Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[deliverable/linux.git] / drivers / edac / i7core_edac.c
1 /* Intel i7 core/Nehalem Memory Controller kernel module
2 *
3 * This driver supports yhe memory controllers found on the Intel
4 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
5 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
6 * and Westmere-EP.
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License version 2 only.
10 *
11 * Copyright (c) 2009-2010 by:
12 * Mauro Carvalho Chehab <mchehab@redhat.com>
13 *
14 * Red Hat Inc. http://www.redhat.com
15 *
16 * Forked and adapted from the i5400_edac driver
17 *
18 * Based on the following public Intel datasheets:
19 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
20 * Datasheet, Volume 2:
21 * http://download.intel.com/design/processor/datashts/320835.pdf
22 * Intel Xeon Processor 5500 Series Datasheet Volume 2
23 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
24 * also available at:
25 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
26 */
27
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/pci.h>
31 #include <linux/pci_ids.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/edac.h>
35 #include <linux/mmzone.h>
36 #include <linux/edac_mce.h>
37 #include <linux/smp.h>
38 #include <asm/processor.h>
39
40 #include "edac_core.h"
41
42 /*
43 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
44 * registers start at bus 255, and are not reported by BIOS.
45 * We currently find devices with only 2 sockets. In order to support more QPI
46 * Quick Path Interconnect, just increment this number.
47 */
48 #define MAX_SOCKET_BUSES 2
49
50
51 /*
52 * Alter this version for the module when modifications are made
53 */
54 #define I7CORE_REVISION " Ver: 1.0.0 " __DATE__
55 #define EDAC_MOD_STR "i7core_edac"
56
57 /*
58 * Debug macros
59 */
60 #define i7core_printk(level, fmt, arg...) \
61 edac_printk(level, "i7core", fmt, ##arg)
62
63 #define i7core_mc_printk(mci, level, fmt, arg...) \
64 edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
65
66 /*
67 * i7core Memory Controller Registers
68 */
69
70 /* OFFSETS for Device 0 Function 0 */
71
72 #define MC_CFG_CONTROL 0x90
73
74 /* OFFSETS for Device 3 Function 0 */
75
76 #define MC_CONTROL 0x48
77 #define MC_STATUS 0x4c
78 #define MC_MAX_DOD 0x64
79
80 /*
81 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
82 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
83 */
84
85 #define MC_TEST_ERR_RCV1 0x60
86 #define DIMM2_COR_ERR(r) ((r) & 0x7fff)
87
88 #define MC_TEST_ERR_RCV0 0x64
89 #define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff)
90 #define DIMM0_COR_ERR(r) ((r) & 0x7fff)
91
92 /* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
93 #define MC_COR_ECC_CNT_0 0x80
94 #define MC_COR_ECC_CNT_1 0x84
95 #define MC_COR_ECC_CNT_2 0x88
96 #define MC_COR_ECC_CNT_3 0x8c
97 #define MC_COR_ECC_CNT_4 0x90
98 #define MC_COR_ECC_CNT_5 0x94
99
100 #define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff)
101 #define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff)
102
103
104 /* OFFSETS for Devices 4,5 and 6 Function 0 */
105
106 #define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
107 #define THREE_DIMMS_PRESENT (1 << 24)
108 #define SINGLE_QUAD_RANK_PRESENT (1 << 23)
109 #define QUAD_RANK_PRESENT (1 << 22)
110 #define REGISTERED_DIMM (1 << 15)
111
112 #define MC_CHANNEL_MAPPER 0x60
113 #define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1)
114 #define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1)
115
116 #define MC_CHANNEL_RANK_PRESENT 0x7c
117 #define RANK_PRESENT_MASK 0xffff
118
119 #define MC_CHANNEL_ADDR_MATCH 0xf0
120 #define MC_CHANNEL_ERROR_MASK 0xf8
121 #define MC_CHANNEL_ERROR_INJECT 0xfc
122 #define INJECT_ADDR_PARITY 0x10
123 #define INJECT_ECC 0x08
124 #define MASK_CACHELINE 0x06
125 #define MASK_FULL_CACHELINE 0x06
126 #define MASK_MSB32_CACHELINE 0x04
127 #define MASK_LSB32_CACHELINE 0x02
128 #define NO_MASK_CACHELINE 0x00
129 #define REPEAT_EN 0x01
130
131 /* OFFSETS for Devices 4,5 and 6 Function 1 */
132
133 #define MC_DOD_CH_DIMM0 0x48
134 #define MC_DOD_CH_DIMM1 0x4c
135 #define MC_DOD_CH_DIMM2 0x50
136 #define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10))
137 #define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10)
138 #define DIMM_PRESENT_MASK (1 << 9)
139 #define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9)
140 #define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7))
141 #define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7)
142 #define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5))
143 #define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5)
144 #define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2))
145 #define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2)
146 #define MC_DOD_NUMCOL_MASK 3
147 #define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK)
148
149 #define MC_RANK_PRESENT 0x7c
150
151 #define MC_SAG_CH_0 0x80
152 #define MC_SAG_CH_1 0x84
153 #define MC_SAG_CH_2 0x88
154 #define MC_SAG_CH_3 0x8c
155 #define MC_SAG_CH_4 0x90
156 #define MC_SAG_CH_5 0x94
157 #define MC_SAG_CH_6 0x98
158 #define MC_SAG_CH_7 0x9c
159
160 #define MC_RIR_LIMIT_CH_0 0x40
161 #define MC_RIR_LIMIT_CH_1 0x44
162 #define MC_RIR_LIMIT_CH_2 0x48
163 #define MC_RIR_LIMIT_CH_3 0x4C
164 #define MC_RIR_LIMIT_CH_4 0x50
165 #define MC_RIR_LIMIT_CH_5 0x54
166 #define MC_RIR_LIMIT_CH_6 0x58
167 #define MC_RIR_LIMIT_CH_7 0x5C
168 #define MC_RIR_LIMIT_MASK ((1 << 10) - 1)
169
170 #define MC_RIR_WAY_CH 0x80
171 #define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7)
172 #define MC_RIR_WAY_RANK_MASK 0x7
173
174 /*
175 * i7core structs
176 */
177
178 #define NUM_CHANS 3
179 #define MAX_DIMMS 3 /* Max DIMMS per channel */
180 #define MAX_MCR_FUNC 4
181 #define MAX_CHAN_FUNC 3
182
183 struct i7core_info {
184 u32 mc_control;
185 u32 mc_status;
186 u32 max_dod;
187 u32 ch_map;
188 };
189
190
191 struct i7core_inject {
192 int enable;
193
194 u32 section;
195 u32 type;
196 u32 eccmask;
197
198 /* Error address mask */
199 int channel, dimm, rank, bank, page, col;
200 };
201
202 struct i7core_channel {
203 u32 ranks;
204 u32 dimms;
205 };
206
207 struct pci_id_descr {
208 int dev;
209 int func;
210 int dev_id;
211 int optional;
212 };
213
214 struct pci_id_table {
215 struct pci_id_descr *descr;
216 int n_devs;
217 };
218
219 struct i7core_dev {
220 struct list_head list;
221 u8 socket;
222 struct pci_dev **pdev;
223 int n_devs;
224 struct mem_ctl_info *mci;
225 };
226
227 struct i7core_pvt {
228 struct pci_dev *pci_noncore;
229 struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1];
230 struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];
231
232 struct i7core_dev *i7core_dev;
233
234 struct i7core_info info;
235 struct i7core_inject inject;
236 struct i7core_channel channel[NUM_CHANS];
237
238 int channels; /* Number of active channels */
239
240 int ce_count_available;
241 int csrow_map[NUM_CHANS][MAX_DIMMS];
242
243 /* ECC corrected errors counts per udimm */
244 unsigned long udimm_ce_count[MAX_DIMMS];
245 int udimm_last_ce_count[MAX_DIMMS];
246 /* ECC corrected errors counts per rdimm */
247 unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
248 int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
249
250 unsigned int is_registered;
251
252 /* mcelog glue */
253 struct edac_mce edac_mce;
254
255 /* Fifo double buffers */
256 struct mce mce_entry[MCE_LOG_LEN];
257 struct mce mce_outentry[MCE_LOG_LEN];
258
259 /* Fifo in/out counters */
260 unsigned mce_in, mce_out;
261
262 /* Count indicator to show errors not got */
263 unsigned mce_overrun;
264 };
265
266 /* Static vars */
267 static LIST_HEAD(i7core_edac_list);
268 static DEFINE_MUTEX(i7core_edac_lock);
269
270 #define PCI_DESCR(device, function, device_id) \
271 .dev = (device), \
272 .func = (function), \
273 .dev_id = (device_id)
274
275 struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
276 /* Memory controller */
277 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) },
278 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) },
279 /* Exists only for RDIMM */
280 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 },
281 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
282
283 /* Channel 0 */
284 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
285 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
286 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
287 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) },
288
289 /* Channel 1 */
290 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
291 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
292 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
293 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) },
294
295 /* Channel 2 */
296 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
297 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
298 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
299 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) },
300
301 /* Generic Non-core registers */
302 /*
303 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
304 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
305 * the probing code needs to test for the other address in case of
306 * failure of this one
307 */
308 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE) },
309
310 };
311
312 struct pci_id_descr pci_dev_descr_lynnfield[] = {
313 { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) },
314 { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) },
315 { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) },
316
317 { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
318 { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
319 { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
320 { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) },
321
322 { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
323 { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
324 { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
325 { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) },
326
327 /*
328 * This is the PCI device has an alternate address on some
329 * processors like Core i7 860
330 */
331 { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) },
332 };
333
334 struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
335 /* Memory controller */
336 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) },
337 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) },
338 /* Exists only for RDIMM */
339 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 },
340 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },
341
342 /* Channel 0 */
343 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
344 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
345 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
346 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) },
347
348 /* Channel 1 */
349 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
350 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
351 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
352 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) },
353
354 /* Channel 2 */
355 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
356 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
357 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
358 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) },
359
360 /* Generic Non-core registers */
361 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2) },
362
363 };
364
365 #define PCI_ID_TABLE_ENTRY(A) { A, ARRAY_SIZE(A) }
366 struct pci_id_table pci_dev_table[] = {
367 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
368 PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
369 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
370 };
371
372 /*
373 * pci_device_id table for which devices we are looking for
374 */
375 static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
376 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
377 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
378 {0,} /* 0 terminated list. */
379 };
380
381 static struct edac_pci_ctl_info *i7core_pci;
382
383 /****************************************************************************
384 Anciliary status routines
385 ****************************************************************************/
386
387 /* MC_CONTROL bits */
388 #define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch)))
389 #define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1))
390
391 /* MC_STATUS bits */
392 #define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4))
393 #define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch))
394
395 /* MC_MAX_DOD read functions */
396 static inline int numdimms(u32 dimms)
397 {
398 return (dimms & 0x3) + 1;
399 }
400
401 static inline int numrank(u32 rank)
402 {
403 static int ranks[4] = { 1, 2, 4, -EINVAL };
404
405 return ranks[rank & 0x3];
406 }
407
408 static inline int numbank(u32 bank)
409 {
410 static int banks[4] = { 4, 8, 16, -EINVAL };
411
412 return banks[bank & 0x3];
413 }
414
415 static inline int numrow(u32 row)
416 {
417 static int rows[8] = {
418 1 << 12, 1 << 13, 1 << 14, 1 << 15,
419 1 << 16, -EINVAL, -EINVAL, -EINVAL,
420 };
421
422 return rows[row & 0x7];
423 }
424
425 static inline int numcol(u32 col)
426 {
427 static int cols[8] = {
428 1 << 10, 1 << 11, 1 << 12, -EINVAL,
429 };
430 return cols[col & 0x3];
431 }
432
433 static struct i7core_dev *get_i7core_dev(u8 socket)
434 {
435 struct i7core_dev *i7core_dev;
436
437 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
438 if (i7core_dev->socket == socket)
439 return i7core_dev;
440 }
441
442 return NULL;
443 }
444
445 /****************************************************************************
446 Memory check routines
447 ****************************************************************************/
448 static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
449 unsigned func)
450 {
451 struct i7core_dev *i7core_dev = get_i7core_dev(socket);
452 int i;
453
454 if (!i7core_dev)
455 return NULL;
456
457 for (i = 0; i < i7core_dev->n_devs; i++) {
458 if (!i7core_dev->pdev[i])
459 continue;
460
461 if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
462 PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
463 return i7core_dev->pdev[i];
464 }
465 }
466
467 return NULL;
468 }
469
470 /**
471 * i7core_get_active_channels() - gets the number of channels and csrows
472 * @socket: Quick Path Interconnect socket
473 * @channels: Number of channels that will be returned
474 * @csrows: Number of csrows found
475 *
476 * Since EDAC core needs to know in advance the number of available channels
477 * and csrows, in order to allocate memory for csrows/channels, it is needed
478 * to run two similar steps. At the first step, implemented on this function,
479 * it checks the number of csrows/channels present at one socket.
480 * this is used in order to properly allocate the size of mci components.
481 *
482 * It should be noticed that none of the current available datasheets explain
483 * or even mention how csrows are seen by the memory controller. So, we need
484 * to add a fake description for csrows.
485 * So, this driver is attributing one DIMM memory for one csrow.
486 */
487 static int i7core_get_active_channels(u8 socket, unsigned *channels,
488 unsigned *csrows)
489 {
490 struct pci_dev *pdev = NULL;
491 int i, j;
492 u32 status, control;
493
494 *channels = 0;
495 *csrows = 0;
496
497 pdev = get_pdev_slot_func(socket, 3, 0);
498 if (!pdev) {
499 i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
500 socket);
501 return -ENODEV;
502 }
503
504 /* Device 3 function 0 reads */
505 pci_read_config_dword(pdev, MC_STATUS, &status);
506 pci_read_config_dword(pdev, MC_CONTROL, &control);
507
508 for (i = 0; i < NUM_CHANS; i++) {
509 u32 dimm_dod[3];
510 /* Check if the channel is active */
511 if (!(control & (1 << (8 + i))))
512 continue;
513
514 /* Check if the channel is disabled */
515 if (status & (1 << i))
516 continue;
517
518 pdev = get_pdev_slot_func(socket, i + 4, 1);
519 if (!pdev) {
520 i7core_printk(KERN_ERR, "Couldn't find socket %d "
521 "fn %d.%d!!!\n",
522 socket, i + 4, 1);
523 return -ENODEV;
524 }
525 /* Devices 4-6 function 1 */
526 pci_read_config_dword(pdev,
527 MC_DOD_CH_DIMM0, &dimm_dod[0]);
528 pci_read_config_dword(pdev,
529 MC_DOD_CH_DIMM1, &dimm_dod[1]);
530 pci_read_config_dword(pdev,
531 MC_DOD_CH_DIMM2, &dimm_dod[2]);
532
533 (*channels)++;
534
535 for (j = 0; j < 3; j++) {
536 if (!DIMM_PRESENT(dimm_dod[j]))
537 continue;
538 (*csrows)++;
539 }
540 }
541
542 debugf0("Number of active channels on socket %d: %d\n",
543 socket, *channels);
544
545 return 0;
546 }
547
548 static int get_dimm_config(struct mem_ctl_info *mci, int *csrow)
549 {
550 struct i7core_pvt *pvt = mci->pvt_info;
551 struct csrow_info *csr;
552 struct pci_dev *pdev;
553 int i, j;
554 unsigned long last_page = 0;
555 enum edac_type mode;
556 enum mem_type mtype;
557
558 /* Get data from the MC register, function 0 */
559 pdev = pvt->pci_mcr[0];
560 if (!pdev)
561 return -ENODEV;
562
563 /* Device 3 function 0 reads */
564 pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
565 pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
566 pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
567 pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
568
569 debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
570 pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
571 pvt->info.max_dod, pvt->info.ch_map);
572
573 if (ECC_ENABLED(pvt)) {
574 debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
575 if (ECCx8(pvt))
576 mode = EDAC_S8ECD8ED;
577 else
578 mode = EDAC_S4ECD4ED;
579 } else {
580 debugf0("ECC disabled\n");
581 mode = EDAC_NONE;
582 }
583
584 /* FIXME: need to handle the error codes */
585 debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
586 "x%x x 0x%x\n",
587 numdimms(pvt->info.max_dod),
588 numrank(pvt->info.max_dod >> 2),
589 numbank(pvt->info.max_dod >> 4),
590 numrow(pvt->info.max_dod >> 6),
591 numcol(pvt->info.max_dod >> 9));
592
593 for (i = 0; i < NUM_CHANS; i++) {
594 u32 data, dimm_dod[3], value[8];
595
596 if (!pvt->pci_ch[i][0])
597 continue;
598
599 if (!CH_ACTIVE(pvt, i)) {
600 debugf0("Channel %i is not active\n", i);
601 continue;
602 }
603 if (CH_DISABLED(pvt, i)) {
604 debugf0("Channel %i is disabled\n", i);
605 continue;
606 }
607
608 /* Devices 4-6 function 0 */
609 pci_read_config_dword(pvt->pci_ch[i][0],
610 MC_CHANNEL_DIMM_INIT_PARAMS, &data);
611
612 pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
613 4 : 2;
614
615 if (data & REGISTERED_DIMM)
616 mtype = MEM_RDDR3;
617 else
618 mtype = MEM_DDR3;
619 #if 0
620 if (data & THREE_DIMMS_PRESENT)
621 pvt->channel[i].dimms = 3;
622 else if (data & SINGLE_QUAD_RANK_PRESENT)
623 pvt->channel[i].dimms = 1;
624 else
625 pvt->channel[i].dimms = 2;
626 #endif
627
628 /* Devices 4-6 function 1 */
629 pci_read_config_dword(pvt->pci_ch[i][1],
630 MC_DOD_CH_DIMM0, &dimm_dod[0]);
631 pci_read_config_dword(pvt->pci_ch[i][1],
632 MC_DOD_CH_DIMM1, &dimm_dod[1]);
633 pci_read_config_dword(pvt->pci_ch[i][1],
634 MC_DOD_CH_DIMM2, &dimm_dod[2]);
635
636 debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
637 "%d ranks, %cDIMMs\n",
638 i,
639 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
640 data,
641 pvt->channel[i].ranks,
642 (data & REGISTERED_DIMM) ? 'R' : 'U');
643
644 for (j = 0; j < 3; j++) {
645 u32 banks, ranks, rows, cols;
646 u32 size, npages;
647
648 if (!DIMM_PRESENT(dimm_dod[j]))
649 continue;
650
651 banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
652 ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
653 rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
654 cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
655
656 /* DDR3 has 8 I/O banks */
657 size = (rows * cols * banks * ranks) >> (20 - 3);
658
659 pvt->channel[i].dimms++;
660
661 debugf0("\tdimm %d %d Mb offset: %x, "
662 "bank: %d, rank: %d, row: %#x, col: %#x\n",
663 j, size,
664 RANKOFFSET(dimm_dod[j]),
665 banks, ranks, rows, cols);
666
667 #if PAGE_SHIFT > 20
668 npages = size >> (PAGE_SHIFT - 20);
669 #else
670 npages = size << (20 - PAGE_SHIFT);
671 #endif
672
673 csr = &mci->csrows[*csrow];
674 csr->first_page = last_page + 1;
675 last_page += npages;
676 csr->last_page = last_page;
677 csr->nr_pages = npages;
678
679 csr->page_mask = 0;
680 csr->grain = 8;
681 csr->csrow_idx = *csrow;
682 csr->nr_channels = 1;
683
684 csr->channels[0].chan_idx = i;
685 csr->channels[0].ce_count = 0;
686
687 pvt->csrow_map[i][j] = *csrow;
688
689 switch (banks) {
690 case 4:
691 csr->dtype = DEV_X4;
692 break;
693 case 8:
694 csr->dtype = DEV_X8;
695 break;
696 case 16:
697 csr->dtype = DEV_X16;
698 break;
699 default:
700 csr->dtype = DEV_UNKNOWN;
701 }
702
703 csr->edac_mode = mode;
704 csr->mtype = mtype;
705
706 (*csrow)++;
707 }
708
709 pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
710 pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
711 pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
712 pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
713 pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
714 pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
715 pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
716 pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
717 debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
718 for (j = 0; j < 8; j++)
719 debugf1("\t\t%#x\t%#x\t%#x\n",
720 (value[j] >> 27) & 0x1,
721 (value[j] >> 24) & 0x7,
722 (value[j] && ((1 << 24) - 1)));
723 }
724
725 return 0;
726 }
727
728 /****************************************************************************
729 Error insertion routines
730 ****************************************************************************/
731
732 /* The i7core has independent error injection features per channel.
733 However, to have a simpler code, we don't allow enabling error injection
734 on more than one channel.
735 Also, since a change at an inject parameter will be applied only at enable,
736 we're disabling error injection on all write calls to the sysfs nodes that
737 controls the error code injection.
738 */
739 static int disable_inject(struct mem_ctl_info *mci)
740 {
741 struct i7core_pvt *pvt = mci->pvt_info;
742
743 pvt->inject.enable = 0;
744
745 if (!pvt->pci_ch[pvt->inject.channel][0])
746 return -ENODEV;
747
748 pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
749 MC_CHANNEL_ERROR_INJECT, 0);
750
751 return 0;
752 }
753
754 /*
755 * i7core inject inject.section
756 *
757 * accept and store error injection inject.section value
758 * bit 0 - refers to the lower 32-byte half cacheline
759 * bit 1 - refers to the upper 32-byte half cacheline
760 */
761 static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
762 const char *data, size_t count)
763 {
764 struct i7core_pvt *pvt = mci->pvt_info;
765 unsigned long value;
766 int rc;
767
768 if (pvt->inject.enable)
769 disable_inject(mci);
770
771 rc = strict_strtoul(data, 10, &value);
772 if ((rc < 0) || (value > 3))
773 return -EIO;
774
775 pvt->inject.section = (u32) value;
776 return count;
777 }
778
779 static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
780 char *data)
781 {
782 struct i7core_pvt *pvt = mci->pvt_info;
783 return sprintf(data, "0x%08x\n", pvt->inject.section);
784 }
785
786 /*
787 * i7core inject.type
788 *
789 * accept and store error injection inject.section value
790 * bit 0 - repeat enable - Enable error repetition
791 * bit 1 - inject ECC error
792 * bit 2 - inject parity error
793 */
794 static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
795 const char *data, size_t count)
796 {
797 struct i7core_pvt *pvt = mci->pvt_info;
798 unsigned long value;
799 int rc;
800
801 if (pvt->inject.enable)
802 disable_inject(mci);
803
804 rc = strict_strtoul(data, 10, &value);
805 if ((rc < 0) || (value > 7))
806 return -EIO;
807
808 pvt->inject.type = (u32) value;
809 return count;
810 }
811
812 static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
813 char *data)
814 {
815 struct i7core_pvt *pvt = mci->pvt_info;
816 return sprintf(data, "0x%08x\n", pvt->inject.type);
817 }
818
819 /*
820 * i7core_inject_inject.eccmask_store
821 *
822 * The type of error (UE/CE) will depend on the inject.eccmask value:
823 * Any bits set to a 1 will flip the corresponding ECC bit
824 * Correctable errors can be injected by flipping 1 bit or the bits within
825 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
826 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
827 * uncorrectable error to be injected.
828 */
829 static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
830 const char *data, size_t count)
831 {
832 struct i7core_pvt *pvt = mci->pvt_info;
833 unsigned long value;
834 int rc;
835
836 if (pvt->inject.enable)
837 disable_inject(mci);
838
839 rc = strict_strtoul(data, 10, &value);
840 if (rc < 0)
841 return -EIO;
842
843 pvt->inject.eccmask = (u32) value;
844 return count;
845 }
846
847 static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
848 char *data)
849 {
850 struct i7core_pvt *pvt = mci->pvt_info;
851 return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
852 }
853
854 /*
855 * i7core_addrmatch
856 *
857 * The type of error (UE/CE) will depend on the inject.eccmask value:
858 * Any bits set to a 1 will flip the corresponding ECC bit
859 * Correctable errors can be injected by flipping 1 bit or the bits within
860 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
861 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
862 * uncorrectable error to be injected.
863 */
864
865 #define DECLARE_ADDR_MATCH(param, limit) \
866 static ssize_t i7core_inject_store_##param( \
867 struct mem_ctl_info *mci, \
868 const char *data, size_t count) \
869 { \
870 struct i7core_pvt *pvt; \
871 long value; \
872 int rc; \
873 \
874 debugf1("%s()\n", __func__); \
875 pvt = mci->pvt_info; \
876 \
877 if (pvt->inject.enable) \
878 disable_inject(mci); \
879 \
880 if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
881 value = -1; \
882 else { \
883 rc = strict_strtoul(data, 10, &value); \
884 if ((rc < 0) || (value >= limit)) \
885 return -EIO; \
886 } \
887 \
888 pvt->inject.param = value; \
889 \
890 return count; \
891 } \
892 \
893 static ssize_t i7core_inject_show_##param( \
894 struct mem_ctl_info *mci, \
895 char *data) \
896 { \
897 struct i7core_pvt *pvt; \
898 \
899 pvt = mci->pvt_info; \
900 debugf1("%s() pvt=%p\n", __func__, pvt); \
901 if (pvt->inject.param < 0) \
902 return sprintf(data, "any\n"); \
903 else \
904 return sprintf(data, "%d\n", pvt->inject.param);\
905 }
906
907 #define ATTR_ADDR_MATCH(param) \
908 { \
909 .attr = { \
910 .name = #param, \
911 .mode = (S_IRUGO | S_IWUSR) \
912 }, \
913 .show = i7core_inject_show_##param, \
914 .store = i7core_inject_store_##param, \
915 }
916
917 DECLARE_ADDR_MATCH(channel, 3);
918 DECLARE_ADDR_MATCH(dimm, 3);
919 DECLARE_ADDR_MATCH(rank, 4);
920 DECLARE_ADDR_MATCH(bank, 32);
921 DECLARE_ADDR_MATCH(page, 0x10000);
922 DECLARE_ADDR_MATCH(col, 0x4000);
923
924 static int write_and_test(struct pci_dev *dev, int where, u32 val)
925 {
926 u32 read;
927 int count;
928
929 debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
930 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
931 where, val);
932
933 for (count = 0; count < 10; count++) {
934 if (count)
935 msleep(100);
936 pci_write_config_dword(dev, where, val);
937 pci_read_config_dword(dev, where, &read);
938
939 if (read == val)
940 return 0;
941 }
942
943 i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
944 "write=%08x. Read=%08x\n",
945 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
946 where, val, read);
947
948 return -EINVAL;
949 }
950
951 /*
952 * This routine prepares the Memory Controller for error injection.
953 * The error will be injected when some process tries to write to the
954 * memory that matches the given criteria.
955 * The criteria can be set in terms of a mask where dimm, rank, bank, page
956 * and col can be specified.
957 * A -1 value for any of the mask items will make the MCU to ignore
958 * that matching criteria for error injection.
959 *
960 * It should be noticed that the error will only happen after a write operation
961 * on a memory that matches the condition. if REPEAT_EN is not enabled at
962 * inject mask, then it will produce just one error. Otherwise, it will repeat
963 * until the injectmask would be cleaned.
964 *
965 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
966 * is reliable enough to check if the MC is using the
967 * three channels. However, this is not clear at the datasheet.
968 */
969 static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
970 const char *data, size_t count)
971 {
972 struct i7core_pvt *pvt = mci->pvt_info;
973 u32 injectmask;
974 u64 mask = 0;
975 int rc;
976 long enable;
977
978 if (!pvt->pci_ch[pvt->inject.channel][0])
979 return 0;
980
981 rc = strict_strtoul(data, 10, &enable);
982 if ((rc < 0))
983 return 0;
984
985 if (enable) {
986 pvt->inject.enable = 1;
987 } else {
988 disable_inject(mci);
989 return count;
990 }
991
992 /* Sets pvt->inject.dimm mask */
993 if (pvt->inject.dimm < 0)
994 mask |= 1LL << 41;
995 else {
996 if (pvt->channel[pvt->inject.channel].dimms > 2)
997 mask |= (pvt->inject.dimm & 0x3LL) << 35;
998 else
999 mask |= (pvt->inject.dimm & 0x1LL) << 36;
1000 }
1001
1002 /* Sets pvt->inject.rank mask */
1003 if (pvt->inject.rank < 0)
1004 mask |= 1LL << 40;
1005 else {
1006 if (pvt->channel[pvt->inject.channel].dimms > 2)
1007 mask |= (pvt->inject.rank & 0x1LL) << 34;
1008 else
1009 mask |= (pvt->inject.rank & 0x3LL) << 34;
1010 }
1011
1012 /* Sets pvt->inject.bank mask */
1013 if (pvt->inject.bank < 0)
1014 mask |= 1LL << 39;
1015 else
1016 mask |= (pvt->inject.bank & 0x15LL) << 30;
1017
1018 /* Sets pvt->inject.page mask */
1019 if (pvt->inject.page < 0)
1020 mask |= 1LL << 38;
1021 else
1022 mask |= (pvt->inject.page & 0xffff) << 14;
1023
1024 /* Sets pvt->inject.column mask */
1025 if (pvt->inject.col < 0)
1026 mask |= 1LL << 37;
1027 else
1028 mask |= (pvt->inject.col & 0x3fff);
1029
1030 /*
1031 * bit 0: REPEAT_EN
1032 * bits 1-2: MASK_HALF_CACHELINE
1033 * bit 3: INJECT_ECC
1034 * bit 4: INJECT_ADDR_PARITY
1035 */
1036
1037 injectmask = (pvt->inject.type & 1) |
1038 (pvt->inject.section & 0x3) << 1 |
1039 (pvt->inject.type & 0x6) << (3 - 1);
1040
1041 /* Unlock writes to registers - this register is write only */
1042 pci_write_config_dword(pvt->pci_noncore,
1043 MC_CFG_CONTROL, 0x2);
1044
1045 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1046 MC_CHANNEL_ADDR_MATCH, mask);
1047 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1048 MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);
1049
1050 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1051 MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);
1052
1053 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1054 MC_CHANNEL_ERROR_INJECT, injectmask);
1055
1056 /*
1057 * This is something undocumented, based on my tests
1058 * Without writing 8 to this register, errors aren't injected. Not sure
1059 * why.
1060 */
1061 pci_write_config_dword(pvt->pci_noncore,
1062 MC_CFG_CONTROL, 8);
1063
1064 debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
1065 " inject 0x%08x\n",
1066 mask, pvt->inject.eccmask, injectmask);
1067
1068
1069 return count;
1070 }
1071
1072 static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
1073 char *data)
1074 {
1075 struct i7core_pvt *pvt = mci->pvt_info;
1076 u32 injectmask;
1077
1078 if (!pvt->pci_ch[pvt->inject.channel][0])
1079 return 0;
1080
1081 pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1082 MC_CHANNEL_ERROR_INJECT, &injectmask);
1083
1084 debugf0("Inject error read: 0x%018x\n", injectmask);
1085
1086 if (injectmask & 0x0c)
1087 pvt->inject.enable = 1;
1088
1089 return sprintf(data, "%d\n", pvt->inject.enable);
1090 }
1091
1092 #define DECLARE_COUNTER(param) \
1093 static ssize_t i7core_show_counter_##param( \
1094 struct mem_ctl_info *mci, \
1095 char *data) \
1096 { \
1097 struct i7core_pvt *pvt = mci->pvt_info; \
1098 \
1099 debugf1("%s() \n", __func__); \
1100 if (!pvt->ce_count_available || (pvt->is_registered)) \
1101 return sprintf(data, "data unavailable\n"); \
1102 return sprintf(data, "%lu\n", \
1103 pvt->udimm_ce_count[param]); \
1104 }
1105
1106 #define ATTR_COUNTER(param) \
1107 { \
1108 .attr = { \
1109 .name = __stringify(udimm##param), \
1110 .mode = (S_IRUGO | S_IWUSR) \
1111 }, \
1112 .show = i7core_show_counter_##param \
1113 }
1114
1115 DECLARE_COUNTER(0);
1116 DECLARE_COUNTER(1);
1117 DECLARE_COUNTER(2);
1118
1119 /*
1120 * Sysfs struct
1121 */
1122
1123
1124 static struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1125 ATTR_ADDR_MATCH(channel),
1126 ATTR_ADDR_MATCH(dimm),
1127 ATTR_ADDR_MATCH(rank),
1128 ATTR_ADDR_MATCH(bank),
1129 ATTR_ADDR_MATCH(page),
1130 ATTR_ADDR_MATCH(col),
1131 { .attr = { .name = NULL } }
1132 };
1133
1134 static struct mcidev_sysfs_group i7core_inject_addrmatch = {
1135 .name = "inject_addrmatch",
1136 .mcidev_attr = i7core_addrmatch_attrs,
1137 };
1138
1139 static struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1140 ATTR_COUNTER(0),
1141 ATTR_COUNTER(1),
1142 ATTR_COUNTER(2),
1143 };
1144
1145 static struct mcidev_sysfs_group i7core_udimm_counters = {
1146 .name = "all_channel_counts",
1147 .mcidev_attr = i7core_udimm_counters_attrs,
1148 };
1149
1150 static struct mcidev_sysfs_attribute i7core_sysfs_attrs[] = {
1151 {
1152 .attr = {
1153 .name = "inject_section",
1154 .mode = (S_IRUGO | S_IWUSR)
1155 },
1156 .show = i7core_inject_section_show,
1157 .store = i7core_inject_section_store,
1158 }, {
1159 .attr = {
1160 .name = "inject_type",
1161 .mode = (S_IRUGO | S_IWUSR)
1162 },
1163 .show = i7core_inject_type_show,
1164 .store = i7core_inject_type_store,
1165 }, {
1166 .attr = {
1167 .name = "inject_eccmask",
1168 .mode = (S_IRUGO | S_IWUSR)
1169 },
1170 .show = i7core_inject_eccmask_show,
1171 .store = i7core_inject_eccmask_store,
1172 }, {
1173 .grp = &i7core_inject_addrmatch,
1174 }, {
1175 .attr = {
1176 .name = "inject_enable",
1177 .mode = (S_IRUGO | S_IWUSR)
1178 },
1179 .show = i7core_inject_enable_show,
1180 .store = i7core_inject_enable_store,
1181 },
1182 { .attr = { .name = NULL } }, /* Reserved for udimm counters */
1183 { .attr = { .name = NULL } }
1184 };
1185
1186 /****************************************************************************
1187 Device initialization routines: put/get, init/exit
1188 ****************************************************************************/
1189
1190 /*
1191 * i7core_put_devices 'put' all the devices that we have
1192 * reserved via 'get'
1193 */
1194 static void i7core_put_devices(struct i7core_dev *i7core_dev)
1195 {
1196 int i;
1197
1198 debugf0(__FILE__ ": %s()\n", __func__);
1199 for (i = 0; i < i7core_dev->n_devs; i++) {
1200 struct pci_dev *pdev = i7core_dev->pdev[i];
1201 if (!pdev)
1202 continue;
1203 debugf0("Removing dev %02x:%02x.%d\n",
1204 pdev->bus->number,
1205 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1206 pci_dev_put(pdev);
1207 }
1208 kfree(i7core_dev->pdev);
1209 list_del(&i7core_dev->list);
1210 kfree(i7core_dev);
1211 }
1212
1213 static void i7core_put_all_devices(void)
1214 {
1215 struct i7core_dev *i7core_dev, *tmp;
1216
1217 list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list)
1218 i7core_put_devices(i7core_dev);
1219 }
1220
1221 static void __init i7core_xeon_pci_fixup(struct pci_id_table *table)
1222 {
1223 struct pci_dev *pdev = NULL;
1224 int i;
1225 /*
1226 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
1227 * aren't announced by acpi. So, we need to use a legacy scan probing
1228 * to detect them
1229 */
1230 while (table && table->descr) {
1231 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
1232 if (unlikely(!pdev)) {
1233 for (i = 0; i < MAX_SOCKET_BUSES; i++)
1234 pcibios_scan_specific_bus(255-i);
1235 }
1236 pci_dev_put(pdev);
1237 table++;
1238 }
1239 }
1240
1241 static unsigned i7core_pci_lastbus(void)
1242 {
1243 int last_bus = 0, bus;
1244 struct pci_bus *b = NULL;
1245
1246 while ((b = pci_find_next_bus(b)) != NULL) {
1247 bus = b->number;
1248 debugf0("Found bus %d\n", bus);
1249 if (bus > last_bus)
1250 last_bus = bus;
1251 }
1252
1253 debugf0("Last bus %d\n", last_bus);
1254
1255 return last_bus;
1256 }
1257
1258 /*
1259 * i7core_get_devices Find and perform 'get' operation on the MCH's
1260 * device/functions we want to reference for this driver
1261 *
1262 * Need to 'get' device 16 func 1 and func 2
1263 */
1264 int i7core_get_onedevice(struct pci_dev **prev, int devno,
1265 struct pci_id_descr *dev_descr, unsigned n_devs,
1266 unsigned last_bus)
1267 {
1268 struct i7core_dev *i7core_dev;
1269
1270 struct pci_dev *pdev = NULL;
1271 u8 bus = 0;
1272 u8 socket = 0;
1273
1274 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1275 dev_descr->dev_id, *prev);
1276
1277 /*
1278 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
1279 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
1280 * to probe for the alternate address in case of failure
1281 */
1282 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
1283 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1284 PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1285
1286 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
1287 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1288 PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
1289 *prev);
1290
1291 if (!pdev) {
1292 if (*prev) {
1293 *prev = pdev;
1294 return 0;
1295 }
1296
1297 if (dev_descr->optional)
1298 return 0;
1299
1300 if (devno == 0)
1301 return -ENODEV;
1302
1303 i7core_printk(KERN_INFO,
1304 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1305 dev_descr->dev, dev_descr->func,
1306 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1307
1308 /* End of list, leave */
1309 return -ENODEV;
1310 }
1311 bus = pdev->bus->number;
1312
1313 socket = last_bus - bus;
1314
1315 i7core_dev = get_i7core_dev(socket);
1316 if (!i7core_dev) {
1317 i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
1318 if (!i7core_dev)
1319 return -ENOMEM;
1320 i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * n_devs,
1321 GFP_KERNEL);
1322 if (!i7core_dev->pdev) {
1323 kfree(i7core_dev);
1324 return -ENOMEM;
1325 }
1326 i7core_dev->socket = socket;
1327 i7core_dev->n_devs = n_devs;
1328 list_add_tail(&i7core_dev->list, &i7core_edac_list);
1329 }
1330
1331 if (i7core_dev->pdev[devno]) {
1332 i7core_printk(KERN_ERR,
1333 "Duplicated device for "
1334 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1335 bus, dev_descr->dev, dev_descr->func,
1336 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1337 pci_dev_put(pdev);
1338 return -ENODEV;
1339 }
1340
1341 i7core_dev->pdev[devno] = pdev;
1342
1343 /* Sanity check */
1344 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1345 PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1346 i7core_printk(KERN_ERR,
1347 "Device PCI ID %04x:%04x "
1348 "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1349 PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1350 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1351 bus, dev_descr->dev, dev_descr->func);
1352 return -ENODEV;
1353 }
1354
1355 /* Be sure that the device is enabled */
1356 if (unlikely(pci_enable_device(pdev) < 0)) {
1357 i7core_printk(KERN_ERR,
1358 "Couldn't enable "
1359 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1360 bus, dev_descr->dev, dev_descr->func,
1361 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1362 return -ENODEV;
1363 }
1364
1365 debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1366 socket, bus, dev_descr->dev,
1367 dev_descr->func,
1368 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1369
1370 *prev = pdev;
1371
1372 return 0;
1373 }
1374
1375 static int i7core_get_devices(struct pci_id_table *table)
1376 {
1377 int i, rc, last_bus;
1378 struct pci_dev *pdev = NULL;
1379 struct pci_id_descr *dev_descr;
1380
1381 last_bus = i7core_pci_lastbus();
1382
1383 while (table && table->descr) {
1384 dev_descr = table->descr;
1385 for (i = 0; i < table->n_devs; i++) {
1386 pdev = NULL;
1387 do {
1388 rc = i7core_get_onedevice(&pdev, i,
1389 &dev_descr[i],
1390 table->n_devs,
1391 last_bus);
1392 if (rc < 0) {
1393 if (i == 0) {
1394 i = table->n_devs;
1395 break;
1396 }
1397 i7core_put_all_devices();
1398 return -ENODEV;
1399 }
1400 } while (pdev);
1401 }
1402 table++;
1403 }
1404
1405 return 0;
1406 return 0;
1407 }
1408
1409 static int mci_bind_devs(struct mem_ctl_info *mci,
1410 struct i7core_dev *i7core_dev)
1411 {
1412 struct i7core_pvt *pvt = mci->pvt_info;
1413 struct pci_dev *pdev;
1414 int i, func, slot;
1415
1416 /* Associates i7core_dev and mci for future usage */
1417 pvt->i7core_dev = i7core_dev;
1418 i7core_dev->mci = mci;
1419
1420 pvt->is_registered = 0;
1421 for (i = 0; i < i7core_dev->n_devs; i++) {
1422 pdev = i7core_dev->pdev[i];
1423 if (!pdev)
1424 continue;
1425
1426 func = PCI_FUNC(pdev->devfn);
1427 slot = PCI_SLOT(pdev->devfn);
1428 if (slot == 3) {
1429 if (unlikely(func > MAX_MCR_FUNC))
1430 goto error;
1431 pvt->pci_mcr[func] = pdev;
1432 } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
1433 if (unlikely(func > MAX_CHAN_FUNC))
1434 goto error;
1435 pvt->pci_ch[slot - 4][func] = pdev;
1436 } else if (!slot && !func)
1437 pvt->pci_noncore = pdev;
1438 else
1439 goto error;
1440
1441 debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
1442 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1443 pdev, i7core_dev->socket);
1444
1445 if (PCI_SLOT(pdev->devfn) == 3 &&
1446 PCI_FUNC(pdev->devfn) == 2)
1447 pvt->is_registered = 1;
1448 }
1449
1450 /*
1451 * Add extra nodes to count errors on udimm
1452 * For registered memory, this is not needed, since the counters
1453 * are already displayed at the standard locations
1454 */
1455 if (!pvt->is_registered)
1456 i7core_sysfs_attrs[ARRAY_SIZE(i7core_sysfs_attrs)-2].grp =
1457 &i7core_udimm_counters;
1458
1459 return 0;
1460
1461 error:
1462 i7core_printk(KERN_ERR, "Device %d, function %d "
1463 "is out of the expected range\n",
1464 slot, func);
1465 return -EINVAL;
1466 }
1467
1468 /****************************************************************************
1469 Error check routines
1470 ****************************************************************************/
1471 static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1472 int chan, int dimm, int add)
1473 {
1474 char *msg;
1475 struct i7core_pvt *pvt = mci->pvt_info;
1476 int row = pvt->csrow_map[chan][dimm], i;
1477
1478 for (i = 0; i < add; i++) {
1479 msg = kasprintf(GFP_KERNEL, "Corrected error "
1480 "(Socket=%d channel=%d dimm=%d)",
1481 pvt->i7core_dev->socket, chan, dimm);
1482
1483 edac_mc_handle_fbd_ce(mci, row, 0, msg);
1484 kfree (msg);
1485 }
1486 }
1487
1488 static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1489 int chan, int new0, int new1, int new2)
1490 {
1491 struct i7core_pvt *pvt = mci->pvt_info;
1492 int add0 = 0, add1 = 0, add2 = 0;
1493 /* Updates CE counters if it is not the first time here */
1494 if (pvt->ce_count_available) {
1495 /* Updates CE counters */
1496
1497 add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
1498 add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
1499 add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1500
1501 if (add2 < 0)
1502 add2 += 0x7fff;
1503 pvt->rdimm_ce_count[chan][2] += add2;
1504
1505 if (add1 < 0)
1506 add1 += 0x7fff;
1507 pvt->rdimm_ce_count[chan][1] += add1;
1508
1509 if (add0 < 0)
1510 add0 += 0x7fff;
1511 pvt->rdimm_ce_count[chan][0] += add0;
1512 } else
1513 pvt->ce_count_available = 1;
1514
1515 /* Store the new values */
1516 pvt->rdimm_last_ce_count[chan][2] = new2;
1517 pvt->rdimm_last_ce_count[chan][1] = new1;
1518 pvt->rdimm_last_ce_count[chan][0] = new0;
1519
1520 /*updated the edac core */
1521 if (add0 != 0)
1522 i7core_rdimm_update_csrow(mci, chan, 0, add0);
1523 if (add1 != 0)
1524 i7core_rdimm_update_csrow(mci, chan, 1, add1);
1525 if (add2 != 0)
1526 i7core_rdimm_update_csrow(mci, chan, 2, add2);
1527
1528 }
1529
1530 static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1531 {
1532 struct i7core_pvt *pvt = mci->pvt_info;
1533 u32 rcv[3][2];
1534 int i, new0, new1, new2;
1535
1536 /*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/
1537 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1538 &rcv[0][0]);
1539 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1540 &rcv[0][1]);
1541 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1542 &rcv[1][0]);
1543 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1544 &rcv[1][1]);
1545 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1546 &rcv[2][0]);
1547 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1548 &rcv[2][1]);
1549 for (i = 0 ; i < 3; i++) {
1550 debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
1551 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
1552 /*if the channel has 3 dimms*/
1553 if (pvt->channel[i].dimms > 2) {
1554 new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
1555 new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
1556 new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
1557 } else {
1558 new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
1559 DIMM_BOT_COR_ERR(rcv[i][0]);
1560 new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
1561 DIMM_BOT_COR_ERR(rcv[i][1]);
1562 new2 = 0;
1563 }
1564
1565 i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1566 }
1567 }
1568
1569 /* This function is based on the device 3 function 4 registers as described on:
1570 * Intel Xeon Processor 5500 Series Datasheet Volume 2
1571 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
1572 * also available at:
1573 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
1574 */
1575 static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1576 {
1577 struct i7core_pvt *pvt = mci->pvt_info;
1578 u32 rcv1, rcv0;
1579 int new0, new1, new2;
1580
1581 if (!pvt->pci_mcr[4]) {
1582 debugf0("%s MCR registers not found\n", __func__);
1583 return;
1584 }
1585
1586 /* Corrected test errors */
1587 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
1588 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1589
1590 /* Store the new values */
1591 new2 = DIMM2_COR_ERR(rcv1);
1592 new1 = DIMM1_COR_ERR(rcv0);
1593 new0 = DIMM0_COR_ERR(rcv0);
1594
1595 /* Updates CE counters if it is not the first time here */
1596 if (pvt->ce_count_available) {
1597 /* Updates CE counters */
1598 int add0, add1, add2;
1599
1600 add2 = new2 - pvt->udimm_last_ce_count[2];
1601 add1 = new1 - pvt->udimm_last_ce_count[1];
1602 add0 = new0 - pvt->udimm_last_ce_count[0];
1603
1604 if (add2 < 0)
1605 add2 += 0x7fff;
1606 pvt->udimm_ce_count[2] += add2;
1607
1608 if (add1 < 0)
1609 add1 += 0x7fff;
1610 pvt->udimm_ce_count[1] += add1;
1611
1612 if (add0 < 0)
1613 add0 += 0x7fff;
1614 pvt->udimm_ce_count[0] += add0;
1615
1616 if (add0 | add1 | add2)
1617 i7core_printk(KERN_ERR, "New Corrected error(s): "
1618 "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
1619 add0, add1, add2);
1620 } else
1621 pvt->ce_count_available = 1;
1622
1623 /* Store the new values */
1624 pvt->udimm_last_ce_count[2] = new2;
1625 pvt->udimm_last_ce_count[1] = new1;
1626 pvt->udimm_last_ce_count[0] = new0;
1627 }
1628
1629 /*
1630 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
1631 * Architectures Software Developer’s Manual Volume 3B.
1632 * Nehalem are defined as family 0x06, model 0x1a
1633 *
1634 * The MCA registers used here are the following ones:
1635 * struct mce field MCA Register
1636 * m->status MSR_IA32_MC8_STATUS
1637 * m->addr MSR_IA32_MC8_ADDR
1638 * m->misc MSR_IA32_MC8_MISC
1639 * In the case of Nehalem, the error information is masked at .status and .misc
1640 * fields
1641 */
1642 static void i7core_mce_output_error(struct mem_ctl_info *mci,
1643 struct mce *m)
1644 {
1645 struct i7core_pvt *pvt = mci->pvt_info;
1646 char *type, *optype, *err, *msg;
1647 unsigned long error = m->status & 0x1ff0000l;
1648 u32 optypenum = (m->status >> 4) & 0x07;
1649 u32 core_err_cnt = (m->status >> 38) && 0x7fff;
1650 u32 dimm = (m->misc >> 16) & 0x3;
1651 u32 channel = (m->misc >> 18) & 0x3;
1652 u32 syndrome = m->misc >> 32;
1653 u32 errnum = find_first_bit(&error, 32);
1654 int csrow;
1655
1656 if (m->mcgstatus & 1)
1657 type = "FATAL";
1658 else
1659 type = "NON_FATAL";
1660
1661 switch (optypenum) {
1662 case 0:
1663 optype = "generic undef request";
1664 break;
1665 case 1:
1666 optype = "read error";
1667 break;
1668 case 2:
1669 optype = "write error";
1670 break;
1671 case 3:
1672 optype = "addr/cmd error";
1673 break;
1674 case 4:
1675 optype = "scrubbing error";
1676 break;
1677 default:
1678 optype = "reserved";
1679 break;
1680 }
1681
1682 switch (errnum) {
1683 case 16:
1684 err = "read ECC error";
1685 break;
1686 case 17:
1687 err = "RAS ECC error";
1688 break;
1689 case 18:
1690 err = "write parity error";
1691 break;
1692 case 19:
1693 err = "redundacy loss";
1694 break;
1695 case 20:
1696 err = "reserved";
1697 break;
1698 case 21:
1699 err = "memory range error";
1700 break;
1701 case 22:
1702 err = "RTID out of range";
1703 break;
1704 case 23:
1705 err = "address parity error";
1706 break;
1707 case 24:
1708 err = "byte enable parity error";
1709 break;
1710 default:
1711 err = "unknown";
1712 }
1713
1714 /* FIXME: should convert addr into bank and rank information */
1715 msg = kasprintf(GFP_ATOMIC,
1716 "%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1717 "syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1718 type, (long long) m->addr, m->cpu, dimm, channel,
1719 syndrome, core_err_cnt, (long long)m->status,
1720 (long long)m->misc, optype, err);
1721
1722 debugf0("%s", msg);
1723
1724 csrow = pvt->csrow_map[channel][dimm];
1725
1726 /* Call the helper to output message */
1727 if (m->mcgstatus & 1)
1728 edac_mc_handle_fbd_ue(mci, csrow, 0,
1729 0 /* FIXME: should be channel here */, msg);
1730 else if (!pvt->is_registered)
1731 edac_mc_handle_fbd_ce(mci, csrow,
1732 0 /* FIXME: should be channel here */, msg);
1733
1734 kfree(msg);
1735 }
1736
1737 /*
1738 * i7core_check_error Retrieve and process errors reported by the
1739 * hardware. Called by the Core module.
1740 */
1741 static void i7core_check_error(struct mem_ctl_info *mci)
1742 {
1743 struct i7core_pvt *pvt = mci->pvt_info;
1744 int i;
1745 unsigned count = 0;
1746 struct mce *m;
1747
1748 /*
1749 * MCE first step: Copy all mce errors into a temporary buffer
1750 * We use a double buffering here, to reduce the risk of
1751 * loosing an error.
1752 */
1753 smp_rmb();
1754 count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1755 % MCE_LOG_LEN;
1756 if (!count)
1757 goto check_ce_error;
1758
1759 m = pvt->mce_outentry;
1760 if (pvt->mce_in + count > MCE_LOG_LEN) {
1761 unsigned l = MCE_LOG_LEN - pvt->mce_in;
1762
1763 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1764 smp_wmb();
1765 pvt->mce_in = 0;
1766 count -= l;
1767 m += l;
1768 }
1769 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1770 smp_wmb();
1771 pvt->mce_in += count;
1772
1773 smp_rmb();
1774 if (pvt->mce_overrun) {
1775 i7core_printk(KERN_ERR, "Lost %d memory errors\n",
1776 pvt->mce_overrun);
1777 smp_wmb();
1778 pvt->mce_overrun = 0;
1779 }
1780
1781 /*
1782 * MCE second step: parse errors and display
1783 */
1784 for (i = 0; i < count; i++)
1785 i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1786
1787 /*
1788 * Now, let's increment CE error counts
1789 */
1790 check_ce_error:
1791 if (!pvt->is_registered)
1792 i7core_udimm_check_mc_ecc_err(mci);
1793 else
1794 i7core_rdimm_check_mc_ecc_err(mci);
1795 }
1796
1797 /*
1798 * i7core_mce_check_error Replicates mcelog routine to get errors
1799 * This routine simply queues mcelog errors, and
1800 * return. The error itself should be handled later
1801 * by i7core_check_error.
1802 * WARNING: As this routine should be called at NMI time, extra care should
1803 * be taken to avoid deadlocks, and to be as fast as possible.
1804 */
1805 static int i7core_mce_check_error(void *priv, struct mce *mce)
1806 {
1807 struct mem_ctl_info *mci = priv;
1808 struct i7core_pvt *pvt = mci->pvt_info;
1809
1810 /*
1811 * Just let mcelog handle it if the error is
1812 * outside the memory controller
1813 */
1814 if (((mce->status & 0xffff) >> 7) != 1)
1815 return 0;
1816
1817 /* Bank 8 registers are the only ones that we know how to handle */
1818 if (mce->bank != 8)
1819 return 0;
1820
1821 #ifdef CONFIG_SMP
1822 /* Only handle if it is the right mc controller */
1823 if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket)
1824 return 0;
1825 #endif
1826
1827 smp_rmb();
1828 if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1829 smp_wmb();
1830 pvt->mce_overrun++;
1831 return 0;
1832 }
1833
1834 /* Copy memory error at the ringbuffer */
1835 memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1836 smp_wmb();
1837 pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1838
1839 /* Handle fatal errors immediately */
1840 if (mce->mcgstatus & 1)
1841 i7core_check_error(mci);
1842
1843 /* Advice mcelog that the error were handled */
1844 return 1;
1845 }
1846
1847 static int i7core_register_mci(struct i7core_dev *i7core_dev,
1848 int num_channels, int num_csrows)
1849 {
1850 struct mem_ctl_info *mci;
1851 struct i7core_pvt *pvt;
1852 int csrow = 0;
1853 int rc;
1854
1855 /* allocate a new MC control structure */
1856 mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels,
1857 i7core_dev->socket);
1858 if (unlikely(!mci))
1859 return -ENOMEM;
1860
1861 debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
1862
1863 /* record ptr to the generic device */
1864 mci->dev = &i7core_dev->pdev[0]->dev;
1865
1866 pvt = mci->pvt_info;
1867 memset(pvt, 0, sizeof(*pvt));
1868
1869 /*
1870 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
1871 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
1872 * memory channels
1873 */
1874 mci->mtype_cap = MEM_FLAG_DDR3;
1875 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1876 mci->edac_cap = EDAC_FLAG_NONE;
1877 mci->mod_name = "i7core_edac.c";
1878 mci->mod_ver = I7CORE_REVISION;
1879 mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
1880 i7core_dev->socket);
1881 mci->dev_name = pci_name(i7core_dev->pdev[0]);
1882 mci->ctl_page_to_phys = NULL;
1883 mci->mc_driver_sysfs_attributes = i7core_sysfs_attrs;
1884 /* Set the function pointer to an actual operation function */
1885 mci->edac_check = i7core_check_error;
1886
1887 /* Store pci devices at mci for faster access */
1888 rc = mci_bind_devs(mci, i7core_dev);
1889 if (unlikely(rc < 0))
1890 goto fail;
1891
1892 /* Get dimm basic config */
1893 get_dimm_config(mci, &csrow);
1894
1895 /* add this new MC control structure to EDAC's list of MCs */
1896 if (unlikely(edac_mc_add_mc(mci))) {
1897 debugf0("MC: " __FILE__
1898 ": %s(): failed edac_mc_add_mc()\n", __func__);
1899 /* FIXME: perhaps some code should go here that disables error
1900 * reporting if we just enabled it
1901 */
1902
1903 rc = -EINVAL;
1904 goto fail;
1905 }
1906
1907 /* allocating generic PCI control info */
1908 i7core_pci = edac_pci_create_generic_ctl(&i7core_dev->pdev[0]->dev,
1909 EDAC_MOD_STR);
1910 if (unlikely(!i7core_pci)) {
1911 printk(KERN_WARNING
1912 "%s(): Unable to create PCI control\n",
1913 __func__);
1914 printk(KERN_WARNING
1915 "%s(): PCI error report via EDAC not setup\n",
1916 __func__);
1917 }
1918
1919 /* Default error mask is any memory */
1920 pvt->inject.channel = 0;
1921 pvt->inject.dimm = -1;
1922 pvt->inject.rank = -1;
1923 pvt->inject.bank = -1;
1924 pvt->inject.page = -1;
1925 pvt->inject.col = -1;
1926
1927 /* Registers on edac_mce in order to receive memory errors */
1928 pvt->edac_mce.priv = mci;
1929 pvt->edac_mce.check_error = i7core_mce_check_error;
1930
1931 rc = edac_mce_register(&pvt->edac_mce);
1932 if (unlikely(rc < 0)) {
1933 debugf0("MC: " __FILE__
1934 ": %s(): failed edac_mce_register()\n", __func__);
1935 }
1936
1937 fail:
1938 if (rc < 0)
1939 edac_mc_free(mci);
1940 return rc;
1941 }
1942
1943 /*
1944 * i7core_probe Probe for ONE instance of device to see if it is
1945 * present.
1946 * return:
1947 * 0 for FOUND a device
1948 * < 0 for error code
1949 */
1950
1951 static int probed = 0;
1952
1953 static int __devinit i7core_probe(struct pci_dev *pdev,
1954 const struct pci_device_id *id)
1955 {
1956 int rc;
1957 struct i7core_dev *i7core_dev;
1958
1959 /* get the pci devices we want to reserve for our use */
1960 mutex_lock(&i7core_edac_lock);
1961
1962 /*
1963 * All memory controllers are allocated at the first pass.
1964 */
1965 if (unlikely(probed >= 1)) {
1966 mutex_unlock(&i7core_edac_lock);
1967 return -EINVAL;
1968 }
1969 probed++;
1970
1971 rc = i7core_get_devices(pci_dev_table);
1972 if (unlikely(rc < 0))
1973 goto fail0;
1974
1975 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
1976 int channels;
1977 int csrows;
1978
1979 /* Check the number of active and not disabled channels */
1980 rc = i7core_get_active_channels(i7core_dev->socket,
1981 &channels, &csrows);
1982 if (unlikely(rc < 0))
1983 goto fail1;
1984
1985 rc = i7core_register_mci(i7core_dev, channels, csrows);
1986 if (unlikely(rc < 0))
1987 goto fail1;
1988 }
1989
1990 i7core_printk(KERN_INFO, "Driver loaded.\n");
1991
1992 mutex_unlock(&i7core_edac_lock);
1993 return 0;
1994
1995 fail1:
1996 i7core_put_all_devices();
1997 fail0:
1998 mutex_unlock(&i7core_edac_lock);
1999 return rc;
2000 }
2001
2002 /*
2003 * i7core_remove destructor for one instance of device
2004 *
2005 */
2006 static void __devexit i7core_remove(struct pci_dev *pdev)
2007 {
2008 struct mem_ctl_info *mci;
2009 struct i7core_dev *i7core_dev, *tmp;
2010
2011 debugf0(__FILE__ ": %s()\n", __func__);
2012
2013 if (i7core_pci)
2014 edac_pci_release_generic_ctl(i7core_pci);
2015
2016 /*
2017 * we have a trouble here: pdev value for removal will be wrong, since
2018 * it will point to the X58 register used to detect that the machine
2019 * is a Nehalem or upper design. However, due to the way several PCI
2020 * devices are grouped together to provide MC functionality, we need
2021 * to use a different method for releasing the devices
2022 */
2023
2024 mutex_lock(&i7core_edac_lock);
2025 list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
2026 mci = edac_mc_del_mc(&i7core_dev->pdev[0]->dev);
2027 if (mci) {
2028 struct i7core_pvt *pvt = mci->pvt_info;
2029
2030 i7core_dev = pvt->i7core_dev;
2031 edac_mce_unregister(&pvt->edac_mce);
2032 kfree(mci->ctl_name);
2033 edac_mc_free(mci);
2034 i7core_put_devices(i7core_dev);
2035 } else {
2036 i7core_printk(KERN_ERR,
2037 "Couldn't find mci for socket %d\n",
2038 i7core_dev->socket);
2039 }
2040 }
2041 probed--;
2042
2043 mutex_unlock(&i7core_edac_lock);
2044 }
2045
2046 MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
2047
2048 /*
2049 * i7core_driver pci_driver structure for this module
2050 *
2051 */
2052 static struct pci_driver i7core_driver = {
2053 .name = "i7core_edac",
2054 .probe = i7core_probe,
2055 .remove = __devexit_p(i7core_remove),
2056 .id_table = i7core_pci_tbl,
2057 };
2058
2059 /*
2060 * i7core_init Module entry function
2061 * Try to initialize this module for its devices
2062 */
2063 static int __init i7core_init(void)
2064 {
2065 int pci_rc;
2066
2067 debugf2("MC: " __FILE__ ": %s()\n", __func__);
2068
2069 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2070 opstate_init();
2071
2072 i7core_xeon_pci_fixup(pci_dev_table);
2073
2074 pci_rc = pci_register_driver(&i7core_driver);
2075
2076 if (pci_rc >= 0)
2077 return 0;
2078
2079 i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
2080 pci_rc);
2081
2082 return pci_rc;
2083 }
2084
2085 /*
2086 * i7core_exit() Module exit function
2087 * Unregister the driver
2088 */
2089 static void __exit i7core_exit(void)
2090 {
2091 debugf2("MC: " __FILE__ ": %s()\n", __func__);
2092 pci_unregister_driver(&i7core_driver);
2093 }
2094
2095 module_init(i7core_init);
2096 module_exit(i7core_exit);
2097
2098 MODULE_LICENSE("GPL");
2099 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
2100 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2101 MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
2102 I7CORE_REVISION);
2103
2104 module_param(edac_op_state, int, 0444);
2105 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.11225 seconds and 5 git commands to generate.