i7300_edac: convert driver to use the new edac ABI
[deliverable/linux.git] / drivers / edac / i7300_edac.c
1 /*
2 * Intel 7300 class Memory Controllers kernel module (Clarksboro)
3 *
4 * This file may be distributed under the terms of the
5 * GNU General Public License version 2 only.
6 *
7 * Copyright (c) 2010 by:
8 * Mauro Carvalho Chehab <mchehab@redhat.com>
9 *
10 * Red Hat Inc. http://www.redhat.com
11 *
12 * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
13 * http://www.intel.com/Assets/PDF/datasheet/318082.pdf
14 *
15 * TODO: The chipset allow checking for PCI Express errors also. Currently,
16 * the driver covers only memory error errors
17 *
18 * This driver uses "csrows" EDAC attribute to represent DIMM slot#
19 */
20
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/pci.h>
24 #include <linux/pci_ids.h>
25 #include <linux/slab.h>
26 #include <linux/edac.h>
27 #include <linux/mmzone.h>
28
29 #include "edac_core.h"
30
31 /*
32 * Alter this version for the I7300 module when modifications are made
33 */
34 #define I7300_REVISION " Ver: 1.0.0"
35
36 #define EDAC_MOD_STR "i7300_edac"
37
38 #define i7300_printk(level, fmt, arg...) \
39 edac_printk(level, "i7300", fmt, ##arg)
40
41 #define i7300_mc_printk(mci, level, fmt, arg...) \
42 edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
43
44 /***********************************************
45 * i7300 Limit constants Structs and static vars
46 ***********************************************/
47
48 /*
49 * Memory topology is organized as:
50 * Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
51 * Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
52 * Each channel can have to 8 DIMM sets (called as SLOTS)
53 * Slots should generally be filled in pairs
54 * Except on Single Channel mode of operation
55 * just slot 0/channel0 filled on this mode
56 * On normal operation mode, the two channels on a branch should be
57 * filled together for the same SLOT#
58 * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
59 * channels on both branches should be filled
60 */
61
62 /* Limits for i7300 */
63 #define MAX_SLOTS 8
64 #define MAX_BRANCHES 2
65 #define MAX_CH_PER_BRANCH 2
66 #define MAX_CHANNELS (MAX_CH_PER_BRANCH * MAX_BRANCHES)
67 #define MAX_MIR 3
68
69 #define to_channel(ch, branch) ((((branch)) << 1) | (ch))
70
71 #define to_csrow(slot, ch, branch) \
72 (to_channel(ch, branch) | ((slot) << 2))
73
74 /* Device name and register DID (Device ID) */
75 struct i7300_dev_info {
76 const char *ctl_name; /* name for this device */
77 u16 fsb_mapping_errors; /* DID for the branchmap,control */
78 };
79
80 /* Table of devices attributes supported by this driver */
81 static const struct i7300_dev_info i7300_devs[] = {
82 {
83 .ctl_name = "I7300",
84 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
85 },
86 };
87
88 struct i7300_dimm_info {
89 int megabytes; /* size, 0 means not present */
90 };
91
92 /* driver private data structure */
93 struct i7300_pvt {
94 struct pci_dev *pci_dev_16_0_fsb_ctlr; /* 16.0 */
95 struct pci_dev *pci_dev_16_1_fsb_addr_map; /* 16.1 */
96 struct pci_dev *pci_dev_16_2_fsb_err_regs; /* 16.2 */
97 struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES]; /* 21.0 and 22.0 */
98
99 u16 tolm; /* top of low memory */
100 u64 ambase; /* AMB BAR */
101
102 u32 mc_settings; /* Report several settings */
103 u32 mc_settings_a;
104
105 u16 mir[MAX_MIR]; /* Memory Interleave Reg*/
106
107 u16 mtr[MAX_SLOTS][MAX_BRANCHES]; /* Memory Technlogy Reg */
108 u16 ambpresent[MAX_CHANNELS]; /* AMB present regs */
109
110 /* DIMM information matrix, allocating architecture maximums */
111 struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
112
113 /* Temporary buffer for use when preparing error messages */
114 char *tmp_prt_buffer;
115 };
116
117 /* FIXME: Why do we need to have this static? */
118 static struct edac_pci_ctl_info *i7300_pci;
119
120 /***************************************************
121 * i7300 Register definitions for memory enumeration
122 ***************************************************/
123
124 /*
125 * Device 16,
126 * Function 0: System Address (not documented)
127 * Function 1: Memory Branch Map, Control, Errors Register
128 */
129
130 /* OFFSETS for Function 0 */
131 #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
132 #define MAXCH 0x56 /* Max Channel Number */
133 #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
134
135 /* OFFSETS for Function 1 */
136 #define MC_SETTINGS 0x40
137 #define IS_MIRRORED(mc) ((mc) & (1 << 16))
138 #define IS_ECC_ENABLED(mc) ((mc) & (1 << 5))
139 #define IS_RETRY_ENABLED(mc) ((mc) & (1 << 31))
140 #define IS_SCRBALGO_ENHANCED(mc) ((mc) & (1 << 8))
141
142 #define MC_SETTINGS_A 0x58
143 #define IS_SINGLE_MODE(mca) ((mca) & (1 << 14))
144
145 #define TOLM 0x6C
146
147 #define MIR0 0x80
148 #define MIR1 0x84
149 #define MIR2 0x88
150
151 /*
152 * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
153 * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
154 * seems that we cannot use this information directly for the same usage.
155 * Each memory slot may have up to 2 AMB interfaces, one for income and another
156 * for outcome interface to the next slot.
157 * For now, the driver just stores the AMB present registers, but rely only at
158 * the MTR info to detect memory.
159 * Datasheet is also not clear about how to map each AMBPRESENT registers to
160 * one of the 4 available channels.
161 */
162 #define AMBPRESENT_0 0x64
163 #define AMBPRESENT_1 0x66
164
165 static const u16 mtr_regs[MAX_SLOTS] = {
166 0x80, 0x84, 0x88, 0x8c,
167 0x82, 0x86, 0x8a, 0x8e
168 };
169
170 /*
171 * Defines to extract the vaious fields from the
172 * MTRx - Memory Technology Registers
173 */
174 #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 8))
175 #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 7))
176 #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
177 #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 5)) ? 8 : 4)
178 #define MTR_DIMM_RANKS(mtr) (((mtr) & (1 << 4)) ? 1 : 0)
179 #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
180 #define MTR_DRAM_BANKS_ADDR_BITS 2
181 #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
182 #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
183 #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
184
185 #ifdef CONFIG_EDAC_DEBUG
186 /* MTR NUMROW */
187 static const char *numrow_toString[] = {
188 "8,192 - 13 rows",
189 "16,384 - 14 rows",
190 "32,768 - 15 rows",
191 "65,536 - 16 rows"
192 };
193
194 /* MTR NUMCOL */
195 static const char *numcol_toString[] = {
196 "1,024 - 10 columns",
197 "2,048 - 11 columns",
198 "4,096 - 12 columns",
199 "reserved"
200 };
201 #endif
202
203 /************************************************
204 * i7300 Register definitions for error detection
205 ************************************************/
206
207 /*
208 * Device 16.1: FBD Error Registers
209 */
210 #define FERR_FAT_FBD 0x98
211 static const char *ferr_fat_fbd_name[] = {
212 [22] = "Non-Redundant Fast Reset Timeout",
213 [2] = ">Tmid Thermal event with intelligent throttling disabled",
214 [1] = "Memory or FBD configuration CRC read error",
215 [0] = "Memory Write error on non-redundant retry or "
216 "FBD configuration Write error on retry",
217 };
218 #define GET_FBD_FAT_IDX(fbderr) (fbderr & (3 << 28))
219 #define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 3))
220
221 #define FERR_NF_FBD 0xa0
222 static const char *ferr_nf_fbd_name[] = {
223 [24] = "DIMM-Spare Copy Completed",
224 [23] = "DIMM-Spare Copy Initiated",
225 [22] = "Redundant Fast Reset Timeout",
226 [21] = "Memory Write error on redundant retry",
227 [18] = "SPD protocol Error",
228 [17] = "FBD Northbound parity error on FBD Sync Status",
229 [16] = "Correctable Patrol Data ECC",
230 [15] = "Correctable Resilver- or Spare-Copy Data ECC",
231 [14] = "Correctable Mirrored Demand Data ECC",
232 [13] = "Correctable Non-Mirrored Demand Data ECC",
233 [11] = "Memory or FBD configuration CRC read error",
234 [10] = "FBD Configuration Write error on first attempt",
235 [9] = "Memory Write error on first attempt",
236 [8] = "Non-Aliased Uncorrectable Patrol Data ECC",
237 [7] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
238 [6] = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
239 [5] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
240 [4] = "Aliased Uncorrectable Patrol Data ECC",
241 [3] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
242 [2] = "Aliased Uncorrectable Mirrored Demand Data ECC",
243 [1] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
244 [0] = "Uncorrectable Data ECC on Replay",
245 };
246 #define GET_FBD_NF_IDX(fbderr) (fbderr & (3 << 28))
247 #define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
248 (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
249 (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
250 (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
251 (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
252 (1 << 1) | (1 << 0))
253
254 #define EMASK_FBD 0xa8
255 #define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
256 (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
257 (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
258 (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
259 (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
260 (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
261 (1 << 1) | (1 << 0))
262
263 /*
264 * Device 16.2: Global Error Registers
265 */
266
267 #define FERR_GLOBAL_HI 0x48
268 static const char *ferr_global_hi_name[] = {
269 [3] = "FSB 3 Fatal Error",
270 [2] = "FSB 2 Fatal Error",
271 [1] = "FSB 1 Fatal Error",
272 [0] = "FSB 0 Fatal Error",
273 };
274 #define ferr_global_hi_is_fatal(errno) 1
275
276 #define FERR_GLOBAL_LO 0x40
277 static const char *ferr_global_lo_name[] = {
278 [31] = "Internal MCH Fatal Error",
279 [30] = "Intel QuickData Technology Device Fatal Error",
280 [29] = "FSB1 Fatal Error",
281 [28] = "FSB0 Fatal Error",
282 [27] = "FBD Channel 3 Fatal Error",
283 [26] = "FBD Channel 2 Fatal Error",
284 [25] = "FBD Channel 1 Fatal Error",
285 [24] = "FBD Channel 0 Fatal Error",
286 [23] = "PCI Express Device 7Fatal Error",
287 [22] = "PCI Express Device 6 Fatal Error",
288 [21] = "PCI Express Device 5 Fatal Error",
289 [20] = "PCI Express Device 4 Fatal Error",
290 [19] = "PCI Express Device 3 Fatal Error",
291 [18] = "PCI Express Device 2 Fatal Error",
292 [17] = "PCI Express Device 1 Fatal Error",
293 [16] = "ESI Fatal Error",
294 [15] = "Internal MCH Non-Fatal Error",
295 [14] = "Intel QuickData Technology Device Non Fatal Error",
296 [13] = "FSB1 Non-Fatal Error",
297 [12] = "FSB 0 Non-Fatal Error",
298 [11] = "FBD Channel 3 Non-Fatal Error",
299 [10] = "FBD Channel 2 Non-Fatal Error",
300 [9] = "FBD Channel 1 Non-Fatal Error",
301 [8] = "FBD Channel 0 Non-Fatal Error",
302 [7] = "PCI Express Device 7 Non-Fatal Error",
303 [6] = "PCI Express Device 6 Non-Fatal Error",
304 [5] = "PCI Express Device 5 Non-Fatal Error",
305 [4] = "PCI Express Device 4 Non-Fatal Error",
306 [3] = "PCI Express Device 3 Non-Fatal Error",
307 [2] = "PCI Express Device 2 Non-Fatal Error",
308 [1] = "PCI Express Device 1 Non-Fatal Error",
309 [0] = "ESI Non-Fatal Error",
310 };
311 #define ferr_global_lo_is_fatal(errno) ((errno < 16) ? 0 : 1)
312
313 #define NRECMEMA 0xbe
314 #define NRECMEMA_BANK(v) (((v) >> 12) & 7)
315 #define NRECMEMA_RANK(v) (((v) >> 8) & 15)
316
317 #define NRECMEMB 0xc0
318 #define NRECMEMB_IS_WR(v) ((v) & (1 << 31))
319 #define NRECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
320 #define NRECMEMB_RAS(v) ((v) & 0xffff)
321
322 #define REDMEMA 0xdc
323
324 #define REDMEMB 0x7c
325 #define IS_SECOND_CH(v) ((v) * (1 << 17))
326
327 #define RECMEMA 0xe0
328 #define RECMEMA_BANK(v) (((v) >> 12) & 7)
329 #define RECMEMA_RANK(v) (((v) >> 8) & 15)
330
331 #define RECMEMB 0xe4
332 #define RECMEMB_IS_WR(v) ((v) & (1 << 31))
333 #define RECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
334 #define RECMEMB_RAS(v) ((v) & 0xffff)
335
336 /********************************************
337 * i7300 Functions related to error detection
338 ********************************************/
339
340 /**
341 * get_err_from_table() - Gets the error message from a table
342 * @table: table name (array of char *)
343 * @size: number of elements at the table
344 * @pos: position of the element to be returned
345 *
346 * This is a small routine that gets the pos-th element of a table. If the
347 * element doesn't exist (or it is empty), it returns "reserved".
348 * Instead of calling it directly, the better is to call via the macro
349 * GET_ERR_FROM_TABLE(), that automatically checks the table size via
350 * ARRAY_SIZE() macro
351 */
352 static const char *get_err_from_table(const char *table[], int size, int pos)
353 {
354 if (unlikely(pos >= size))
355 return "Reserved";
356
357 if (unlikely(!table[pos]))
358 return "Reserved";
359
360 return table[pos];
361 }
362
363 #define GET_ERR_FROM_TABLE(table, pos) \
364 get_err_from_table(table, ARRAY_SIZE(table), pos)
365
366 /**
367 * i7300_process_error_global() - Retrieve the hardware error information from
368 * the hardware global error registers and
369 * sends it to dmesg
370 * @mci: struct mem_ctl_info pointer
371 */
372 static void i7300_process_error_global(struct mem_ctl_info *mci)
373 {
374 struct i7300_pvt *pvt;
375 u32 errnum, error_reg;
376 unsigned long errors;
377 const char *specific;
378 bool is_fatal;
379
380 pvt = mci->pvt_info;
381
382 /* read in the 1st FATAL error register */
383 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
384 FERR_GLOBAL_HI, &error_reg);
385 if (unlikely(error_reg)) {
386 errors = error_reg;
387 errnum = find_first_bit(&errors,
388 ARRAY_SIZE(ferr_global_hi_name));
389 specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
390 is_fatal = ferr_global_hi_is_fatal(errnum);
391
392 /* Clear the error bit */
393 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
394 FERR_GLOBAL_HI, error_reg);
395
396 goto error_global;
397 }
398
399 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
400 FERR_GLOBAL_LO, &error_reg);
401 if (unlikely(error_reg)) {
402 errors = error_reg;
403 errnum = find_first_bit(&errors,
404 ARRAY_SIZE(ferr_global_lo_name));
405 specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
406 is_fatal = ferr_global_lo_is_fatal(errnum);
407
408 /* Clear the error bit */
409 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
410 FERR_GLOBAL_LO, error_reg);
411
412 goto error_global;
413 }
414 return;
415
416 error_global:
417 i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
418 is_fatal ? "Fatal" : "NOT fatal", specific);
419 }
420
421 /**
422 * i7300_process_fbd_error() - Retrieve the hardware error information from
423 * the FBD error registers and sends it via
424 * EDAC error API calls
425 * @mci: struct mem_ctl_info pointer
426 */
427 static void i7300_process_fbd_error(struct mem_ctl_info *mci)
428 {
429 struct i7300_pvt *pvt;
430 u32 errnum, value, error_reg;
431 u16 val16;
432 unsigned branch, channel, bank, rank, cas, ras;
433 u32 syndrome;
434
435 unsigned long errors;
436 const char *specific;
437 bool is_wr;
438
439 pvt = mci->pvt_info;
440
441 /* read in the 1st FATAL error register */
442 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
443 FERR_FAT_FBD, &error_reg);
444 if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) {
445 errors = error_reg & FERR_FAT_FBD_ERR_MASK ;
446 errnum = find_first_bit(&errors,
447 ARRAY_SIZE(ferr_fat_fbd_name));
448 specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
449 branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
450
451 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
452 NRECMEMA, &val16);
453 bank = NRECMEMA_BANK(val16);
454 rank = NRECMEMA_RANK(val16);
455
456 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
457 NRECMEMB, &value);
458 is_wr = NRECMEMB_IS_WR(value);
459 cas = NRECMEMB_CAS(value);
460 ras = NRECMEMB_RAS(value);
461
462 /* Clean the error register */
463 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
464 FERR_FAT_FBD, error_reg);
465
466 snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
467 "Bank=%d RAS=%d CAS=%d Err=0x%lx (%s))",
468 bank, ras, cas, errors, specific);
469
470 edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 0, 0, 0,
471 branch, -1, rank,
472 is_wr ? "Write error" : "Read error",
473 pvt->tmp_prt_buffer, NULL);
474
475 }
476
477 /* read in the 1st NON-FATAL error register */
478 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
479 FERR_NF_FBD, &error_reg);
480 if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) {
481 errors = error_reg & FERR_NF_FBD_ERR_MASK;
482 errnum = find_first_bit(&errors,
483 ARRAY_SIZE(ferr_nf_fbd_name));
484 specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
485 branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
486
487 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
488 REDMEMA, &syndrome);
489
490 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
491 RECMEMA, &val16);
492 bank = RECMEMA_BANK(val16);
493 rank = RECMEMA_RANK(val16);
494
495 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
496 RECMEMB, &value);
497 is_wr = RECMEMB_IS_WR(value);
498 cas = RECMEMB_CAS(value);
499 ras = RECMEMB_RAS(value);
500
501 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
502 REDMEMB, &value);
503 channel = (branch << 1);
504 if (IS_SECOND_CH(value))
505 channel++;
506
507 /* Clear the error bit */
508 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
509 FERR_NF_FBD, error_reg);
510
511 /* Form out message */
512 snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
513 "DRAM-Bank=%d RAS=%d CAS=%d, Err=0x%lx (%s))",
514 bank, ras, cas, errors, specific);
515
516 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 0, 0,
517 syndrome,
518 branch >> 1, channel % 2, rank,
519 is_wr ? "Write error" : "Read error",
520 pvt->tmp_prt_buffer, NULL);
521 }
522 return;
523 }
524
525 /**
526 * i7300_check_error() - Calls the error checking subroutines
527 * @mci: struct mem_ctl_info pointer
528 */
529 static void i7300_check_error(struct mem_ctl_info *mci)
530 {
531 i7300_process_error_global(mci);
532 i7300_process_fbd_error(mci);
533 };
534
535 /**
536 * i7300_clear_error() - Clears the error registers
537 * @mci: struct mem_ctl_info pointer
538 */
539 static void i7300_clear_error(struct mem_ctl_info *mci)
540 {
541 struct i7300_pvt *pvt = mci->pvt_info;
542 u32 value;
543 /*
544 * All error values are RWC - we need to read and write 1 to the
545 * bit that we want to cleanup
546 */
547
548 /* Clear global error registers */
549 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
550 FERR_GLOBAL_HI, &value);
551 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
552 FERR_GLOBAL_HI, value);
553
554 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
555 FERR_GLOBAL_LO, &value);
556 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
557 FERR_GLOBAL_LO, value);
558
559 /* Clear FBD error registers */
560 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
561 FERR_FAT_FBD, &value);
562 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
563 FERR_FAT_FBD, value);
564
565 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
566 FERR_NF_FBD, &value);
567 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
568 FERR_NF_FBD, value);
569 }
570
571 /**
572 * i7300_enable_error_reporting() - Enable the memory reporting logic at the
573 * hardware
574 * @mci: struct mem_ctl_info pointer
575 */
576 static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
577 {
578 struct i7300_pvt *pvt = mci->pvt_info;
579 u32 fbd_error_mask;
580
581 /* Read the FBD Error Mask Register */
582 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
583 EMASK_FBD, &fbd_error_mask);
584
585 /* Enable with a '0' */
586 fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
587
588 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
589 EMASK_FBD, fbd_error_mask);
590 }
591
592 /************************************************
593 * i7300 Functions related to memory enumberation
594 ************************************************/
595
596 /**
597 * decode_mtr() - Decodes the MTR descriptor, filling the edac structs
598 * @pvt: pointer to the private data struct used by i7300 driver
599 * @slot: DIMM slot (0 to 7)
600 * @ch: Channel number within the branch (0 or 1)
601 * @branch: Branch number (0 or 1)
602 * @dinfo: Pointer to DIMM info where dimm size is stored
603 * @p_csrow: Pointer to the struct csrow_info that corresponds to that element
604 */
605 static int decode_mtr(struct i7300_pvt *pvt,
606 int slot, int ch, int branch,
607 struct i7300_dimm_info *dinfo,
608 struct dimm_info *dimm)
609 {
610 int mtr, ans, addrBits, channel;
611
612 channel = to_channel(ch, branch);
613
614 mtr = pvt->mtr[slot][branch];
615 ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
616
617 debugf2("\tMTR%d CH%d: DIMMs are %s (mtr)\n",
618 slot, channel,
619 ans ? "Present" : "NOT Present");
620
621 /* Determine if there is a DIMM present in this DIMM slot */
622 if (!ans)
623 return 0;
624
625 /* Start with the number of bits for a Bank
626 * on the DRAM */
627 addrBits = MTR_DRAM_BANKS_ADDR_BITS;
628 /* Add thenumber of ROW bits */
629 addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
630 /* add the number of COLUMN bits */
631 addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
632 /* add the number of RANK bits */
633 addrBits += MTR_DIMM_RANKS(mtr);
634
635 addrBits += 6; /* add 64 bits per DIMM */
636 addrBits -= 20; /* divide by 2^^20 */
637 addrBits -= 3; /* 8 bits per bytes */
638
639 dinfo->megabytes = 1 << addrBits;
640
641 debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
642
643 debugf2("\t\tELECTRICAL THROTTLING is %s\n",
644 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
645
646 debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
647 debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANKS(mtr) ? "double" : "single");
648 debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
649 debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
650 debugf2("\t\tSIZE: %d MB\n", dinfo->megabytes);
651
652 /*
653 * The type of error detection actually depends of the
654 * mode of operation. When it is just one single memory chip, at
655 * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
656 * In normal or mirrored mode, it uses Lockstep mode,
657 * with the possibility of using an extended algorithm for x8 memories
658 * See datasheet Sections 7.3.6 to 7.3.8
659 */
660
661 dimm->nr_pages = MiB_TO_PAGES(dinfo->megabytes);
662 dimm->grain = 8;
663 dimm->mtype = MEM_FB_DDR2;
664 if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
665 dimm->edac_mode = EDAC_SECDED;
666 debugf2("\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
667 } else {
668 debugf2("\t\tECC code is on Lockstep mode\n");
669 if (MTR_DRAM_WIDTH(mtr) == 8)
670 dimm->edac_mode = EDAC_S8ECD8ED;
671 else
672 dimm->edac_mode = EDAC_S4ECD4ED;
673 }
674
675 /* ask what device type on this row */
676 if (MTR_DRAM_WIDTH(mtr) == 8) {
677 debugf2("\t\tScrub algorithm for x8 is on %s mode\n",
678 IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
679 "enhanced" : "normal");
680
681 dimm->dtype = DEV_X8;
682 } else
683 dimm->dtype = DEV_X4;
684
685 return mtr;
686 }
687
688 /**
689 * print_dimm_size() - Prints dump of the memory organization
690 * @pvt: pointer to the private data struct used by i7300 driver
691 *
692 * Useful for debug. If debug is disabled, this routine do nothing
693 */
694 static void print_dimm_size(struct i7300_pvt *pvt)
695 {
696 #ifdef CONFIG_EDAC_DEBUG
697 struct i7300_dimm_info *dinfo;
698 char *p;
699 int space, n;
700 int channel, slot;
701
702 space = PAGE_SIZE;
703 p = pvt->tmp_prt_buffer;
704
705 n = snprintf(p, space, " ");
706 p += n;
707 space -= n;
708 for (channel = 0; channel < MAX_CHANNELS; channel++) {
709 n = snprintf(p, space, "channel %d | ", channel);
710 p += n;
711 space -= n;
712 }
713 debugf2("%s\n", pvt->tmp_prt_buffer);
714 p = pvt->tmp_prt_buffer;
715 space = PAGE_SIZE;
716 n = snprintf(p, space, "-------------------------------"
717 "------------------------------");
718 p += n;
719 space -= n;
720 debugf2("%s\n", pvt->tmp_prt_buffer);
721 p = pvt->tmp_prt_buffer;
722 space = PAGE_SIZE;
723
724 for (slot = 0; slot < MAX_SLOTS; slot++) {
725 n = snprintf(p, space, "csrow/SLOT %d ", slot);
726 p += n;
727 space -= n;
728
729 for (channel = 0; channel < MAX_CHANNELS; channel++) {
730 dinfo = &pvt->dimm_info[slot][channel];
731 n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
732 p += n;
733 space -= n;
734 }
735
736 debugf2("%s\n", pvt->tmp_prt_buffer);
737 p = pvt->tmp_prt_buffer;
738 space = PAGE_SIZE;
739 }
740
741 n = snprintf(p, space, "-------------------------------"
742 "------------------------------");
743 p += n;
744 space -= n;
745 debugf2("%s\n", pvt->tmp_prt_buffer);
746 p = pvt->tmp_prt_buffer;
747 space = PAGE_SIZE;
748 #endif
749 }
750
751 /**
752 * i7300_init_csrows() - Initialize the 'csrows' table within
753 * the mci control structure with the
754 * addressing of memory.
755 * @mci: struct mem_ctl_info pointer
756 */
757 static int i7300_init_csrows(struct mem_ctl_info *mci)
758 {
759 struct i7300_pvt *pvt;
760 struct i7300_dimm_info *dinfo;
761 int rc = -ENODEV;
762 int mtr;
763 int ch, branch, slot, channel;
764 struct dimm_info *dimm;
765
766 pvt = mci->pvt_info;
767
768 debugf2("Memory Technology Registers:\n");
769
770 /* Get the AMB present registers for the four channels */
771 for (branch = 0; branch < MAX_BRANCHES; branch++) {
772 /* Read and dump branch 0's MTRs */
773 channel = to_channel(0, branch);
774 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
775 AMBPRESENT_0,
776 &pvt->ambpresent[channel]);
777 debugf2("\t\tAMB-present CH%d = 0x%x:\n",
778 channel, pvt->ambpresent[channel]);
779
780 channel = to_channel(1, branch);
781 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
782 AMBPRESENT_1,
783 &pvt->ambpresent[channel]);
784 debugf2("\t\tAMB-present CH%d = 0x%x:\n",
785 channel, pvt->ambpresent[channel]);
786 }
787
788 /* Get the set of MTR[0-7] regs by each branch */
789 for (slot = 0; slot < MAX_SLOTS; slot++) {
790 int where = mtr_regs[slot];
791 for (branch = 0; branch < MAX_BRANCHES; branch++) {
792 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
793 where,
794 &pvt->mtr[slot][branch]);
795 for (ch = 0; ch < MAX_CH_PER_BRANCH; ch++) {
796 int channel = to_channel(ch, branch);
797
798 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
799 mci->n_layers, branch, ch, slot);
800
801 dinfo = &pvt->dimm_info[slot][channel];
802
803 mtr = decode_mtr(pvt, slot, ch, branch,
804 dinfo, dimm);
805
806 /* if no DIMMS on this row, continue */
807 if (!MTR_DIMMS_PRESENT(mtr))
808 continue;
809
810 rc = 0;
811
812 }
813 }
814 }
815
816 return rc;
817 }
818
819 /**
820 * decode_mir() - Decodes Memory Interleave Register (MIR) info
821 * @int mir_no: number of the MIR register to decode
822 * @mir: array with the MIR data cached on the driver
823 */
824 static void decode_mir(int mir_no, u16 mir[MAX_MIR])
825 {
826 if (mir[mir_no] & 3)
827 debugf2("MIR%d: limit= 0x%x Branch(es) that participate:"
828 " %s %s\n",
829 mir_no,
830 (mir[mir_no] >> 4) & 0xfff,
831 (mir[mir_no] & 1) ? "B0" : "",
832 (mir[mir_no] & 2) ? "B1" : "");
833 }
834
835 /**
836 * i7300_get_mc_regs() - Get the contents of the MC enumeration registers
837 * @mci: struct mem_ctl_info pointer
838 *
839 * Data read is cached internally for its usage when needed
840 */
841 static int i7300_get_mc_regs(struct mem_ctl_info *mci)
842 {
843 struct i7300_pvt *pvt;
844 u32 actual_tolm;
845 int i, rc;
846
847 pvt = mci->pvt_info;
848
849 pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
850 (u32 *) &pvt->ambase);
851
852 debugf2("AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
853
854 /* Get the Branch Map regs */
855 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
856 pvt->tolm >>= 12;
857 debugf2("TOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
858 pvt->tolm);
859
860 actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
861 debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
862 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
863
864 /* Get memory controller settings */
865 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
866 &pvt->mc_settings);
867 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
868 &pvt->mc_settings_a);
869
870 if (IS_SINGLE_MODE(pvt->mc_settings_a))
871 debugf0("Memory controller operating on single mode\n");
872 else
873 debugf0("Memory controller operating on %s mode\n",
874 IS_MIRRORED(pvt->mc_settings) ? "mirrored" : "non-mirrored");
875
876 debugf0("Error detection is %s\n",
877 IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
878 debugf0("Retry is %s\n",
879 IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
880
881 /* Get Memory Interleave Range registers */
882 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0,
883 &pvt->mir[0]);
884 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1,
885 &pvt->mir[1]);
886 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2,
887 &pvt->mir[2]);
888
889 /* Decode the MIR regs */
890 for (i = 0; i < MAX_MIR; i++)
891 decode_mir(i, pvt->mir);
892
893 rc = i7300_init_csrows(mci);
894 if (rc < 0)
895 return rc;
896
897 /* Go and determine the size of each DIMM and place in an
898 * orderly matrix */
899 print_dimm_size(pvt);
900
901 return 0;
902 }
903
904 /*************************************************
905 * i7300 Functions related to device probe/release
906 *************************************************/
907
908 /**
909 * i7300_put_devices() - Release the PCI devices
910 * @mci: struct mem_ctl_info pointer
911 */
912 static void i7300_put_devices(struct mem_ctl_info *mci)
913 {
914 struct i7300_pvt *pvt;
915 int branch;
916
917 pvt = mci->pvt_info;
918
919 /* Decrement usage count for devices */
920 for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
921 pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
922 pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
923 pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
924 }
925
926 /**
927 * i7300_get_devices() - Find and perform 'get' operation on the MCH's
928 * device/functions we want to reference for this driver
929 * @mci: struct mem_ctl_info pointer
930 *
931 * Access and prepare the several devices for usage:
932 * I7300 devices used by this driver:
933 * Device 16, functions 0,1 and 2: PCI_DEVICE_ID_INTEL_I7300_MCH_ERR
934 * Device 21 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB0
935 * Device 22 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
936 */
937 static int __devinit i7300_get_devices(struct mem_ctl_info *mci)
938 {
939 struct i7300_pvt *pvt;
940 struct pci_dev *pdev;
941
942 pvt = mci->pvt_info;
943
944 /* Attempt to 'get' the MCH register we want */
945 pdev = NULL;
946 while (!pvt->pci_dev_16_1_fsb_addr_map ||
947 !pvt->pci_dev_16_2_fsb_err_regs) {
948 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
949 PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, pdev);
950 if (!pdev) {
951 /* End of list, leave */
952 i7300_printk(KERN_ERR,
953 "'system address,Process Bus' "
954 "device not found:"
955 "vendor 0x%x device 0x%x ERR funcs "
956 "(broken BIOS?)\n",
957 PCI_VENDOR_ID_INTEL,
958 PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
959 goto error;
960 }
961
962 /* Store device 16 funcs 1 and 2 */
963 switch (PCI_FUNC(pdev->devfn)) {
964 case 1:
965 pvt->pci_dev_16_1_fsb_addr_map = pdev;
966 break;
967 case 2:
968 pvt->pci_dev_16_2_fsb_err_regs = pdev;
969 break;
970 }
971 }
972
973 debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
974 pci_name(pvt->pci_dev_16_0_fsb_ctlr),
975 pvt->pci_dev_16_0_fsb_ctlr->vendor,
976 pvt->pci_dev_16_0_fsb_ctlr->device);
977 debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
978 pci_name(pvt->pci_dev_16_1_fsb_addr_map),
979 pvt->pci_dev_16_1_fsb_addr_map->vendor,
980 pvt->pci_dev_16_1_fsb_addr_map->device);
981 debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
982 pci_name(pvt->pci_dev_16_2_fsb_err_regs),
983 pvt->pci_dev_16_2_fsb_err_regs->vendor,
984 pvt->pci_dev_16_2_fsb_err_regs->device);
985
986 pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
987 PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
988 NULL);
989 if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
990 i7300_printk(KERN_ERR,
991 "MC: 'BRANCH 0' device not found:"
992 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
993 PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
994 goto error;
995 }
996
997 pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
998 PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
999 NULL);
1000 if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
1001 i7300_printk(KERN_ERR,
1002 "MC: 'BRANCH 1' device not found:"
1003 "vendor 0x%x device 0x%x Func 0 "
1004 "(broken BIOS?)\n",
1005 PCI_VENDOR_ID_INTEL,
1006 PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
1007 goto error;
1008 }
1009
1010 return 0;
1011
1012 error:
1013 i7300_put_devices(mci);
1014 return -ENODEV;
1015 }
1016
1017 /**
1018 * i7300_init_one() - Probe for one instance of the device
1019 * @pdev: struct pci_dev pointer
1020 * @id: struct pci_device_id pointer - currently unused
1021 */
1022 static int __devinit i7300_init_one(struct pci_dev *pdev,
1023 const struct pci_device_id *id)
1024 {
1025 struct mem_ctl_info *mci;
1026 struct edac_mc_layer layers[3];
1027 struct i7300_pvt *pvt;
1028 int rc;
1029
1030 /* wake up device */
1031 rc = pci_enable_device(pdev);
1032 if (rc == -EIO)
1033 return rc;
1034
1035 debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1036 __func__,
1037 pdev->bus->number,
1038 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1039
1040 /* We only are looking for func 0 of the set */
1041 if (PCI_FUNC(pdev->devfn) != 0)
1042 return -ENODEV;
1043
1044 /* allocate a new MC control structure */
1045 layers[0].type = EDAC_MC_LAYER_BRANCH;
1046 layers[0].size = MAX_BRANCHES;
1047 layers[0].is_virt_csrow = false;
1048 layers[1].type = EDAC_MC_LAYER_CHANNEL;
1049 layers[1].size = MAX_CH_PER_BRANCH;
1050 layers[1].is_virt_csrow = true;
1051 layers[2].type = EDAC_MC_LAYER_SLOT;
1052 layers[2].size = MAX_SLOTS;
1053 layers[2].is_virt_csrow = true;
1054 mci = new_edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1055
1056 if (mci == NULL)
1057 return -ENOMEM;
1058
1059 debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
1060
1061 mci->dev = &pdev->dev; /* record ptr to the generic device */
1062
1063 pvt = mci->pvt_info;
1064 pvt->pci_dev_16_0_fsb_ctlr = pdev; /* Record this device in our private */
1065
1066 pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1067 if (!pvt->tmp_prt_buffer) {
1068 edac_mc_free(mci);
1069 return -ENOMEM;
1070 }
1071
1072 /* 'get' the pci devices we want to reserve for our use */
1073 if (i7300_get_devices(mci))
1074 goto fail0;
1075
1076 mci->mc_idx = 0;
1077 mci->mtype_cap = MEM_FLAG_FB_DDR2;
1078 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1079 mci->edac_cap = EDAC_FLAG_NONE;
1080 mci->mod_name = "i7300_edac.c";
1081 mci->mod_ver = I7300_REVISION;
1082 mci->ctl_name = i7300_devs[0].ctl_name;
1083 mci->dev_name = pci_name(pdev);
1084 mci->ctl_page_to_phys = NULL;
1085
1086 /* Set the function pointer to an actual operation function */
1087 mci->edac_check = i7300_check_error;
1088
1089 /* initialize the MC control structure 'csrows' table
1090 * with the mapping and control information */
1091 if (i7300_get_mc_regs(mci)) {
1092 debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1093 " because i7300_init_csrows() returned nonzero "
1094 "value\n");
1095 mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1096 } else {
1097 debugf1("MC: Enable error reporting now\n");
1098 i7300_enable_error_reporting(mci);
1099 }
1100
1101 /* add this new MC control structure to EDAC's list of MCs */
1102 if (edac_mc_add_mc(mci)) {
1103 debugf0("MC: " __FILE__
1104 ": %s(): failed edac_mc_add_mc()\n", __func__);
1105 /* FIXME: perhaps some code should go here that disables error
1106 * reporting if we just enabled it
1107 */
1108 goto fail1;
1109 }
1110
1111 i7300_clear_error(mci);
1112
1113 /* allocating generic PCI control info */
1114 i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1115 if (!i7300_pci) {
1116 printk(KERN_WARNING
1117 "%s(): Unable to create PCI control\n",
1118 __func__);
1119 printk(KERN_WARNING
1120 "%s(): PCI error report via EDAC not setup\n",
1121 __func__);
1122 }
1123
1124 return 0;
1125
1126 /* Error exit unwinding stack */
1127 fail1:
1128
1129 i7300_put_devices(mci);
1130
1131 fail0:
1132 kfree(pvt->tmp_prt_buffer);
1133 edac_mc_free(mci);
1134 return -ENODEV;
1135 }
1136
1137 /**
1138 * i7300_remove_one() - Remove the driver
1139 * @pdev: struct pci_dev pointer
1140 */
1141 static void __devexit i7300_remove_one(struct pci_dev *pdev)
1142 {
1143 struct mem_ctl_info *mci;
1144 char *tmp;
1145
1146 debugf0(__FILE__ ": %s()\n", __func__);
1147
1148 if (i7300_pci)
1149 edac_pci_release_generic_ctl(i7300_pci);
1150
1151 mci = edac_mc_del_mc(&pdev->dev);
1152 if (!mci)
1153 return;
1154
1155 tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer;
1156
1157 /* retrieve references to resources, and free those resources */
1158 i7300_put_devices(mci);
1159
1160 kfree(tmp);
1161 edac_mc_free(mci);
1162 }
1163
1164 /*
1165 * pci_device_id: table for which devices we are looking for
1166 *
1167 * Has only 8086:360c PCI ID
1168 */
1169 static DEFINE_PCI_DEVICE_TABLE(i7300_pci_tbl) = {
1170 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
1171 {0,} /* 0 terminated list. */
1172 };
1173
1174 MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
1175
1176 /*
1177 * i7300_driver: pci_driver structure for this module
1178 */
1179 static struct pci_driver i7300_driver = {
1180 .name = "i7300_edac",
1181 .probe = i7300_init_one,
1182 .remove = __devexit_p(i7300_remove_one),
1183 .id_table = i7300_pci_tbl,
1184 };
1185
1186 /**
1187 * i7300_init() - Registers the driver
1188 */
1189 static int __init i7300_init(void)
1190 {
1191 int pci_rc;
1192
1193 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1194
1195 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1196 opstate_init();
1197
1198 pci_rc = pci_register_driver(&i7300_driver);
1199
1200 return (pci_rc < 0) ? pci_rc : 0;
1201 }
1202
1203 /**
1204 * i7300_init() - Unregisters the driver
1205 */
1206 static void __exit i7300_exit(void)
1207 {
1208 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1209 pci_unregister_driver(&i7300_driver);
1210 }
1211
1212 module_init(i7300_init);
1213 module_exit(i7300_exit);
1214
1215 MODULE_LICENSE("GPL");
1216 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1217 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1218 MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
1219 I7300_REVISION);
1220
1221 module_param(edac_op_state, int, 0444);
1222 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.074727 seconds and 5 git commands to generate.