Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / edac / x38_edac.c
1 /*
2 * Intel X38 Memory Controller kernel module
3 * Copyright (C) 2008 Cluster Computing, Inc.
4 *
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * This file is based on i3200_edac.c
9 *
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/edac.h>
17 #include "edac_core.h"
18
19 #define X38_REVISION "1.1"
20
21 #define EDAC_MOD_STR "x38_edac"
22
23 #define PCI_DEVICE_ID_INTEL_X38_HB 0x29e0
24
25 #define X38_RANKS 8
26 #define X38_RANKS_PER_CHANNEL 4
27 #define X38_CHANNELS 2
28
29 /* Intel X38 register addresses - device 0 function 0 - DRAM Controller */
30
31 #define X38_MCHBAR_LOW 0x48 /* MCH Memory Mapped Register BAR */
32 #define X38_MCHBAR_HIGH 0x4c
33 #define X38_MCHBAR_MASK 0xfffffc000ULL /* bits 35:14 */
34 #define X38_MMR_WINDOW_SIZE 16384
35
36 #define X38_TOM 0xa0 /* Top of Memory (16b)
37 *
38 * 15:10 reserved
39 * 9:0 total populated physical memory
40 */
41 #define X38_TOM_MASK 0x3ff /* bits 9:0 */
42 #define X38_TOM_SHIFT 26 /* 64MiB grain */
43
44 #define X38_ERRSTS 0xc8 /* Error Status Register (16b)
45 *
46 * 15 reserved
47 * 14 Isochronous TBWRR Run Behind FIFO Full
48 * (ITCV)
49 * 13 Isochronous TBWRR Run Behind FIFO Put
50 * (ITSTV)
51 * 12 reserved
52 * 11 MCH Thermal Sensor Event
53 * for SMI/SCI/SERR (GTSE)
54 * 10 reserved
55 * 9 LOCK to non-DRAM Memory Flag (LCKF)
56 * 8 reserved
57 * 7 DRAM Throttle Flag (DTF)
58 * 6:2 reserved
59 * 1 Multi-bit DRAM ECC Error Flag (DMERR)
60 * 0 Single-bit DRAM ECC Error Flag (DSERR)
61 */
62 #define X38_ERRSTS_UE 0x0002
63 #define X38_ERRSTS_CE 0x0001
64 #define X38_ERRSTS_BITS (X38_ERRSTS_UE | X38_ERRSTS_CE)
65
66
67 /* Intel MMIO register space - device 0 function 0 - MMR space */
68
69 #define X38_C0DRB 0x200 /* Channel 0 DRAM Rank Boundary (16b x 4)
70 *
71 * 15:10 reserved
72 * 9:0 Channel 0 DRAM Rank Boundary Address
73 */
74 #define X38_C1DRB 0x600 /* Channel 1 DRAM Rank Boundary (16b x 4) */
75 #define X38_DRB_MASK 0x3ff /* bits 9:0 */
76 #define X38_DRB_SHIFT 26 /* 64MiB grain */
77
78 #define X38_C0ECCERRLOG 0x280 /* Channel 0 ECC Error Log (64b)
79 *
80 * 63:48 Error Column Address (ERRCOL)
81 * 47:32 Error Row Address (ERRROW)
82 * 31:29 Error Bank Address (ERRBANK)
83 * 28:27 Error Rank Address (ERRRANK)
84 * 26:24 reserved
85 * 23:16 Error Syndrome (ERRSYND)
86 * 15: 2 reserved
87 * 1 Multiple Bit Error Status (MERRSTS)
88 * 0 Correctable Error Status (CERRSTS)
89 */
90 #define X38_C1ECCERRLOG 0x680 /* Channel 1 ECC Error Log (64b) */
91 #define X38_ECCERRLOG_CE 0x1
92 #define X38_ECCERRLOG_UE 0x2
93 #define X38_ECCERRLOG_RANK_BITS 0x18000000
94 #define X38_ECCERRLOG_SYNDROME_BITS 0xff0000
95
96 #define X38_CAPID0 0xe0 /* see P.94 of spec for details */
97
98 static int x38_channel_num;
99
100 static int how_many_channel(struct pci_dev *pdev)
101 {
102 unsigned char capid0_8b; /* 8th byte of CAPID0 */
103
104 pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b);
105 if (capid0_8b & 0x20) { /* check DCD: Dual Channel Disable */
106 edac_dbg(0, "In single channel mode\n");
107 x38_channel_num = 1;
108 } else {
109 edac_dbg(0, "In dual channel mode\n");
110 x38_channel_num = 2;
111 }
112
113 return x38_channel_num;
114 }
115
116 static unsigned long eccerrlog_syndrome(u64 log)
117 {
118 return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16;
119 }
120
121 static int eccerrlog_row(int channel, u64 log)
122 {
123 return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) |
124 (channel * X38_RANKS_PER_CHANNEL);
125 }
126
127 enum x38_chips {
128 X38 = 0,
129 };
130
131 struct x38_dev_info {
132 const char *ctl_name;
133 };
134
135 struct x38_error_info {
136 u16 errsts;
137 u16 errsts2;
138 u64 eccerrlog[X38_CHANNELS];
139 };
140
141 static const struct x38_dev_info x38_devs[] = {
142 [X38] = {
143 .ctl_name = "x38"},
144 };
145
146 static struct pci_dev *mci_pdev;
147 static int x38_registered = 1;
148
149
150 static void x38_clear_error_info(struct mem_ctl_info *mci)
151 {
152 struct pci_dev *pdev;
153
154 pdev = to_pci_dev(mci->pdev);
155
156 /*
157 * Clear any error bits.
158 * (Yes, we really clear bits by writing 1 to them.)
159 */
160 pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS,
161 X38_ERRSTS_BITS);
162 }
163
164 static u64 x38_readq(const void __iomem *addr)
165 {
166 return readl(addr) | (((u64)readl(addr + 4)) << 32);
167 }
168
169 static void x38_get_and_clear_error_info(struct mem_ctl_info *mci,
170 struct x38_error_info *info)
171 {
172 struct pci_dev *pdev;
173 void __iomem *window = mci->pvt_info;
174
175 pdev = to_pci_dev(mci->pdev);
176
177 /*
178 * This is a mess because there is no atomic way to read all the
179 * registers at once and the registers can transition from CE being
180 * overwritten by UE.
181 */
182 pci_read_config_word(pdev, X38_ERRSTS, &info->errsts);
183 if (!(info->errsts & X38_ERRSTS_BITS))
184 return;
185
186 info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
187 if (x38_channel_num == 2)
188 info->eccerrlog[1] = x38_readq(window + X38_C1ECCERRLOG);
189
190 pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2);
191
192 /*
193 * If the error is the same for both reads then the first set
194 * of reads is valid. If there is a change then there is a CE
195 * with no info and the second set of reads is valid and
196 * should be UE info.
197 */
198 if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
199 info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
200 if (x38_channel_num == 2)
201 info->eccerrlog[1] =
202 x38_readq(window + X38_C1ECCERRLOG);
203 }
204
205 x38_clear_error_info(mci);
206 }
207
208 static void x38_process_error_info(struct mem_ctl_info *mci,
209 struct x38_error_info *info)
210 {
211 int channel;
212 u64 log;
213
214 if (!(info->errsts & X38_ERRSTS_BITS))
215 return;
216
217 if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
218 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
219 -1, -1, -1,
220 "UE overwrote CE", "");
221 info->errsts = info->errsts2;
222 }
223
224 for (channel = 0; channel < x38_channel_num; channel++) {
225 log = info->eccerrlog[channel];
226 if (log & X38_ECCERRLOG_UE) {
227 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
228 0, 0, 0,
229 eccerrlog_row(channel, log),
230 -1, -1,
231 "x38 UE", "");
232 } else if (log & X38_ECCERRLOG_CE) {
233 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
234 0, 0, eccerrlog_syndrome(log),
235 eccerrlog_row(channel, log),
236 -1, -1,
237 "x38 CE", "");
238 }
239 }
240 }
241
242 static void x38_check(struct mem_ctl_info *mci)
243 {
244 struct x38_error_info info;
245
246 edac_dbg(1, "MC%d\n", mci->mc_idx);
247 x38_get_and_clear_error_info(mci, &info);
248 x38_process_error_info(mci, &info);
249 }
250
251 static void __iomem *x38_map_mchbar(struct pci_dev *pdev)
252 {
253 union {
254 u64 mchbar;
255 struct {
256 u32 mchbar_low;
257 u32 mchbar_high;
258 };
259 } u;
260 void __iomem *window;
261
262 pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low);
263 pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1);
264 pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high);
265 u.mchbar &= X38_MCHBAR_MASK;
266
267 if (u.mchbar != (resource_size_t)u.mchbar) {
268 printk(KERN_ERR
269 "x38: mmio space beyond accessible range (0x%llx)\n",
270 (unsigned long long)u.mchbar);
271 return NULL;
272 }
273
274 window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE);
275 if (!window)
276 printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n",
277 (unsigned long long)u.mchbar);
278
279 return window;
280 }
281
282
283 static void x38_get_drbs(void __iomem *window,
284 u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
285 {
286 int i;
287
288 for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) {
289 drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK;
290 drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK;
291 }
292 }
293
294 static bool x38_is_stacked(struct pci_dev *pdev,
295 u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
296 {
297 u16 tom;
298
299 pci_read_config_word(pdev, X38_TOM, &tom);
300 tom &= X38_TOM_MASK;
301
302 return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom;
303 }
304
305 static unsigned long drb_to_nr_pages(
306 u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL],
307 bool stacked, int channel, int rank)
308 {
309 int n;
310
311 n = drbs[channel][rank];
312 if (rank > 0)
313 n -= drbs[channel][rank - 1];
314 if (stacked && (channel == 1) && drbs[channel][rank] ==
315 drbs[channel][X38_RANKS_PER_CHANNEL - 1]) {
316 n -= drbs[0][X38_RANKS_PER_CHANNEL - 1];
317 }
318
319 n <<= (X38_DRB_SHIFT - PAGE_SHIFT);
320 return n;
321 }
322
323 static int x38_probe1(struct pci_dev *pdev, int dev_idx)
324 {
325 int rc;
326 int i, j;
327 struct mem_ctl_info *mci = NULL;
328 struct edac_mc_layer layers[2];
329 u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL];
330 bool stacked;
331 void __iomem *window;
332
333 edac_dbg(0, "MC:\n");
334
335 window = x38_map_mchbar(pdev);
336 if (!window)
337 return -ENODEV;
338
339 x38_get_drbs(window, drbs);
340
341 how_many_channel(pdev);
342
343 /* FIXME: unconventional pvt_info usage */
344 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
345 layers[0].size = X38_RANKS;
346 layers[0].is_virt_csrow = true;
347 layers[1].type = EDAC_MC_LAYER_CHANNEL;
348 layers[1].size = x38_channel_num;
349 layers[1].is_virt_csrow = false;
350 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0);
351 if (!mci)
352 return -ENOMEM;
353
354 edac_dbg(3, "MC: init mci\n");
355
356 mci->pdev = &pdev->dev;
357 mci->mtype_cap = MEM_FLAG_DDR2;
358
359 mci->edac_ctl_cap = EDAC_FLAG_SECDED;
360 mci->edac_cap = EDAC_FLAG_SECDED;
361
362 mci->mod_name = EDAC_MOD_STR;
363 mci->mod_ver = X38_REVISION;
364 mci->ctl_name = x38_devs[dev_idx].ctl_name;
365 mci->dev_name = pci_name(pdev);
366 mci->edac_check = x38_check;
367 mci->ctl_page_to_phys = NULL;
368 mci->pvt_info = window;
369
370 stacked = x38_is_stacked(pdev, drbs);
371
372 /*
373 * The dram rank boundary (DRB) reg values are boundary addresses
374 * for each DRAM rank with a granularity of 64MB. DRB regs are
375 * cumulative; the last one will contain the total memory
376 * contained in all ranks.
377 */
378 for (i = 0; i < mci->nr_csrows; i++) {
379 unsigned long nr_pages;
380 struct csrow_info *csrow = mci->csrows[i];
381
382 nr_pages = drb_to_nr_pages(drbs, stacked,
383 i / X38_RANKS_PER_CHANNEL,
384 i % X38_RANKS_PER_CHANNEL);
385
386 if (nr_pages == 0)
387 continue;
388
389 for (j = 0; j < x38_channel_num; j++) {
390 struct dimm_info *dimm = csrow->channels[j]->dimm;
391
392 dimm->nr_pages = nr_pages / x38_channel_num;
393 dimm->grain = nr_pages << PAGE_SHIFT;
394 dimm->mtype = MEM_DDR2;
395 dimm->dtype = DEV_UNKNOWN;
396 dimm->edac_mode = EDAC_UNKNOWN;
397 }
398 }
399
400 x38_clear_error_info(mci);
401
402 rc = -ENODEV;
403 if (edac_mc_add_mc(mci)) {
404 edac_dbg(3, "MC: failed edac_mc_add_mc()\n");
405 goto fail;
406 }
407
408 /* get this far and it's successful */
409 edac_dbg(3, "MC: success\n");
410 return 0;
411
412 fail:
413 iounmap(window);
414 if (mci)
415 edac_mc_free(mci);
416
417 return rc;
418 }
419
420 static int x38_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
421 {
422 int rc;
423
424 edac_dbg(0, "MC:\n");
425
426 if (pci_enable_device(pdev) < 0)
427 return -EIO;
428
429 rc = x38_probe1(pdev, ent->driver_data);
430 if (!mci_pdev)
431 mci_pdev = pci_dev_get(pdev);
432
433 return rc;
434 }
435
436 static void x38_remove_one(struct pci_dev *pdev)
437 {
438 struct mem_ctl_info *mci;
439
440 edac_dbg(0, "\n");
441
442 mci = edac_mc_del_mc(&pdev->dev);
443 if (!mci)
444 return;
445
446 iounmap(mci->pvt_info);
447
448 edac_mc_free(mci);
449 }
450
451 static DEFINE_PCI_DEVICE_TABLE(x38_pci_tbl) = {
452 {
453 PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
454 X38},
455 {
456 0,
457 } /* 0 terminated list. */
458 };
459
460 MODULE_DEVICE_TABLE(pci, x38_pci_tbl);
461
462 static struct pci_driver x38_driver = {
463 .name = EDAC_MOD_STR,
464 .probe = x38_init_one,
465 .remove = x38_remove_one,
466 .id_table = x38_pci_tbl,
467 };
468
469 static int __init x38_init(void)
470 {
471 int pci_rc;
472
473 edac_dbg(3, "MC:\n");
474
475 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
476 opstate_init();
477
478 pci_rc = pci_register_driver(&x38_driver);
479 if (pci_rc < 0)
480 goto fail0;
481
482 if (!mci_pdev) {
483 x38_registered = 0;
484 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
485 PCI_DEVICE_ID_INTEL_X38_HB, NULL);
486 if (!mci_pdev) {
487 edac_dbg(0, "x38 pci_get_device fail\n");
488 pci_rc = -ENODEV;
489 goto fail1;
490 }
491
492 pci_rc = x38_init_one(mci_pdev, x38_pci_tbl);
493 if (pci_rc < 0) {
494 edac_dbg(0, "x38 init fail\n");
495 pci_rc = -ENODEV;
496 goto fail1;
497 }
498 }
499
500 return 0;
501
502 fail1:
503 pci_unregister_driver(&x38_driver);
504
505 fail0:
506 if (mci_pdev)
507 pci_dev_put(mci_pdev);
508
509 return pci_rc;
510 }
511
512 static void __exit x38_exit(void)
513 {
514 edac_dbg(3, "MC:\n");
515
516 pci_unregister_driver(&x38_driver);
517 if (!x38_registered) {
518 x38_remove_one(mci_pdev);
519 pci_dev_put(mci_pdev);
520 }
521 }
522
523 module_init(x38_init);
524 module_exit(x38_exit);
525
526 MODULE_LICENSE("GPL");
527 MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake");
528 MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers");
529
530 module_param(edac_op_state, int, 0444);
531 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
This page took 0.055891 seconds and 5 git commands to generate.