Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / edac / sb_edac.c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2 *
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
5 *
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
8 *
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab <mchehab@redhat.com>
11 */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26
27 #include "edac_core.h"
28
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33
34 /*
35 * Alter this version for the module when modifications are made
36 */
37 #define SBRIDGE_REVISION " Ver: 1.0.0 "
38 #define EDAC_MOD_STR "sbridge_edac"
39
40 /*
41 * Debug macros
42 */
43 #define sbridge_printk(level, fmt, arg...) \
44 edac_printk(level, "sbridge", fmt, ##arg)
45
46 #define sbridge_mc_printk(mci, level, fmt, arg...) \
47 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48
49 /*
50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51 */
52 #define GET_BITFIELD(v, lo, hi) \
53 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
54
55 /*
56 * sbridge Memory Controller Registers
57 */
58
59 /*
60 * FIXME: For now, let's order by device function, as it makes
61 * easier for driver's development process. This table should be
62 * moved to pci_id.h when submitted upstream
63 */
64 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
65 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
66 #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
67 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
68 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
69 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
70 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
71 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
72 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
73 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
74 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
75
76 /*
77 * Currently, unused, but will be needed in the future
78 * implementations, as they hold the error counters
79 */
80 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
81 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
82 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
83 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
84
85 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
86 static const u32 dram_rule[] = {
87 0x80, 0x88, 0x90, 0x98, 0xa0,
88 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
89 };
90 #define MAX_SAD ARRAY_SIZE(dram_rule)
91
92 #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
93 #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
94 #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
95 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
96
97 static char *get_dram_attr(u32 reg)
98 {
99 switch(DRAM_ATTR(reg)) {
100 case 0:
101 return "DRAM";
102 case 1:
103 return "MMCFG";
104 case 2:
105 return "NXM";
106 default:
107 return "unknown";
108 }
109 }
110
111 static const u32 interleave_list[] = {
112 0x84, 0x8c, 0x94, 0x9c, 0xa4,
113 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
114 };
115 #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list)
116
117 #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2)
118 #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5)
119 #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10)
120 #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13)
121 #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18)
122 #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21)
123 #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26)
124 #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29)
125
126 static inline int sad_pkg(u32 reg, int interleave)
127 {
128 switch (interleave) {
129 case 0:
130 return SAD_PKG0(reg);
131 case 1:
132 return SAD_PKG1(reg);
133 case 2:
134 return SAD_PKG2(reg);
135 case 3:
136 return SAD_PKG3(reg);
137 case 4:
138 return SAD_PKG4(reg);
139 case 5:
140 return SAD_PKG5(reg);
141 case 6:
142 return SAD_PKG6(reg);
143 case 7:
144 return SAD_PKG7(reg);
145 default:
146 return -EINVAL;
147 }
148 }
149
150 /* Devices 12 Function 7 */
151
152 #define TOLM 0x80
153 #define TOHM 0x84
154
155 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
156 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
157
158 /* Device 13 Function 6 */
159
160 #define SAD_TARGET 0xf0
161
162 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
163
164 #define SAD_CONTROL 0xf4
165
166 #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
167
168 /* Device 14 function 0 */
169
170 static const u32 tad_dram_rule[] = {
171 0x40, 0x44, 0x48, 0x4c,
172 0x50, 0x54, 0x58, 0x5c,
173 0x60, 0x64, 0x68, 0x6c,
174 };
175 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
176
177 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
178 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
179 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
180 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
181 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
182 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
183 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
184
185 /* Device 15, function 0 */
186
187 #define MCMTR 0x7c
188
189 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
190 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
191 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
192
193 /* Device 15, function 1 */
194
195 #define RASENABLES 0xac
196 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
197
198 /* Device 15, functions 2-5 */
199
200 static const int mtr_regs[] = {
201 0x80, 0x84, 0x88,
202 };
203
204 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
205 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
206 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
207 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
208 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
209
210 static const u32 tad_ch_nilv_offset[] = {
211 0x90, 0x94, 0x98, 0x9c,
212 0xa0, 0xa4, 0xa8, 0xac,
213 0xb0, 0xb4, 0xb8, 0xbc,
214 };
215 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
216 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
217
218 static const u32 rir_way_limit[] = {
219 0x108, 0x10c, 0x110, 0x114, 0x118,
220 };
221 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
222
223 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
224 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
225 #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
226
227 #define MAX_RIR_WAY 8
228
229 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
230 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
231 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
232 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
233 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
234 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
235 };
236
237 #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
238 #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
239
240 /* Device 16, functions 2-7 */
241
242 /*
243 * FIXME: Implement the error count reads directly
244 */
245
246 static const u32 correrrcnt[] = {
247 0x104, 0x108, 0x10c, 0x110,
248 };
249
250 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
251 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
252 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
253 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
254
255 static const u32 correrrthrsld[] = {
256 0x11c, 0x120, 0x124, 0x128,
257 };
258
259 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
260 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
261
262
263 /* Device 17, function 0 */
264
265 #define RANK_CFG_A 0x0328
266
267 #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
268
269 /*
270 * sbridge structs
271 */
272
273 #define NUM_CHANNELS 4
274 #define MAX_DIMMS 3 /* Max DIMMS per channel */
275
276 struct sbridge_info {
277 u32 mcmtr;
278 };
279
280 struct sbridge_channel {
281 u32 ranks;
282 u32 dimms;
283 };
284
285 struct pci_id_descr {
286 int dev;
287 int func;
288 int dev_id;
289 int optional;
290 };
291
292 struct pci_id_table {
293 const struct pci_id_descr *descr;
294 int n_devs;
295 };
296
297 struct sbridge_dev {
298 struct list_head list;
299 u8 bus, mc;
300 u8 node_id, source_id;
301 struct pci_dev **pdev;
302 int n_devs;
303 struct mem_ctl_info *mci;
304 };
305
306 struct sbridge_pvt {
307 struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
308 struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0;
309 struct pci_dev *pci_br;
310 struct pci_dev *pci_tad[NUM_CHANNELS];
311
312 struct sbridge_dev *sbridge_dev;
313
314 struct sbridge_info info;
315 struct sbridge_channel channel[NUM_CHANNELS];
316
317 /* Memory type detection */
318 bool is_mirrored, is_lockstep, is_close_pg;
319
320 /* Fifo double buffers */
321 struct mce mce_entry[MCE_LOG_LEN];
322 struct mce mce_outentry[MCE_LOG_LEN];
323
324 /* Fifo in/out counters */
325 unsigned mce_in, mce_out;
326
327 /* Count indicator to show errors not got */
328 unsigned mce_overrun;
329
330 /* Memory description */
331 u64 tolm, tohm;
332 };
333
334 #define PCI_DESCR(device, function, device_id, opt) \
335 .dev = (device), \
336 .func = (function), \
337 .dev_id = (device_id), \
338 .optional = opt
339
340 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
341 /* Processor Home Agent */
342 { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0) },
343
344 /* Memory controller */
345 { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0) },
346 { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0) },
347 { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0) },
348 { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0) },
349 { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0) },
350 { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0) },
351 { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1) },
352
353 /* System Address Decoder */
354 { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0) },
355 { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0) },
356
357 /* Broadcast Registers */
358 { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0) },
359 };
360
361 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
362 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
363 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
364 {0,} /* 0 terminated list. */
365 };
366
367 /*
368 * pci_device_id table for which devices we are looking for
369 */
370 static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
371 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
372 {0,} /* 0 terminated list. */
373 };
374
375
376 /****************************************************************************
377 Ancillary status routines
378 ****************************************************************************/
379
380 static inline int numrank(u32 mtr)
381 {
382 int ranks = (1 << RANK_CNT_BITS(mtr));
383
384 if (ranks > 4) {
385 edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
386 ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
387 return -EINVAL;
388 }
389
390 return ranks;
391 }
392
393 static inline int numrow(u32 mtr)
394 {
395 int rows = (RANK_WIDTH_BITS(mtr) + 12);
396
397 if (rows < 13 || rows > 18) {
398 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
399 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
400 return -EINVAL;
401 }
402
403 return 1 << rows;
404 }
405
406 static inline int numcol(u32 mtr)
407 {
408 int cols = (COL_WIDTH_BITS(mtr) + 10);
409
410 if (cols > 12) {
411 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
412 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
413 return -EINVAL;
414 }
415
416 return 1 << cols;
417 }
418
419 static struct sbridge_dev *get_sbridge_dev(u8 bus)
420 {
421 struct sbridge_dev *sbridge_dev;
422
423 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
424 if (sbridge_dev->bus == bus)
425 return sbridge_dev;
426 }
427
428 return NULL;
429 }
430
431 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
432 const struct pci_id_table *table)
433 {
434 struct sbridge_dev *sbridge_dev;
435
436 sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
437 if (!sbridge_dev)
438 return NULL;
439
440 sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
441 GFP_KERNEL);
442 if (!sbridge_dev->pdev) {
443 kfree(sbridge_dev);
444 return NULL;
445 }
446
447 sbridge_dev->bus = bus;
448 sbridge_dev->n_devs = table->n_devs;
449 list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
450
451 return sbridge_dev;
452 }
453
454 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
455 {
456 list_del(&sbridge_dev->list);
457 kfree(sbridge_dev->pdev);
458 kfree(sbridge_dev);
459 }
460
461 /****************************************************************************
462 Memory check routines
463 ****************************************************************************/
464 static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
465 unsigned func)
466 {
467 struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
468 int i;
469
470 if (!sbridge_dev)
471 return NULL;
472
473 for (i = 0; i < sbridge_dev->n_devs; i++) {
474 if (!sbridge_dev->pdev[i])
475 continue;
476
477 if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
478 PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
479 edac_dbg(1, "Associated %02x.%02x.%d with %p\n",
480 bus, slot, func, sbridge_dev->pdev[i]);
481 return sbridge_dev->pdev[i];
482 }
483 }
484
485 return NULL;
486 }
487
488 /**
489 * check_if_ecc_is_active() - Checks if ECC is active
490 * bus: Device bus
491 */
492 static int check_if_ecc_is_active(const u8 bus)
493 {
494 struct pci_dev *pdev = NULL;
495 u32 mcmtr;
496
497 pdev = get_pdev_slot_func(bus, 15, 0);
498 if (!pdev) {
499 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
500 "%2x.%02d.%d!!!\n",
501 bus, 15, 0);
502 return -ENODEV;
503 }
504
505 pci_read_config_dword(pdev, MCMTR, &mcmtr);
506 if (!IS_ECC_ENABLED(mcmtr)) {
507 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
508 return -ENODEV;
509 }
510 return 0;
511 }
512
513 static int get_dimm_config(struct mem_ctl_info *mci)
514 {
515 struct sbridge_pvt *pvt = mci->pvt_info;
516 struct dimm_info *dimm;
517 unsigned i, j, banks, ranks, rows, cols, npages;
518 u64 size;
519 u32 reg;
520 enum edac_type mode;
521 enum mem_type mtype;
522
523 pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
524 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
525
526 pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
527 pvt->sbridge_dev->node_id = NODE_ID(reg);
528 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
529 pvt->sbridge_dev->mc,
530 pvt->sbridge_dev->node_id,
531 pvt->sbridge_dev->source_id);
532
533 pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
534 if (IS_MIRROR_ENABLED(reg)) {
535 edac_dbg(0, "Memory mirror is enabled\n");
536 pvt->is_mirrored = true;
537 } else {
538 edac_dbg(0, "Memory mirror is disabled\n");
539 pvt->is_mirrored = false;
540 }
541
542 pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
543 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
544 edac_dbg(0, "Lockstep is enabled\n");
545 mode = EDAC_S8ECD8ED;
546 pvt->is_lockstep = true;
547 } else {
548 edac_dbg(0, "Lockstep is disabled\n");
549 mode = EDAC_S4ECD4ED;
550 pvt->is_lockstep = false;
551 }
552 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
553 edac_dbg(0, "address map is on closed page mode\n");
554 pvt->is_close_pg = true;
555 } else {
556 edac_dbg(0, "address map is on open page mode\n");
557 pvt->is_close_pg = false;
558 }
559
560 if (pvt->pci_ddrio) {
561 pci_read_config_dword(pvt->pci_ddrio, RANK_CFG_A, &reg);
562 if (IS_RDIMM_ENABLED(reg)) {
563 /* FIXME: Can also be LRDIMM */
564 edac_dbg(0, "Memory is registered\n");
565 mtype = MEM_RDDR3;
566 } else {
567 edac_dbg(0, "Memory is unregistered\n");
568 mtype = MEM_DDR3;
569 }
570 } else {
571 edac_dbg(0, "Cannot determine memory type\n");
572 mtype = MEM_UNKNOWN;
573 }
574
575 /* On all supported DDR3 DIMM types, there are 8 banks available */
576 banks = 8;
577
578 for (i = 0; i < NUM_CHANNELS; i++) {
579 u32 mtr;
580
581 for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
582 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
583 i, j, 0);
584 pci_read_config_dword(pvt->pci_tad[i],
585 mtr_regs[j], &mtr);
586 edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
587 if (IS_DIMM_PRESENT(mtr)) {
588 pvt->channel[i].dimms++;
589
590 ranks = numrank(mtr);
591 rows = numrow(mtr);
592 cols = numcol(mtr);
593
594 /* DDR3 has 8 I/O banks */
595 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
596 npages = MiB_TO_PAGES(size);
597
598 edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
599 pvt->sbridge_dev->mc, i, j,
600 size, npages,
601 banks, ranks, rows, cols);
602
603 dimm->nr_pages = npages;
604 dimm->grain = 32;
605 dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
606 dimm->mtype = mtype;
607 dimm->edac_mode = mode;
608 snprintf(dimm->label, sizeof(dimm->label),
609 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
610 pvt->sbridge_dev->source_id, i, j);
611 }
612 }
613 }
614
615 return 0;
616 }
617
618 static void get_memory_layout(const struct mem_ctl_info *mci)
619 {
620 struct sbridge_pvt *pvt = mci->pvt_info;
621 int i, j, k, n_sads, n_tads, sad_interl;
622 u32 reg;
623 u64 limit, prv = 0;
624 u64 tmp_mb;
625 u32 mb, kb;
626 u32 rir_way;
627
628 /*
629 * Step 1) Get TOLM/TOHM ranges
630 */
631
632 /* Address range is 32:28 */
633 pci_read_config_dword(pvt->pci_sad1, TOLM,
634 &reg);
635 pvt->tolm = GET_TOLM(reg);
636 tmp_mb = (1 + pvt->tolm) >> 20;
637
638 mb = div_u64_rem(tmp_mb, 1000, &kb);
639 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
640
641 /* Address range is already 45:25 */
642 pci_read_config_dword(pvt->pci_sad1, TOHM,
643 &reg);
644 pvt->tohm = GET_TOHM(reg);
645 tmp_mb = (1 + pvt->tohm) >> 20;
646
647 mb = div_u64_rem(tmp_mb, 1000, &kb);
648 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tohm);
649
650 /*
651 * Step 2) Get SAD range and SAD Interleave list
652 * TAD registers contain the interleave wayness. However, it
653 * seems simpler to just discover it indirectly, with the
654 * algorithm bellow.
655 */
656 prv = 0;
657 for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
658 /* SAD_LIMIT Address range is 45:26 */
659 pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
660 &reg);
661 limit = SAD_LIMIT(reg);
662
663 if (!DRAM_RULE_ENABLE(reg))
664 continue;
665
666 if (limit <= prv)
667 break;
668
669 tmp_mb = (limit + 1) >> 20;
670 mb = div_u64_rem(tmp_mb, 1000, &kb);
671 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
672 n_sads,
673 get_dram_attr(reg),
674 mb, kb,
675 ((u64)tmp_mb) << 20L,
676 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
677 reg);
678 prv = limit;
679
680 pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
681 &reg);
682 sad_interl = sad_pkg(reg, 0);
683 for (j = 0; j < 8; j++) {
684 if (j > 0 && sad_interl == sad_pkg(reg, j))
685 break;
686
687 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
688 n_sads, j, sad_pkg(reg, j));
689 }
690 }
691
692 /*
693 * Step 3) Get TAD range
694 */
695 prv = 0;
696 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
697 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
698 &reg);
699 limit = TAD_LIMIT(reg);
700 if (limit <= prv)
701 break;
702 tmp_mb = (limit + 1) >> 20;
703
704 mb = div_u64_rem(tmp_mb, 1000, &kb);
705 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
706 n_tads, mb, kb,
707 ((u64)tmp_mb) << 20L,
708 (u32)TAD_SOCK(reg),
709 (u32)TAD_CH(reg),
710 (u32)TAD_TGT0(reg),
711 (u32)TAD_TGT1(reg),
712 (u32)TAD_TGT2(reg),
713 (u32)TAD_TGT3(reg),
714 reg);
715 prv = limit;
716 }
717
718 /*
719 * Step 4) Get TAD offsets, per each channel
720 */
721 for (i = 0; i < NUM_CHANNELS; i++) {
722 if (!pvt->channel[i].dimms)
723 continue;
724 for (j = 0; j < n_tads; j++) {
725 pci_read_config_dword(pvt->pci_tad[i],
726 tad_ch_nilv_offset[j],
727 &reg);
728 tmp_mb = TAD_OFFSET(reg) >> 20;
729 mb = div_u64_rem(tmp_mb, 1000, &kb);
730 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
731 i, j,
732 mb, kb,
733 ((u64)tmp_mb) << 20L,
734 reg);
735 }
736 }
737
738 /*
739 * Step 6) Get RIR Wayness/Limit, per each channel
740 */
741 for (i = 0; i < NUM_CHANNELS; i++) {
742 if (!pvt->channel[i].dimms)
743 continue;
744 for (j = 0; j < MAX_RIR_RANGES; j++) {
745 pci_read_config_dword(pvt->pci_tad[i],
746 rir_way_limit[j],
747 &reg);
748
749 if (!IS_RIR_VALID(reg))
750 continue;
751
752 tmp_mb = RIR_LIMIT(reg) >> 20;
753 rir_way = 1 << RIR_WAY(reg);
754 mb = div_u64_rem(tmp_mb, 1000, &kb);
755 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
756 i, j,
757 mb, kb,
758 ((u64)tmp_mb) << 20L,
759 rir_way,
760 reg);
761
762 for (k = 0; k < rir_way; k++) {
763 pci_read_config_dword(pvt->pci_tad[i],
764 rir_offset[j][k],
765 &reg);
766 tmp_mb = RIR_OFFSET(reg) << 6;
767
768 mb = div_u64_rem(tmp_mb, 1000, &kb);
769 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
770 i, j, k,
771 mb, kb,
772 ((u64)tmp_mb) << 20L,
773 (u32)RIR_RNK_TGT(reg),
774 reg);
775 }
776 }
777 }
778 }
779
780 struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
781 {
782 struct sbridge_dev *sbridge_dev;
783
784 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
785 if (sbridge_dev->node_id == node_id)
786 return sbridge_dev->mci;
787 }
788 return NULL;
789 }
790
791 static int get_memory_error_data(struct mem_ctl_info *mci,
792 u64 addr,
793 u8 *socket,
794 long *channel_mask,
795 u8 *rank,
796 char **area_type, char *msg)
797 {
798 struct mem_ctl_info *new_mci;
799 struct sbridge_pvt *pvt = mci->pvt_info;
800 int n_rir, n_sads, n_tads, sad_way, sck_xch;
801 int sad_interl, idx, base_ch;
802 int interleave_mode;
803 unsigned sad_interleave[MAX_INTERLEAVE];
804 u32 reg;
805 u8 ch_way,sck_way;
806 u32 tad_offset;
807 u32 rir_way;
808 u32 mb, kb;
809 u64 ch_addr, offset, limit, prv = 0;
810
811
812 /*
813 * Step 0) Check if the address is at special memory ranges
814 * The check bellow is probably enough to fill all cases where
815 * the error is not inside a memory, except for the legacy
816 * range (e. g. VGA addresses). It is unlikely, however, that the
817 * memory controller would generate an error on that range.
818 */
819 if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
820 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
821 return -EINVAL;
822 }
823 if (addr >= (u64)pvt->tohm) {
824 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
825 return -EINVAL;
826 }
827
828 /*
829 * Step 1) Get socket
830 */
831 for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
832 pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
833 &reg);
834
835 if (!DRAM_RULE_ENABLE(reg))
836 continue;
837
838 limit = SAD_LIMIT(reg);
839 if (limit <= prv) {
840 sprintf(msg, "Can't discover the memory socket");
841 return -EINVAL;
842 }
843 if (addr <= limit)
844 break;
845 prv = limit;
846 }
847 if (n_sads == MAX_SAD) {
848 sprintf(msg, "Can't discover the memory socket");
849 return -EINVAL;
850 }
851 *area_type = get_dram_attr(reg);
852 interleave_mode = INTERLEAVE_MODE(reg);
853
854 pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
855 &reg);
856 sad_interl = sad_pkg(reg, 0);
857 for (sad_way = 0; sad_way < 8; sad_way++) {
858 if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
859 break;
860 sad_interleave[sad_way] = sad_pkg(reg, sad_way);
861 edac_dbg(0, "SAD interleave #%d: %d\n",
862 sad_way, sad_interleave[sad_way]);
863 }
864 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
865 pvt->sbridge_dev->mc,
866 n_sads,
867 addr,
868 limit,
869 sad_way + 7,
870 interleave_mode ? "" : "XOR[18:16]");
871 if (interleave_mode)
872 idx = ((addr >> 6) ^ (addr >> 16)) & 7;
873 else
874 idx = (addr >> 6) & 7;
875 switch (sad_way) {
876 case 1:
877 idx = 0;
878 break;
879 case 2:
880 idx = idx & 1;
881 break;
882 case 4:
883 idx = idx & 3;
884 break;
885 case 8:
886 break;
887 default:
888 sprintf(msg, "Can't discover socket interleave");
889 return -EINVAL;
890 }
891 *socket = sad_interleave[idx];
892 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
893 idx, sad_way, *socket);
894
895 /*
896 * Move to the proper node structure, in order to access the
897 * right PCI registers
898 */
899 new_mci = get_mci_for_node_id(*socket);
900 if (!new_mci) {
901 sprintf(msg, "Struct for socket #%u wasn't initialized",
902 *socket);
903 return -EINVAL;
904 }
905 mci = new_mci;
906 pvt = mci->pvt_info;
907
908 /*
909 * Step 2) Get memory channel
910 */
911 prv = 0;
912 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
913 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
914 &reg);
915 limit = TAD_LIMIT(reg);
916 if (limit <= prv) {
917 sprintf(msg, "Can't discover the memory channel");
918 return -EINVAL;
919 }
920 if (addr <= limit)
921 break;
922 prv = limit;
923 }
924 ch_way = TAD_CH(reg) + 1;
925 sck_way = TAD_SOCK(reg) + 1;
926 /*
927 * FIXME: Is it right to always use channel 0 for offsets?
928 */
929 pci_read_config_dword(pvt->pci_tad[0],
930 tad_ch_nilv_offset[n_tads],
931 &tad_offset);
932
933 if (ch_way == 3)
934 idx = addr >> 6;
935 else
936 idx = addr >> (6 + sck_way);
937 idx = idx % ch_way;
938
939 /*
940 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
941 */
942 switch (idx) {
943 case 0:
944 base_ch = TAD_TGT0(reg);
945 break;
946 case 1:
947 base_ch = TAD_TGT1(reg);
948 break;
949 case 2:
950 base_ch = TAD_TGT2(reg);
951 break;
952 case 3:
953 base_ch = TAD_TGT3(reg);
954 break;
955 default:
956 sprintf(msg, "Can't discover the TAD target");
957 return -EINVAL;
958 }
959 *channel_mask = 1 << base_ch;
960
961 if (pvt->is_mirrored) {
962 *channel_mask |= 1 << ((base_ch + 2) % 4);
963 switch(ch_way) {
964 case 2:
965 case 4:
966 sck_xch = 1 << sck_way * (ch_way >> 1);
967 break;
968 default:
969 sprintf(msg, "Invalid mirror set. Can't decode addr");
970 return -EINVAL;
971 }
972 } else
973 sck_xch = (1 << sck_way) * ch_way;
974
975 if (pvt->is_lockstep)
976 *channel_mask |= 1 << ((base_ch + 1) % 4);
977
978 offset = TAD_OFFSET(tad_offset);
979
980 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
981 n_tads,
982 addr,
983 limit,
984 (u32)TAD_SOCK(reg),
985 ch_way,
986 offset,
987 idx,
988 base_ch,
989 *channel_mask);
990
991 /* Calculate channel address */
992 /* Remove the TAD offset */
993
994 if (offset > addr) {
995 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
996 offset, addr);
997 return -EINVAL;
998 }
999 addr -= offset;
1000 /* Store the low bits [0:6] of the addr */
1001 ch_addr = addr & 0x7f;
1002 /* Remove socket wayness and remove 6 bits */
1003 addr >>= 6;
1004 addr = div_u64(addr, sck_xch);
1005 #if 0
1006 /* Divide by channel way */
1007 addr = addr / ch_way;
1008 #endif
1009 /* Recover the last 6 bits */
1010 ch_addr |= addr << 6;
1011
1012 /*
1013 * Step 3) Decode rank
1014 */
1015 for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1016 pci_read_config_dword(pvt->pci_tad[base_ch],
1017 rir_way_limit[n_rir],
1018 &reg);
1019
1020 if (!IS_RIR_VALID(reg))
1021 continue;
1022
1023 limit = RIR_LIMIT(reg);
1024 mb = div_u64_rem(limit >> 20, 1000, &kb);
1025 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1026 n_rir,
1027 mb, kb,
1028 limit,
1029 1 << RIR_WAY(reg));
1030 if (ch_addr <= limit)
1031 break;
1032 }
1033 if (n_rir == MAX_RIR_RANGES) {
1034 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1035 ch_addr);
1036 return -EINVAL;
1037 }
1038 rir_way = RIR_WAY(reg);
1039 if (pvt->is_close_pg)
1040 idx = (ch_addr >> 6);
1041 else
1042 idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
1043 idx %= 1 << rir_way;
1044
1045 pci_read_config_dword(pvt->pci_tad[base_ch],
1046 rir_offset[n_rir][idx],
1047 &reg);
1048 *rank = RIR_RNK_TGT(reg);
1049
1050 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1051 n_rir,
1052 ch_addr,
1053 limit,
1054 rir_way,
1055 idx);
1056
1057 return 0;
1058 }
1059
1060 /****************************************************************************
1061 Device initialization routines: put/get, init/exit
1062 ****************************************************************************/
1063
1064 /*
1065 * sbridge_put_all_devices 'put' all the devices that we have
1066 * reserved via 'get'
1067 */
1068 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1069 {
1070 int i;
1071
1072 edac_dbg(0, "\n");
1073 for (i = 0; i < sbridge_dev->n_devs; i++) {
1074 struct pci_dev *pdev = sbridge_dev->pdev[i];
1075 if (!pdev)
1076 continue;
1077 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1078 pdev->bus->number,
1079 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1080 pci_dev_put(pdev);
1081 }
1082 }
1083
1084 static void sbridge_put_all_devices(void)
1085 {
1086 struct sbridge_dev *sbridge_dev, *tmp;
1087
1088 list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1089 sbridge_put_devices(sbridge_dev);
1090 free_sbridge_dev(sbridge_dev);
1091 }
1092 }
1093
1094 /*
1095 * sbridge_get_all_devices Find and perform 'get' operation on the MCH's
1096 * device/functions we want to reference for this driver
1097 *
1098 * Need to 'get' device 16 func 1 and func 2
1099 */
1100 static int sbridge_get_onedevice(struct pci_dev **prev,
1101 u8 *num_mc,
1102 const struct pci_id_table *table,
1103 const unsigned devno)
1104 {
1105 struct sbridge_dev *sbridge_dev;
1106 const struct pci_id_descr *dev_descr = &table->descr[devno];
1107
1108 struct pci_dev *pdev = NULL;
1109 u8 bus = 0;
1110
1111 sbridge_printk(KERN_INFO,
1112 "Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
1113 dev_descr->dev, dev_descr->func,
1114 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1115
1116 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1117 dev_descr->dev_id, *prev);
1118
1119 if (!pdev) {
1120 if (*prev) {
1121 *prev = pdev;
1122 return 0;
1123 }
1124
1125 if (dev_descr->optional)
1126 return 0;
1127
1128 if (devno == 0)
1129 return -ENODEV;
1130
1131 sbridge_printk(KERN_INFO,
1132 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1133 dev_descr->dev, dev_descr->func,
1134 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1135
1136 /* End of list, leave */
1137 return -ENODEV;
1138 }
1139 bus = pdev->bus->number;
1140
1141 sbridge_dev = get_sbridge_dev(bus);
1142 if (!sbridge_dev) {
1143 sbridge_dev = alloc_sbridge_dev(bus, table);
1144 if (!sbridge_dev) {
1145 pci_dev_put(pdev);
1146 return -ENOMEM;
1147 }
1148 (*num_mc)++;
1149 }
1150
1151 if (sbridge_dev->pdev[devno]) {
1152 sbridge_printk(KERN_ERR,
1153 "Duplicated device for "
1154 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1155 bus, dev_descr->dev, dev_descr->func,
1156 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1157 pci_dev_put(pdev);
1158 return -ENODEV;
1159 }
1160
1161 sbridge_dev->pdev[devno] = pdev;
1162
1163 /* Sanity check */
1164 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1165 PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1166 sbridge_printk(KERN_ERR,
1167 "Device PCI ID %04x:%04x "
1168 "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
1169 PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1170 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1171 bus, dev_descr->dev, dev_descr->func);
1172 return -ENODEV;
1173 }
1174
1175 /* Be sure that the device is enabled */
1176 if (unlikely(pci_enable_device(pdev) < 0)) {
1177 sbridge_printk(KERN_ERR,
1178 "Couldn't enable "
1179 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1180 bus, dev_descr->dev, dev_descr->func,
1181 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1182 return -ENODEV;
1183 }
1184
1185 edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
1186 bus, dev_descr->dev, dev_descr->func,
1187 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1188
1189 /*
1190 * As stated on drivers/pci/search.c, the reference count for
1191 * @from is always decremented if it is not %NULL. So, as we need
1192 * to get all devices up to null, we need to do a get for the device
1193 */
1194 pci_dev_get(pdev);
1195
1196 *prev = pdev;
1197
1198 return 0;
1199 }
1200
1201 static int sbridge_get_all_devices(u8 *num_mc)
1202 {
1203 int i, rc;
1204 struct pci_dev *pdev = NULL;
1205 const struct pci_id_table *table = pci_dev_descr_sbridge_table;
1206
1207 while (table && table->descr) {
1208 for (i = 0; i < table->n_devs; i++) {
1209 pdev = NULL;
1210 do {
1211 rc = sbridge_get_onedevice(&pdev, num_mc,
1212 table, i);
1213 if (rc < 0) {
1214 if (i == 0) {
1215 i = table->n_devs;
1216 break;
1217 }
1218 sbridge_put_all_devices();
1219 return -ENODEV;
1220 }
1221 } while (pdev);
1222 }
1223 table++;
1224 }
1225
1226 return 0;
1227 }
1228
1229 static int mci_bind_devs(struct mem_ctl_info *mci,
1230 struct sbridge_dev *sbridge_dev)
1231 {
1232 struct sbridge_pvt *pvt = mci->pvt_info;
1233 struct pci_dev *pdev;
1234 int i, func, slot;
1235
1236 for (i = 0; i < sbridge_dev->n_devs; i++) {
1237 pdev = sbridge_dev->pdev[i];
1238 if (!pdev)
1239 continue;
1240 slot = PCI_SLOT(pdev->devfn);
1241 func = PCI_FUNC(pdev->devfn);
1242 switch (slot) {
1243 case 12:
1244 switch (func) {
1245 case 6:
1246 pvt->pci_sad0 = pdev;
1247 break;
1248 case 7:
1249 pvt->pci_sad1 = pdev;
1250 break;
1251 default:
1252 goto error;
1253 }
1254 break;
1255 case 13:
1256 switch (func) {
1257 case 6:
1258 pvt->pci_br = pdev;
1259 break;
1260 default:
1261 goto error;
1262 }
1263 break;
1264 case 14:
1265 switch (func) {
1266 case 0:
1267 pvt->pci_ha0 = pdev;
1268 break;
1269 default:
1270 goto error;
1271 }
1272 break;
1273 case 15:
1274 switch (func) {
1275 case 0:
1276 pvt->pci_ta = pdev;
1277 break;
1278 case 1:
1279 pvt->pci_ras = pdev;
1280 break;
1281 case 2:
1282 case 3:
1283 case 4:
1284 case 5:
1285 pvt->pci_tad[func - 2] = pdev;
1286 break;
1287 default:
1288 goto error;
1289 }
1290 break;
1291 case 17:
1292 switch (func) {
1293 case 0:
1294 pvt->pci_ddrio = pdev;
1295 break;
1296 default:
1297 goto error;
1298 }
1299 break;
1300 default:
1301 goto error;
1302 }
1303
1304 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1305 sbridge_dev->bus,
1306 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1307 pdev);
1308 }
1309
1310 /* Check if everything were registered */
1311 if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1312 !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta)
1313 goto enodev;
1314
1315 for (i = 0; i < NUM_CHANNELS; i++) {
1316 if (!pvt->pci_tad[i])
1317 goto enodev;
1318 }
1319 return 0;
1320
1321 enodev:
1322 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1323 return -ENODEV;
1324
1325 error:
1326 sbridge_printk(KERN_ERR, "Device %d, function %d "
1327 "is out of the expected range\n",
1328 slot, func);
1329 return -EINVAL;
1330 }
1331
1332 /****************************************************************************
1333 Error check routines
1334 ****************************************************************************/
1335
1336 /*
1337 * While Sandy Bridge has error count registers, SMI BIOS read values from
1338 * and resets the counters. So, they are not reliable for the OS to read
1339 * from them. So, we have no option but to just trust on whatever MCE is
1340 * telling us about the errors.
1341 */
1342 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1343 const struct mce *m)
1344 {
1345 struct mem_ctl_info *new_mci;
1346 struct sbridge_pvt *pvt = mci->pvt_info;
1347 enum hw_event_mc_err_type tp_event;
1348 char *type, *optype, msg[256];
1349 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1350 bool overflow = GET_BITFIELD(m->status, 62, 62);
1351 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1352 bool recoverable = GET_BITFIELD(m->status, 56, 56);
1353 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1354 u32 mscod = GET_BITFIELD(m->status, 16, 31);
1355 u32 errcode = GET_BITFIELD(m->status, 0, 15);
1356 u32 channel = GET_BITFIELD(m->status, 0, 3);
1357 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1358 long channel_mask, first_channel;
1359 u8 rank, socket;
1360 int rc, dimm;
1361 char *area_type = NULL;
1362
1363 if (uncorrected_error) {
1364 if (ripv) {
1365 type = "FATAL";
1366 tp_event = HW_EVENT_ERR_FATAL;
1367 } else {
1368 type = "NON_FATAL";
1369 tp_event = HW_EVENT_ERR_UNCORRECTED;
1370 }
1371 } else {
1372 type = "CORRECTED";
1373 tp_event = HW_EVENT_ERR_CORRECTED;
1374 }
1375
1376 /*
1377 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1378 * memory errors should fit in this mask:
1379 * 000f 0000 1mmm cccc (binary)
1380 * where:
1381 * f = Correction Report Filtering Bit. If 1, subsequent errors
1382 * won't be shown
1383 * mmm = error type
1384 * cccc = channel
1385 * If the mask doesn't match, report an error to the parsing logic
1386 */
1387 if (! ((errcode & 0xef80) == 0x80)) {
1388 optype = "Can't parse: it is not a mem";
1389 } else {
1390 switch (optypenum) {
1391 case 0:
1392 optype = "generic undef request error";
1393 break;
1394 case 1:
1395 optype = "memory read error";
1396 break;
1397 case 2:
1398 optype = "memory write error";
1399 break;
1400 case 3:
1401 optype = "addr/cmd error";
1402 break;
1403 case 4:
1404 optype = "memory scrubbing error";
1405 break;
1406 default:
1407 optype = "reserved";
1408 break;
1409 }
1410 }
1411
1412 rc = get_memory_error_data(mci, m->addr, &socket,
1413 &channel_mask, &rank, &area_type, msg);
1414 if (rc < 0)
1415 goto err_parsing;
1416 new_mci = get_mci_for_node_id(socket);
1417 if (!new_mci) {
1418 strcpy(msg, "Error: socket got corrupted!");
1419 goto err_parsing;
1420 }
1421 mci = new_mci;
1422 pvt = mci->pvt_info;
1423
1424 first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1425
1426 if (rank < 4)
1427 dimm = 0;
1428 else if (rank < 8)
1429 dimm = 1;
1430 else
1431 dimm = 2;
1432
1433
1434 /*
1435 * FIXME: On some memory configurations (mirror, lockstep), the
1436 * Memory Controller can't point the error to a single DIMM. The
1437 * EDAC core should be handling the channel mask, in order to point
1438 * to the group of dimm's where the error may be happening.
1439 */
1440 snprintf(msg, sizeof(msg),
1441 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1442 overflow ? " OVERFLOW" : "",
1443 (uncorrected_error && recoverable) ? " recoverable" : "",
1444 area_type,
1445 mscod, errcode,
1446 socket,
1447 channel_mask,
1448 rank);
1449
1450 edac_dbg(0, "%s\n", msg);
1451
1452 /* FIXME: need support for channel mask */
1453
1454 /* Call the helper to output message */
1455 edac_mc_handle_error(tp_event, mci, core_err_cnt,
1456 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
1457 channel, dimm, -1,
1458 optype, msg);
1459 return;
1460 err_parsing:
1461 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
1462 -1, -1, -1,
1463 msg, "");
1464
1465 }
1466
1467 /*
1468 * sbridge_check_error Retrieve and process errors reported by the
1469 * hardware. Called by the Core module.
1470 */
1471 static void sbridge_check_error(struct mem_ctl_info *mci)
1472 {
1473 struct sbridge_pvt *pvt = mci->pvt_info;
1474 int i;
1475 unsigned count = 0;
1476 struct mce *m;
1477
1478 /*
1479 * MCE first step: Copy all mce errors into a temporary buffer
1480 * We use a double buffering here, to reduce the risk of
1481 * loosing an error.
1482 */
1483 smp_rmb();
1484 count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1485 % MCE_LOG_LEN;
1486 if (!count)
1487 return;
1488
1489 m = pvt->mce_outentry;
1490 if (pvt->mce_in + count > MCE_LOG_LEN) {
1491 unsigned l = MCE_LOG_LEN - pvt->mce_in;
1492
1493 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1494 smp_wmb();
1495 pvt->mce_in = 0;
1496 count -= l;
1497 m += l;
1498 }
1499 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1500 smp_wmb();
1501 pvt->mce_in += count;
1502
1503 smp_rmb();
1504 if (pvt->mce_overrun) {
1505 sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
1506 pvt->mce_overrun);
1507 smp_wmb();
1508 pvt->mce_overrun = 0;
1509 }
1510
1511 /*
1512 * MCE second step: parse errors and display
1513 */
1514 for (i = 0; i < count; i++)
1515 sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
1516 }
1517
1518 /*
1519 * sbridge_mce_check_error Replicates mcelog routine to get errors
1520 * This routine simply queues mcelog errors, and
1521 * return. The error itself should be handled later
1522 * by sbridge_check_error.
1523 * WARNING: As this routine should be called at NMI time, extra care should
1524 * be taken to avoid deadlocks, and to be as fast as possible.
1525 */
1526 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
1527 void *data)
1528 {
1529 struct mce *mce = (struct mce *)data;
1530 struct mem_ctl_info *mci;
1531 struct sbridge_pvt *pvt;
1532
1533 mci = get_mci_for_node_id(mce->socketid);
1534 if (!mci)
1535 return NOTIFY_BAD;
1536 pvt = mci->pvt_info;
1537
1538 /*
1539 * Just let mcelog handle it if the error is
1540 * outside the memory controller. A memory error
1541 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1542 * bit 12 has an special meaning.
1543 */
1544 if ((mce->status & 0xefff) >> 7 != 1)
1545 return NOTIFY_DONE;
1546
1547 printk("sbridge: HANDLING MCE MEMORY ERROR\n");
1548
1549 printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
1550 mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
1551 printk("TSC %llx ", mce->tsc);
1552 printk("ADDR %llx ", mce->addr);
1553 printk("MISC %llx ", mce->misc);
1554
1555 printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1556 mce->cpuvendor, mce->cpuid, mce->time,
1557 mce->socketid, mce->apicid);
1558
1559 /* Only handle if it is the right mc controller */
1560 if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
1561 return NOTIFY_DONE;
1562
1563 smp_rmb();
1564 if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1565 smp_wmb();
1566 pvt->mce_overrun++;
1567 return NOTIFY_DONE;
1568 }
1569
1570 /* Copy memory error at the ringbuffer */
1571 memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1572 smp_wmb();
1573 pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1574
1575 /* Handle fatal errors immediately */
1576 if (mce->mcgstatus & 1)
1577 sbridge_check_error(mci);
1578
1579 /* Advice mcelog that the error were handled */
1580 return NOTIFY_STOP;
1581 }
1582
1583 static struct notifier_block sbridge_mce_dec = {
1584 .notifier_call = sbridge_mce_check_error,
1585 };
1586
1587 /****************************************************************************
1588 EDAC register/unregister logic
1589 ****************************************************************************/
1590
1591 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
1592 {
1593 struct mem_ctl_info *mci = sbridge_dev->mci;
1594 struct sbridge_pvt *pvt;
1595
1596 if (unlikely(!mci || !mci->pvt_info)) {
1597 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
1598
1599 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
1600 return;
1601 }
1602
1603 pvt = mci->pvt_info;
1604
1605 edac_dbg(0, "MC: mci = %p, dev = %p\n",
1606 mci, &sbridge_dev->pdev[0]->dev);
1607
1608 /* Remove MC sysfs nodes */
1609 edac_mc_del_mc(mci->pdev);
1610
1611 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1612 kfree(mci->ctl_name);
1613 edac_mc_free(mci);
1614 sbridge_dev->mci = NULL;
1615 }
1616
1617 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
1618 {
1619 struct mem_ctl_info *mci;
1620 struct edac_mc_layer layers[2];
1621 struct sbridge_pvt *pvt;
1622 int rc;
1623
1624 /* Check the number of active and not disabled channels */
1625 rc = check_if_ecc_is_active(sbridge_dev->bus);
1626 if (unlikely(rc < 0))
1627 return rc;
1628
1629 /* allocate a new MC control structure */
1630 layers[0].type = EDAC_MC_LAYER_CHANNEL;
1631 layers[0].size = NUM_CHANNELS;
1632 layers[0].is_virt_csrow = false;
1633 layers[1].type = EDAC_MC_LAYER_SLOT;
1634 layers[1].size = MAX_DIMMS;
1635 layers[1].is_virt_csrow = true;
1636 mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
1637 sizeof(*pvt));
1638
1639 if (unlikely(!mci))
1640 return -ENOMEM;
1641
1642 edac_dbg(0, "MC: mci = %p, dev = %p\n",
1643 mci, &sbridge_dev->pdev[0]->dev);
1644
1645 pvt = mci->pvt_info;
1646 memset(pvt, 0, sizeof(*pvt));
1647
1648 /* Associate sbridge_dev and mci for future usage */
1649 pvt->sbridge_dev = sbridge_dev;
1650 sbridge_dev->mci = mci;
1651
1652 mci->mtype_cap = MEM_FLAG_DDR3;
1653 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1654 mci->edac_cap = EDAC_FLAG_NONE;
1655 mci->mod_name = "sbridge_edac.c";
1656 mci->mod_ver = SBRIDGE_REVISION;
1657 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
1658 mci->dev_name = pci_name(sbridge_dev->pdev[0]);
1659 mci->ctl_page_to_phys = NULL;
1660
1661 /* Set the function pointer to an actual operation function */
1662 mci->edac_check = sbridge_check_error;
1663
1664 /* Store pci devices at mci for faster access */
1665 rc = mci_bind_devs(mci, sbridge_dev);
1666 if (unlikely(rc < 0))
1667 goto fail0;
1668
1669 /* Get dimm basic config and the memory layout */
1670 get_dimm_config(mci);
1671 get_memory_layout(mci);
1672
1673 /* record ptr to the generic device */
1674 mci->pdev = &sbridge_dev->pdev[0]->dev;
1675
1676 /* add this new MC control structure to EDAC's list of MCs */
1677 if (unlikely(edac_mc_add_mc(mci))) {
1678 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1679 rc = -EINVAL;
1680 goto fail0;
1681 }
1682
1683 return 0;
1684
1685 fail0:
1686 kfree(mci->ctl_name);
1687 edac_mc_free(mci);
1688 sbridge_dev->mci = NULL;
1689 return rc;
1690 }
1691
1692 /*
1693 * sbridge_probe Probe for ONE instance of device to see if it is
1694 * present.
1695 * return:
1696 * 0 for FOUND a device
1697 * < 0 for error code
1698 */
1699
1700 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1701 {
1702 int rc;
1703 u8 mc, num_mc = 0;
1704 struct sbridge_dev *sbridge_dev;
1705
1706 /* get the pci devices we want to reserve for our use */
1707 mutex_lock(&sbridge_edac_lock);
1708
1709 /*
1710 * All memory controllers are allocated at the first pass.
1711 */
1712 if (unlikely(probed >= 1)) {
1713 mutex_unlock(&sbridge_edac_lock);
1714 return -ENODEV;
1715 }
1716 probed++;
1717
1718 rc = sbridge_get_all_devices(&num_mc);
1719 if (unlikely(rc < 0))
1720 goto fail0;
1721 mc = 0;
1722
1723 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1724 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
1725 mc, mc + 1, num_mc);
1726 sbridge_dev->mc = mc++;
1727 rc = sbridge_register_mci(sbridge_dev);
1728 if (unlikely(rc < 0))
1729 goto fail1;
1730 }
1731
1732 sbridge_printk(KERN_INFO, "Driver loaded.\n");
1733
1734 mutex_unlock(&sbridge_edac_lock);
1735 return 0;
1736
1737 fail1:
1738 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1739 sbridge_unregister_mci(sbridge_dev);
1740
1741 sbridge_put_all_devices();
1742 fail0:
1743 mutex_unlock(&sbridge_edac_lock);
1744 return rc;
1745 }
1746
1747 /*
1748 * sbridge_remove destructor for one instance of device
1749 *
1750 */
1751 static void sbridge_remove(struct pci_dev *pdev)
1752 {
1753 struct sbridge_dev *sbridge_dev;
1754
1755 edac_dbg(0, "\n");
1756
1757 /*
1758 * we have a trouble here: pdev value for removal will be wrong, since
1759 * it will point to the X58 register used to detect that the machine
1760 * is a Nehalem or upper design. However, due to the way several PCI
1761 * devices are grouped together to provide MC functionality, we need
1762 * to use a different method for releasing the devices
1763 */
1764
1765 mutex_lock(&sbridge_edac_lock);
1766
1767 if (unlikely(!probed)) {
1768 mutex_unlock(&sbridge_edac_lock);
1769 return;
1770 }
1771
1772 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1773 sbridge_unregister_mci(sbridge_dev);
1774
1775 /* Release PCI resources */
1776 sbridge_put_all_devices();
1777
1778 probed--;
1779
1780 mutex_unlock(&sbridge_edac_lock);
1781 }
1782
1783 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
1784
1785 /*
1786 * sbridge_driver pci_driver structure for this module
1787 *
1788 */
1789 static struct pci_driver sbridge_driver = {
1790 .name = "sbridge_edac",
1791 .probe = sbridge_probe,
1792 .remove = sbridge_remove,
1793 .id_table = sbridge_pci_tbl,
1794 };
1795
1796 /*
1797 * sbridge_init Module entry function
1798 * Try to initialize this module for its devices
1799 */
1800 static int __init sbridge_init(void)
1801 {
1802 int pci_rc;
1803
1804 edac_dbg(2, "\n");
1805
1806 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1807 opstate_init();
1808
1809 pci_rc = pci_register_driver(&sbridge_driver);
1810
1811 if (pci_rc >= 0) {
1812 mce_register_decode_chain(&sbridge_mce_dec);
1813 return 0;
1814 }
1815
1816 sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
1817 pci_rc);
1818
1819 return pci_rc;
1820 }
1821
1822 /*
1823 * sbridge_exit() Module exit function
1824 * Unregister the driver
1825 */
1826 static void __exit sbridge_exit(void)
1827 {
1828 edac_dbg(2, "\n");
1829 pci_unregister_driver(&sbridge_driver);
1830 mce_unregister_decode_chain(&sbridge_mce_dec);
1831 }
1832
1833 module_init(sbridge_init);
1834 module_exit(sbridge_exit);
1835
1836 module_param(edac_op_state, int, 0444);
1837 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1838
1839 MODULE_LICENSE("GPL");
1840 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1841 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1842 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
1843 SBRIDGE_REVISION);
This page took 0.075017 seconds and 5 git commands to generate.