(struct mem_ctl_info *mci)
774 {
775 struct i7300_pvt *pvt;
776 struct i7300_dimm_info *dinfo;
777 struct csrow_info *p_csrow;
778 int rc = -ENODEV;
779 int mtr;
780 int ch, branch, slot, channel;
781 u32 last_page = 0, nr_pages;
782 struct dimm_info *dimm;
783
784 pvt = mci->pvt_info;
785
786 debugf2("Memory Technology Registers:\n");
787
788 /* Get the AMB present registers for the four channels */
789 for (branch = 0; branch < MAX_BRANCHES; branch++) {
790 /* Read and dump branch 0's MTRs */
791 channel = to_channel(0, branch);
792 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
793 AMBPRESENT_0,
794 &pvt->ambpresent[channel]);
795 debugf2("\t\tAMB-present CH%d = 0x%x:\n",
796 channel, pvt->ambpresent[channel]);
797
798 channel = to_channel(1, branch);
799 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
800 AMBPRESENT_1,
801 &pvt->ambpresent[channel]);
802 debugf2("\t\tAMB-present CH%d = 0x%x:\n",
803 channel, pvt->ambpresent[channel]);
804 }
805
806 /* Get the set of MTR[0-7] regs by each branch */
807 nr_pages = 0;
808 for (slot = 0; slot < MAX_SLOTS; slot++) {
809 int where = mtr_regs[slot];
810 for (branch = 0; branch < MAX_BRANCHES; branch++) {
811 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
812 where,
813 &pvt->mtr[slot][branch]);
814 for (ch = 0; ch < MAX_CH_PER_BRANCH; ch++) {
815 int channel = to_channel(ch, branch);
816
817 dinfo = &pvt->dimm_info[slot][channel];
818 p_csrow = &mci->csrows[slot];
819
820 dimm = p_csrow->channels[branch * MAX_CH_PER_BRANCH + ch].dimm;
821
822 mtr = decode_mtr(pvt, slot, ch, branch,
823 dinfo, p_csrow, dimm,
824 &nr_pages);
825 /* if no DIMMS on this row, continue */
826 if (!MTR_DIMMS_PRESENT(mtr))
827 continue;
828
829 /* Update per_csrow memory count */
830 p_csrow->nr_pages += nr_pages;
831 p_csrow->first_page = last_page;
832 last_page += nr_pages;
833 p_csrow->last_page = last_page;
834
835 rc = 0;
836 }
837 }
838 }
839
840 return rc;
841 }
842
843 /**
844 * decode_mir() - Decodes Memory Interleave Register (MIR) info
845 * @int mir_no: number of the MIR register to decode
846 * @mir: array with the MIR data cached on the driver
847 */
848 static void decode_mir(int mir_no, u16 mir[MAX_MIR])
849 {
850 if (mir[mir_no] & 3)
851 debugf2("MIR%d: limit= 0x%x Branch(es) that participate:"
852 " %s %s\n",
853 mir_no,
854 (mir[mir_no] >> 4) & 0xfff,
855 (mir[mir_no] & 1) ? "B0" : "",
856 (mir[mir_no] & 2) ? "B1" : "");
857 }
858
859 /**
860 * i7300_get_mc_regs() - Get the contents of the MC enumeration registers
861 * @mci: struct mem_ctl_info pointer
862 *
863 * Data read is cached internally for its usage when needed
864 */
865 static int i7300_get_mc_regs(struct mem_ctl_info *mci)
866 {
867 struct i7300_pvt *pvt;
868 u32 actual_tolm;
869 int i, rc;
870
871 pvt = mci->pvt_info;
872
873 pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
874 (u32 *) &pvt->ambase);
875
876 debugf2("AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
877
878 /* Get the Branch Map regs */
879 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
880 pvt->tolm >>= 12;
881 debugf2("TOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
882 pvt->tolm);
883
884 actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
885 debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
886 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
887
888 /* Get memory controller settings */
889 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
890 &pvt->mc_settings);
891 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
892 &pvt->mc_settings_a);
893
894 if (IS_SINGLE_MODE(pvt->mc_settings_a))
895 debugf0("Memory controller operating on single mode\n");
896 else
897 debugf0("Memory controller operating on %s mode\n",
898 IS_MIRRORED(pvt->mc_settings) ? "mirrored" : "non-mirrored");
899
900 debugf0("Error detection is %s\n",
901 IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
902 debugf0("Retry is %s\n",
903 IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
904
905 /* Get Memory Interleave Range registers */
906 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0,
907 &pvt->mir[0]);
908 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1,
909 &pvt->mir[1]);
910 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2,
911 &pvt->mir[2]);
912
913 /* Decode the MIR regs */
914 for (i = 0; i < MAX_MIR; i++)
915 decode_mir(i, pvt->mir);
916
917 rc = i7300_init_csrows(mci);
918 if (rc < 0)
919 return rc;
920
921 /* Go and determine the size of each DIMM and place in an
922 * orderly matrix */
923 print_dimm_size(pvt);
924
925 return 0;
926 }
927
928 /*************************************************
929 * i7300 Functions related to device probe/release
930 *************************************************/
931
932 /**
933 * i7300_put_devices() - Release the PCI devices
934 * @mci: struct mem_ctl_info pointer
935 */
936 static void i7300_put_devices(struct mem_ctl_info *mci)
937 {
938 struct i7300_pvt *pvt;
939 int branch;
940
941 pvt = mci->pvt_info;
942
943 /* Decrement usage count for devices */
944 for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
945 pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
946 pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
947 pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
948 }
949
950 /**
951 * i7300_get_devices() - Find and perform 'get' operation on the MCH's
952 * device/functions we want to reference for this driver
953 * @mci: struct mem_ctl_info pointer
954 *
955 * Access and prepare the several devices for usage:
956 * I7300 devices used by this driver:
957 * Device 16, functions 0,1 and 2: PCI_DEVICE_ID_INTEL_I7300_MCH_ERR
958 * Device 21 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB0
959 * Device 22 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
960 */
961 static int __devinit i7300_get_devices(struct mem_ctl_info *mci)
962 {
963 struct i7300_pvt *pvt;
964 struct pci_dev *pdev;
965
966 pvt = mci->pvt_info;
967
968 /* Attempt to 'get' the MCH register we want */
969 pdev = NULL;
970 while (!pvt->pci_dev_16_1_fsb_addr_map ||
971 !pvt->pci_dev_16_2_fsb_err_regs) {
972 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
973 PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, pdev);
974 if (!pdev) {
975 /* End of list, leave */
976 i7300_printk(KERN_ERR,
977 "'system address,Process Bus' "
978 "device not found:"
979 "vendor 0x%x device 0x%x ERR funcs "
980 "(broken BIOS?)\n",
981 PCI_VENDOR_ID_INTEL,
982 PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
983 goto error;
984 }
985
986 /* Store device 16 funcs 1 and 2 */
987 switch (PCI_FUNC(pdev->devfn)) {
988 case 1:
989 pvt->pci_dev_16_1_fsb_addr_map = pdev;
990 break;
991 case 2:
992 pvt->pci_dev_16_2_fsb_err_regs = pdev;
993 break;
994 }
995 }
996
997 debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
998 pci_name(pvt->pci_dev_16_0_fsb_ctlr),
999 pvt->pci_dev_16_0_fsb_ctlr->vendor,
1000 pvt->pci_dev_16_0_fsb_ctlr->device);
1001 debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
1002 pci_name(pvt->pci_dev_16_1_fsb_addr_map),
1003 pvt->pci_dev_16_1_fsb_addr_map->vendor,
1004 pvt->pci_dev_16_1_fsb_addr_map->device);
1005 debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
1006 pci_name(pvt->pci_dev_16_2_fsb_err_regs),
1007 pvt->pci_dev_16_2_fsb_err_regs->vendor,
1008 pvt->pci_dev_16_2_fsb_err_regs->device);
1009
1010 pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
1011 PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
1012 NULL);
1013 if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
1014 i7300_printk(KERN_ERR,
1015 "MC: 'BRANCH 0' device not found:"
1016 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
1017 PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
1018 goto error;
1019 }
1020
1021 pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
1022 PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
1023 NULL);
1024 if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
1025 i7300_printk(KERN_ERR,
1026 "MC: 'BRANCH 1' device not found:"
1027 "vendor 0x%x device 0x%x Func 0 "
1028 "(broken BIOS?)\n",
1029 PCI_VENDOR_ID_INTEL,
1030 PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
1031 goto error;
1032 }
1033
1034 return 0;
1035
1036 error:
1037 i7300_put_devices(mci);
1038 return -ENODEV;
1039 }
1040
1041 /**
1042 * i7300_init_one() - Probe for one instance of the device
1043 * @pdev: struct pci_dev pointer
1044 * @id: struct pci_device_id pointer - currently unused
1045 */
1046 static int __devinit i7300_init_one(struct pci_dev *pdev,
1047 const struct pci_device_id *id)
1048 {
1049 struct mem_ctl_info *mci;
1050 struct i7300_pvt *pvt;
1051 int num_channels;
1052 int num_dimms_per_channel;
1053 int num_csrows;
1054 int rc;
1055
1056 /* wake up device */
1057 rc = pci_enable_device(pdev);
1058 if (rc == -EIO)
1059 return rc;
1060
1061 debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1062 __func__,
1063 pdev->bus->number,
1064 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1065
1066 /* We only are looking for func 0 of the set */
1067 if (PCI_FUNC(pdev->devfn) != 0)
1068 return -ENODEV;
1069
1070 /* As we don't have a motherboard identification routine to determine
1071 * actual number of slots/dimms per channel, we thus utilize the
1072 * resource as specified by the chipset. Thus, we might have
1073 * have more DIMMs per channel than actually on the mobo, but this
1074 * allows the driver to support up to the chipset max, without
1075 * some fancy mobo determination.
1076 */
1077 num_dimms_per_channel = MAX_SLOTS;
1078 num_channels = MAX_CHANNELS;
1079 num_csrows = MAX_SLOTS * MAX_CHANNELS;
1080
1081 debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n",
1082 __func__, num_channels, num_dimms_per_channel, num_csrows);
1083
1084 /* allocate a new MC control structure */
1085 mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
1086
1087 if (mci == NULL)
1088 return -ENOMEM;
1089
1090 debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
1091
1092 mci->dev = &pdev->dev; /* record ptr to the generic device */
1093
1094 pvt = mci->pvt_info;
1095 pvt->pci_dev_16_0_fsb_ctlr = pdev; /* Record this device in our private */
1096
1097 pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1098 if (!pvt->tmp_prt_buffer) {
1099 edac_mc_free(mci);
1100 return -ENOMEM;
1101 }
1102
1103 /* 'get' the pci devices we want to reserve for our use */
1104 if (i7300_get_devices(mci))
1105 goto fail0;
1106
1107 mci->mc_idx = 0;
1108 mci->mtype_cap = MEM_FLAG_FB_DDR2;
1109 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1110 mci->edac_cap = EDAC_FLAG_NONE;
1111 mci->mod_name = "i7300_edac.c";
1112 mci->mod_ver = I7300_REVISION;
1113 mci->ctl_name = i7300_devs[0].ctl_name;
1114 mci->dev_name = pci_name(pdev);
1115 mci->ctl_page_to_phys = NULL;
1116
1117 /* Set the function pointer to an actual operation function */
1118 mci->edac_check = i7300_check_error;
1119
1120 /* initialize the MC control structure 'csrows' table
1121 * with the mapping and control information */
1122 if (i7300_get_mc_regs(mci)) {
1123 debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1124 " because i7300_init_csrows() returned nonzero "
1125 "value\n");
1126 mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1127 } else {
1128 debugf1("MC: Enable error reporting now\n");
1129 i7300_enable_error_reporting(mci);
1130 }
1131
1132 /* add this new MC control structure to EDAC's list of MCs */
1133 if (edac_mc_add_mc(mci)) {
1134 debugf0("MC: " __FILE__
1135 ": %s(): failed edac_mc_add_mc()\n", __func__);
1136 /* FIXME: perhaps some code should go here that disables error
1137 * reporting if we just enabled it
1138 */
1139 goto fail1;
1140 }
1141
1142 i7300_clear_error(mci);
1143
1144 /* allocating generic PCI control info */
1145 i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1146 if (!i7300_pci) {
1147 printk(KERN_WARNING
1148 "%s(): Unable to create PCI control\n",
1149 __func__);
1150 printk(KERN_WARNING
1151 "%s(): PCI error report via EDAC not setup\n",
1152 __func__);
1153 }
1154
1155 return 0;
1156
1157 /* Error exit unwinding stack */
1158 fail1:
1159
1160 i7300_put_devices(mci);
1161
1162 fail0:
1163 kfree(pvt->tmp_prt_buffer);
1164 edac_mc_free(mci);
1165 return -ENODEV;
1166 }
1167
1168 /**
1169 * i7300_remove_one() - Remove the driver
1170 * @pdev: struct pci_dev pointer
1171 */
1172 static void __devexit i7300_remove_one(struct pci_dev *pdev)
1173 {
1174 struct mem_ctl_info *mci;
1175 char *tmp;
1176
1177 debugf0(__FILE__ ": %s()\n", __func__);
1178
1179 if (i7300_pci)
1180 edac_pci_release_generic_ctl(i7300_pci);
1181
1182 mci = edac_mc_del_mc(&pdev->dev);
1183 if (!mci)
1184 return;
1185
1186 tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer;
1187
1188 /* retrieve references to resources, and free those resources */
1189 i7300_put_devices(mci);
1190
1191 kfree(tmp);
1192 edac_mc_free(mci);
1193 }
1194
1195 /*
1196 * pci_device_id: table for which devices we are looking for
1197 *
1198 * Has only 8086:360c PCI ID
1199 */
1200 static DEFINE_PCI_DEVICE_TABLE(i7300_pci_tbl) = {
1201 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
1202 {0,} /* 0 terminated list. */
1203 };
1204
1205 MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
1206
1207 /*
1208 * i7300_driver: pci_driver structure for this module
1209 */
1210 static struct pci_driver i7300_driver = {
1211 .name = "i7300_edac",
1212 .probe = i7300_init_one,
1213 .remove = __devexit_p(i7300_remove_one),
1214 .id_table = i7300_pci_tbl,
1215 };
1216
1217 /**
1218 * i7300_init() - Registers the driver
1219 */
1220 static int __init i7300_init(void)
1221 {
1222 int pci_rc;
1223
1224 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1225
1226 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1227 opstate_init();
1228
1229 pci_rc = pci_register_driver(&i7300_driver);
1230
1231 return (pci_rc < 0) ? pci_rc : 0;
1232 }
1233
1234 /**
1235 * i7300_init() - Unregisters the driver
1236 */
1237 static void __exit i7300_exit(void)
1238 {
1239 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1240 pci_unregister_driver(&i7300_driver);
1241 }
1242
1243 module_init(i7300_init);
1244 module_exit(i7300_exit);
1245
1246 MODULE_LICENSE("GPL");
1247 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1248 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1249 MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
1250 I7300_REVISION);
1251
1252 module_param(edac_op_state, int, 0444);
1253 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.191694 seconds and 5 git commands to generate.