firewire: normalize style of queue_work wrappers
[deliverable/linux.git] / drivers / firewire / core-card.c
1 /*
2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 */
18
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/timer.h>
34 #include <linux/workqueue.h>
35
36 #include <asm/atomic.h>
37 #include <asm/byteorder.h>
38
39 #include "core.h"
40
41 int fw_compute_block_crc(u32 *block)
42 {
43 __be32 be32_block[256];
44 int i, length;
45
46 length = (*block >> 16) & 0xff;
47 for (i = 0; i < length; i++)
48 be32_block[i] = cpu_to_be32(block[i + 1]);
49 *block |= crc_itu_t(0, (u8 *) be32_block, length * 4);
50
51 return length;
52 }
53
54 static DEFINE_MUTEX(card_mutex);
55 static LIST_HEAD(card_list);
56
57 static LIST_HEAD(descriptor_list);
58 static int descriptor_count;
59
60 #define BIB_CRC(v) ((v) << 0)
61 #define BIB_CRC_LENGTH(v) ((v) << 16)
62 #define BIB_INFO_LENGTH(v) ((v) << 24)
63
64 #define BIB_LINK_SPEED(v) ((v) << 0)
65 #define BIB_GENERATION(v) ((v) << 4)
66 #define BIB_MAX_ROM(v) ((v) << 8)
67 #define BIB_MAX_RECEIVE(v) ((v) << 12)
68 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
69 #define BIB_PMC ((1) << 27)
70 #define BIB_BMC ((1) << 28)
71 #define BIB_ISC ((1) << 29)
72 #define BIB_CMC ((1) << 30)
73 #define BIB_IMC ((1) << 31)
74
75 static u32 *generate_config_rom(struct fw_card *card, size_t *config_rom_length)
76 {
77 struct fw_descriptor *desc;
78 static u32 config_rom[256];
79 int i, j, length;
80
81 /*
82 * Initialize contents of config rom buffer. On the OHCI
83 * controller, block reads to the config rom accesses the host
84 * memory, but quadlet read access the hardware bus info block
85 * registers. That's just crack, but it means we should make
86 * sure the contents of bus info block in host memory matches
87 * the version stored in the OHCI registers.
88 */
89
90 memset(config_rom, 0, sizeof(config_rom));
91 config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
92 config_rom[1] = 0x31333934;
93
94 config_rom[2] =
95 BIB_LINK_SPEED(card->link_speed) |
96 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
97 BIB_MAX_ROM(2) |
98 BIB_MAX_RECEIVE(card->max_receive) |
99 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC;
100 config_rom[3] = card->guid >> 32;
101 config_rom[4] = card->guid;
102
103 /* Generate root directory. */
104 i = 5;
105 config_rom[i++] = 0;
106 config_rom[i++] = 0x0c0083c0; /* node capabilities */
107 j = i + descriptor_count;
108
109 /* Generate root directory entries for descriptors. */
110 list_for_each_entry (desc, &descriptor_list, link) {
111 if (desc->immediate > 0)
112 config_rom[i++] = desc->immediate;
113 config_rom[i] = desc->key | (j - i);
114 i++;
115 j += desc->length;
116 }
117
118 /* Update root directory length. */
119 config_rom[5] = (i - 5 - 1) << 16;
120
121 /* End of root directory, now copy in descriptors. */
122 list_for_each_entry (desc, &descriptor_list, link) {
123 memcpy(&config_rom[i], desc->data, desc->length * 4);
124 i += desc->length;
125 }
126
127 /* Calculate CRCs for all blocks in the config rom. This
128 * assumes that CRC length and info length are identical for
129 * the bus info block, which is always the case for this
130 * implementation. */
131 for (i = 0; i < j; i += length + 1)
132 length = fw_compute_block_crc(config_rom + i);
133
134 *config_rom_length = j;
135
136 return config_rom;
137 }
138
139 static void update_config_roms(void)
140 {
141 struct fw_card *card;
142 u32 *config_rom;
143 size_t length;
144
145 list_for_each_entry (card, &card_list, link) {
146 config_rom = generate_config_rom(card, &length);
147 card->driver->set_config_rom(card, config_rom, length);
148 }
149 }
150
151 int fw_core_add_descriptor(struct fw_descriptor *desc)
152 {
153 size_t i;
154
155 /*
156 * Check descriptor is valid; the length of all blocks in the
157 * descriptor has to add up to exactly the length of the
158 * block.
159 */
160 i = 0;
161 while (i < desc->length)
162 i += (desc->data[i] >> 16) + 1;
163
164 if (i != desc->length)
165 return -EINVAL;
166
167 mutex_lock(&card_mutex);
168
169 list_add_tail(&desc->link, &descriptor_list);
170 descriptor_count++;
171 if (desc->immediate > 0)
172 descriptor_count++;
173 update_config_roms();
174
175 mutex_unlock(&card_mutex);
176
177 return 0;
178 }
179 EXPORT_SYMBOL(fw_core_add_descriptor);
180
181 void fw_core_remove_descriptor(struct fw_descriptor *desc)
182 {
183 mutex_lock(&card_mutex);
184
185 list_del(&desc->link);
186 descriptor_count--;
187 if (desc->immediate > 0)
188 descriptor_count--;
189 update_config_roms();
190
191 mutex_unlock(&card_mutex);
192 }
193 EXPORT_SYMBOL(fw_core_remove_descriptor);
194
195 static void allocate_broadcast_channel(struct fw_card *card, int generation)
196 {
197 int channel, bandwidth = 0;
198
199 fw_iso_resource_manage(card, generation, 1ULL << 31, &channel,
200 &bandwidth, true, card->bm_transaction_data);
201 if (channel == 31) {
202 card->broadcast_channel_allocated = true;
203 device_for_each_child(card->device, (void *)(long)generation,
204 fw_device_set_broadcast_channel);
205 }
206 }
207
208 static const char gap_count_table[] = {
209 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
210 };
211
212 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
213 {
214 fw_card_get(card);
215 if (!schedule_delayed_work(&card->work, delay))
216 fw_card_put(card);
217 }
218
219 static void fw_card_bm_work(struct work_struct *work)
220 {
221 struct fw_card *card = container_of(work, struct fw_card, work.work);
222 struct fw_device *root_device;
223 struct fw_node *root_node;
224 unsigned long flags;
225 int root_id, new_root_id, irm_id, local_id;
226 int gap_count, generation, grace, rcode;
227 bool do_reset = false;
228 bool root_device_is_running;
229 bool root_device_is_cmc;
230
231 spin_lock_irqsave(&card->lock, flags);
232
233 if (card->local_node == NULL) {
234 spin_unlock_irqrestore(&card->lock, flags);
235 goto out_put_card;
236 }
237
238 generation = card->generation;
239 root_node = card->root_node;
240 fw_node_get(root_node);
241 root_device = root_node->data;
242 root_device_is_running = root_device &&
243 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
244 root_device_is_cmc = root_device && root_device->cmc;
245 root_id = root_node->node_id;
246 irm_id = card->irm_node->node_id;
247 local_id = card->local_node->node_id;
248
249 grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
250
251 if (is_next_generation(generation, card->bm_generation) ||
252 (card->bm_generation != generation && grace)) {
253 /*
254 * This first step is to figure out who is IRM and
255 * then try to become bus manager. If the IRM is not
256 * well defined (e.g. does not have an active link
257 * layer or does not responds to our lock request, we
258 * will have to do a little vigilante bus management.
259 * In that case, we do a goto into the gap count logic
260 * so that when we do the reset, we still optimize the
261 * gap count. That could well save a reset in the
262 * next generation.
263 */
264
265 if (!card->irm_node->link_on) {
266 new_root_id = local_id;
267 fw_notify("IRM has link off, making local node (%02x) root.\n",
268 new_root_id);
269 goto pick_me;
270 }
271
272 card->bm_transaction_data[0] = cpu_to_be32(0x3f);
273 card->bm_transaction_data[1] = cpu_to_be32(local_id);
274
275 spin_unlock_irqrestore(&card->lock, flags);
276
277 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
278 irm_id, generation, SCODE_100,
279 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
280 card->bm_transaction_data,
281 sizeof(card->bm_transaction_data));
282
283 if (rcode == RCODE_GENERATION)
284 /* Another bus reset, BM work has been rescheduled. */
285 goto out;
286
287 if (rcode == RCODE_COMPLETE &&
288 card->bm_transaction_data[0] != cpu_to_be32(0x3f)) {
289
290 /* Somebody else is BM. Only act as IRM. */
291 if (local_id == irm_id)
292 allocate_broadcast_channel(card, generation);
293
294 goto out;
295 }
296
297 spin_lock_irqsave(&card->lock, flags);
298
299 if (rcode != RCODE_COMPLETE) {
300 /*
301 * The lock request failed, maybe the IRM
302 * isn't really IRM capable after all. Let's
303 * do a bus reset and pick the local node as
304 * root, and thus, IRM.
305 */
306 new_root_id = local_id;
307 fw_notify("BM lock failed, making local node (%02x) root.\n",
308 new_root_id);
309 goto pick_me;
310 }
311 } else if (card->bm_generation != generation) {
312 /*
313 * We weren't BM in the last generation, and the last
314 * bus reset is less than 125ms ago. Reschedule this job.
315 */
316 spin_unlock_irqrestore(&card->lock, flags);
317 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
318 goto out;
319 }
320
321 /*
322 * We're bus manager for this generation, so next step is to
323 * make sure we have an active cycle master and do gap count
324 * optimization.
325 */
326 card->bm_generation = generation;
327
328 if (root_device == NULL) {
329 /*
330 * Either link_on is false, or we failed to read the
331 * config rom. In either case, pick another root.
332 */
333 new_root_id = local_id;
334 } else if (!root_device_is_running) {
335 /*
336 * If we haven't probed this device yet, bail out now
337 * and let's try again once that's done.
338 */
339 spin_unlock_irqrestore(&card->lock, flags);
340 goto out;
341 } else if (root_device_is_cmc) {
342 /*
343 * FIXME: I suppose we should set the cmstr bit in the
344 * STATE_CLEAR register of this node, as described in
345 * 1394-1995, 8.4.2.6. Also, send out a force root
346 * packet for this node.
347 */
348 new_root_id = root_id;
349 } else {
350 /*
351 * Current root has an active link layer and we
352 * successfully read the config rom, but it's not
353 * cycle master capable.
354 */
355 new_root_id = local_id;
356 }
357
358 pick_me:
359 /*
360 * Pick a gap count from 1394a table E-1. The table doesn't cover
361 * the typically much larger 1394b beta repeater delays though.
362 */
363 if (!card->beta_repeaters_present &&
364 root_node->max_hops < ARRAY_SIZE(gap_count_table))
365 gap_count = gap_count_table[root_node->max_hops];
366 else
367 gap_count = 63;
368
369 /*
370 * Finally, figure out if we should do a reset or not. If we have
371 * done less than 5 resets with the same physical topology and we
372 * have either a new root or a new gap count setting, let's do it.
373 */
374
375 if (card->bm_retries++ < 5 &&
376 (card->gap_count != gap_count || new_root_id != root_id))
377 do_reset = true;
378
379 spin_unlock_irqrestore(&card->lock, flags);
380
381 if (do_reset) {
382 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
383 card->index, new_root_id, gap_count);
384 fw_send_phy_config(card, new_root_id, generation, gap_count);
385 fw_core_initiate_bus_reset(card, 1);
386 /* Will allocate broadcast channel after the reset. */
387 } else {
388 if (local_id == irm_id)
389 allocate_broadcast_channel(card, generation);
390 }
391
392 out:
393 fw_node_put(root_node);
394 out_put_card:
395 fw_card_put(card);
396 }
397
398 static void flush_timer_callback(unsigned long data)
399 {
400 struct fw_card *card = (struct fw_card *)data;
401
402 fw_flush_transactions(card);
403 }
404
405 void fw_card_initialize(struct fw_card *card,
406 const struct fw_card_driver *driver,
407 struct device *device)
408 {
409 static atomic_t index = ATOMIC_INIT(-1);
410
411 card->index = atomic_inc_return(&index);
412 card->driver = driver;
413 card->device = device;
414 card->current_tlabel = 0;
415 card->tlabel_mask = 0;
416 card->color = 0;
417 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
418
419 kref_init(&card->kref);
420 init_completion(&card->done);
421 INIT_LIST_HEAD(&card->transaction_list);
422 spin_lock_init(&card->lock);
423 setup_timer(&card->flush_timer,
424 flush_timer_callback, (unsigned long)card);
425
426 card->local_node = NULL;
427
428 INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
429 }
430 EXPORT_SYMBOL(fw_card_initialize);
431
432 int fw_card_add(struct fw_card *card,
433 u32 max_receive, u32 link_speed, u64 guid)
434 {
435 u32 *config_rom;
436 size_t length;
437 int ret;
438
439 card->max_receive = max_receive;
440 card->link_speed = link_speed;
441 card->guid = guid;
442
443 mutex_lock(&card_mutex);
444
445 config_rom = generate_config_rom(card, &length);
446 ret = card->driver->enable(card, config_rom, length);
447 if (ret == 0)
448 list_add_tail(&card->link, &card_list);
449
450 mutex_unlock(&card_mutex);
451
452 return ret;
453 }
454 EXPORT_SYMBOL(fw_card_add);
455
456
457 /*
458 * The next few functions implement a dummy driver that is used once a card
459 * driver shuts down an fw_card. This allows the driver to cleanly unload,
460 * as all IO to the card will be handled (and failed) by the dummy driver
461 * instead of calling into the module. Only functions for iso context
462 * shutdown still need to be provided by the card driver.
463 */
464
465 static int dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
466 {
467 BUG();
468 return -1;
469 }
470
471 static int dummy_update_phy_reg(struct fw_card *card, int address,
472 int clear_bits, int set_bits)
473 {
474 return -ENODEV;
475 }
476
477 static int dummy_set_config_rom(struct fw_card *card,
478 u32 *config_rom, size_t length)
479 {
480 /*
481 * We take the card out of card_list before setting the dummy
482 * driver, so this should never get called.
483 */
484 BUG();
485 return -1;
486 }
487
488 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
489 {
490 packet->callback(packet, card, -ENODEV);
491 }
492
493 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
494 {
495 packet->callback(packet, card, -ENODEV);
496 }
497
498 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
499 {
500 return -ENOENT;
501 }
502
503 static int dummy_enable_phys_dma(struct fw_card *card,
504 int node_id, int generation)
505 {
506 return -ENODEV;
507 }
508
509 static const struct fw_card_driver dummy_driver_template = {
510 .enable = dummy_enable,
511 .update_phy_reg = dummy_update_phy_reg,
512 .set_config_rom = dummy_set_config_rom,
513 .send_request = dummy_send_request,
514 .cancel_packet = dummy_cancel_packet,
515 .send_response = dummy_send_response,
516 .enable_phys_dma = dummy_enable_phys_dma,
517 };
518
519 void fw_card_release(struct kref *kref)
520 {
521 struct fw_card *card = container_of(kref, struct fw_card, kref);
522
523 complete(&card->done);
524 }
525
526 void fw_core_remove_card(struct fw_card *card)
527 {
528 struct fw_card_driver dummy_driver = dummy_driver_template;
529
530 card->driver->update_phy_reg(card, 4,
531 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
532 fw_core_initiate_bus_reset(card, 1);
533
534 mutex_lock(&card_mutex);
535 list_del_init(&card->link);
536 mutex_unlock(&card_mutex);
537
538 /* Switch off most of the card driver interface. */
539 dummy_driver.free_iso_context = card->driver->free_iso_context;
540 dummy_driver.stop_iso = card->driver->stop_iso;
541 card->driver = &dummy_driver;
542
543 fw_destroy_nodes(card);
544
545 /* Wait for all users, especially device workqueue jobs, to finish. */
546 fw_card_put(card);
547 wait_for_completion(&card->done);
548
549 WARN_ON(!list_empty(&card->transaction_list));
550 del_timer_sync(&card->flush_timer);
551 }
552 EXPORT_SYMBOL(fw_core_remove_card);
553
554 int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
555 {
556 int reg = short_reset ? 5 : 1;
557 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
558
559 return card->driver->update_phy_reg(card, reg, 0, bit);
560 }
561 EXPORT_SYMBOL(fw_core_initiate_bus_reset);
This page took 0.044207 seconds and 5 git commands to generate.