Merge branch 'core-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / firewire / core-device.c
1 /*
2 * Device probing and sysfs code.
3 *
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/random.h>
36 #include <linux/rwsem.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/atomic.h>
43 #include <asm/byteorder.h>
44
45 #include "core.h"
46
47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 {
49 ci->p = p + 1;
50 ci->end = ci->p + (p[0] >> 16);
51 }
52 EXPORT_SYMBOL(fw_csr_iterator_init);
53
54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55 {
56 *key = *ci->p >> 24;
57 *value = *ci->p & 0xffffff;
58
59 return ci->p++ < ci->end;
60 }
61 EXPORT_SYMBOL(fw_csr_iterator_next);
62
63 static const u32 *search_leaf(const u32 *directory, int search_key)
64 {
65 struct fw_csr_iterator ci;
66 int last_key = 0, key, value;
67
68 fw_csr_iterator_init(&ci, directory);
69 while (fw_csr_iterator_next(&ci, &key, &value)) {
70 if (last_key == search_key &&
71 key == (CSR_DESCRIPTOR | CSR_LEAF))
72 return ci.p - 1 + value;
73
74 last_key = key;
75 }
76
77 return NULL;
78 }
79
80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81 {
82 unsigned int quadlets, i;
83 char c;
84
85 if (!size || !buf)
86 return -EINVAL;
87
88 quadlets = min(block[0] >> 16, 256U);
89 if (quadlets < 2)
90 return -ENODATA;
91
92 if (block[1] != 0 || block[2] != 0)
93 /* unknown language/character set */
94 return -ENODATA;
95
96 block += 3;
97 quadlets -= 2;
98 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99 c = block[i / 4] >> (24 - 8 * (i % 4));
100 if (c == '\0')
101 break;
102 buf[i] = c;
103 }
104 buf[i] = '\0';
105
106 return i;
107 }
108
109 /**
110 * fw_csr_string() - reads a string from the configuration ROM
111 * @directory: e.g. root directory or unit directory
112 * @key: the key of the preceding directory entry
113 * @buf: where to put the string
114 * @size: size of @buf, in bytes
115 *
116 * The string is taken from a minimal ASCII text descriptor leaf after
117 * the immediate entry with @key. The string is zero-terminated.
118 * Returns strlen(buf) or a negative error code.
119 */
120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121 {
122 const u32 *leaf = search_leaf(directory, key);
123 if (!leaf)
124 return -ENOENT;
125
126 return textual_leaf_to_string(leaf, buf, size);
127 }
128 EXPORT_SYMBOL(fw_csr_string);
129
130 static void get_ids(const u32 *directory, int *id)
131 {
132 struct fw_csr_iterator ci;
133 int key, value;
134
135 fw_csr_iterator_init(&ci, directory);
136 while (fw_csr_iterator_next(&ci, &key, &value)) {
137 switch (key) {
138 case CSR_VENDOR: id[0] = value; break;
139 case CSR_MODEL: id[1] = value; break;
140 case CSR_SPECIFIER_ID: id[2] = value; break;
141 case CSR_VERSION: id[3] = value; break;
142 }
143 }
144 }
145
146 static void get_modalias_ids(struct fw_unit *unit, int *id)
147 {
148 get_ids(&fw_parent_device(unit)->config_rom[5], id);
149 get_ids(unit->directory, id);
150 }
151
152 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
153 {
154 int match = 0;
155
156 if (id[0] == id_table->vendor_id)
157 match |= IEEE1394_MATCH_VENDOR_ID;
158 if (id[1] == id_table->model_id)
159 match |= IEEE1394_MATCH_MODEL_ID;
160 if (id[2] == id_table->specifier_id)
161 match |= IEEE1394_MATCH_SPECIFIER_ID;
162 if (id[3] == id_table->version)
163 match |= IEEE1394_MATCH_VERSION;
164
165 return (match & id_table->match_flags) == id_table->match_flags;
166 }
167
168 static bool is_fw_unit(struct device *dev);
169
170 static int fw_unit_match(struct device *dev, struct device_driver *drv)
171 {
172 const struct ieee1394_device_id *id_table =
173 container_of(drv, struct fw_driver, driver)->id_table;
174 int id[] = {0, 0, 0, 0};
175
176 /* We only allow binding to fw_units. */
177 if (!is_fw_unit(dev))
178 return 0;
179
180 get_modalias_ids(fw_unit(dev), id);
181
182 for (; id_table->match_flags != 0; id_table++)
183 if (match_ids(id_table, id))
184 return 1;
185
186 return 0;
187 }
188
189 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
190 {
191 int id[] = {0, 0, 0, 0};
192
193 get_modalias_ids(unit, id);
194
195 return snprintf(buffer, buffer_size,
196 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
197 id[0], id[1], id[2], id[3]);
198 }
199
200 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
201 {
202 struct fw_unit *unit = fw_unit(dev);
203 char modalias[64];
204
205 get_modalias(unit, modalias, sizeof(modalias));
206
207 if (add_uevent_var(env, "MODALIAS=%s", modalias))
208 return -ENOMEM;
209
210 return 0;
211 }
212
213 struct bus_type fw_bus_type = {
214 .name = "firewire",
215 .match = fw_unit_match,
216 };
217 EXPORT_SYMBOL(fw_bus_type);
218
219 int fw_device_enable_phys_dma(struct fw_device *device)
220 {
221 int generation = device->generation;
222
223 /* device->node_id, accessed below, must not be older than generation */
224 smp_rmb();
225
226 return device->card->driver->enable_phys_dma(device->card,
227 device->node_id,
228 generation);
229 }
230 EXPORT_SYMBOL(fw_device_enable_phys_dma);
231
232 struct config_rom_attribute {
233 struct device_attribute attr;
234 u32 key;
235 };
236
237 static ssize_t show_immediate(struct device *dev,
238 struct device_attribute *dattr, char *buf)
239 {
240 struct config_rom_attribute *attr =
241 container_of(dattr, struct config_rom_attribute, attr);
242 struct fw_csr_iterator ci;
243 const u32 *dir;
244 int key, value, ret = -ENOENT;
245
246 down_read(&fw_device_rwsem);
247
248 if (is_fw_unit(dev))
249 dir = fw_unit(dev)->directory;
250 else
251 dir = fw_device(dev)->config_rom + 5;
252
253 fw_csr_iterator_init(&ci, dir);
254 while (fw_csr_iterator_next(&ci, &key, &value))
255 if (attr->key == key) {
256 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
257 "0x%06x\n", value);
258 break;
259 }
260
261 up_read(&fw_device_rwsem);
262
263 return ret;
264 }
265
266 #define IMMEDIATE_ATTR(name, key) \
267 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
268
269 static ssize_t show_text_leaf(struct device *dev,
270 struct device_attribute *dattr, char *buf)
271 {
272 struct config_rom_attribute *attr =
273 container_of(dattr, struct config_rom_attribute, attr);
274 const u32 *dir;
275 size_t bufsize;
276 char dummy_buf[2];
277 int ret;
278
279 down_read(&fw_device_rwsem);
280
281 if (is_fw_unit(dev))
282 dir = fw_unit(dev)->directory;
283 else
284 dir = fw_device(dev)->config_rom + 5;
285
286 if (buf) {
287 bufsize = PAGE_SIZE - 1;
288 } else {
289 buf = dummy_buf;
290 bufsize = 1;
291 }
292
293 ret = fw_csr_string(dir, attr->key, buf, bufsize);
294
295 if (ret >= 0) {
296 /* Strip trailing whitespace and add newline. */
297 while (ret > 0 && isspace(buf[ret - 1]))
298 ret--;
299 strcpy(buf + ret, "\n");
300 ret++;
301 }
302
303 up_read(&fw_device_rwsem);
304
305 return ret;
306 }
307
308 #define TEXT_LEAF_ATTR(name, key) \
309 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
310
311 static struct config_rom_attribute config_rom_attributes[] = {
312 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
313 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
314 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
315 IMMEDIATE_ATTR(version, CSR_VERSION),
316 IMMEDIATE_ATTR(model, CSR_MODEL),
317 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
318 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
319 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
320 };
321
322 static void init_fw_attribute_group(struct device *dev,
323 struct device_attribute *attrs,
324 struct fw_attribute_group *group)
325 {
326 struct device_attribute *attr;
327 int i, j;
328
329 for (j = 0; attrs[j].attr.name != NULL; j++)
330 group->attrs[j] = &attrs[j].attr;
331
332 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
333 attr = &config_rom_attributes[i].attr;
334 if (attr->show(dev, attr, NULL) < 0)
335 continue;
336 group->attrs[j++] = &attr->attr;
337 }
338
339 group->attrs[j] = NULL;
340 group->groups[0] = &group->group;
341 group->groups[1] = NULL;
342 group->group.attrs = group->attrs;
343 dev->groups = (const struct attribute_group **) group->groups;
344 }
345
346 static ssize_t modalias_show(struct device *dev,
347 struct device_attribute *attr, char *buf)
348 {
349 struct fw_unit *unit = fw_unit(dev);
350 int length;
351
352 length = get_modalias(unit, buf, PAGE_SIZE);
353 strcpy(buf + length, "\n");
354
355 return length + 1;
356 }
357
358 static ssize_t rom_index_show(struct device *dev,
359 struct device_attribute *attr, char *buf)
360 {
361 struct fw_device *device = fw_device(dev->parent);
362 struct fw_unit *unit = fw_unit(dev);
363
364 return snprintf(buf, PAGE_SIZE, "%d\n",
365 (int)(unit->directory - device->config_rom));
366 }
367
368 static struct device_attribute fw_unit_attributes[] = {
369 __ATTR_RO(modalias),
370 __ATTR_RO(rom_index),
371 __ATTR_NULL,
372 };
373
374 static ssize_t config_rom_show(struct device *dev,
375 struct device_attribute *attr, char *buf)
376 {
377 struct fw_device *device = fw_device(dev);
378 size_t length;
379
380 down_read(&fw_device_rwsem);
381 length = device->config_rom_length * 4;
382 memcpy(buf, device->config_rom, length);
383 up_read(&fw_device_rwsem);
384
385 return length;
386 }
387
388 static ssize_t guid_show(struct device *dev,
389 struct device_attribute *attr, char *buf)
390 {
391 struct fw_device *device = fw_device(dev);
392 int ret;
393
394 down_read(&fw_device_rwsem);
395 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
396 device->config_rom[3], device->config_rom[4]);
397 up_read(&fw_device_rwsem);
398
399 return ret;
400 }
401
402 static ssize_t is_local_show(struct device *dev,
403 struct device_attribute *attr, char *buf)
404 {
405 struct fw_device *device = fw_device(dev);
406
407 return sprintf(buf, "%u\n", device->is_local);
408 }
409
410 static int units_sprintf(char *buf, const u32 *directory)
411 {
412 struct fw_csr_iterator ci;
413 int key, value;
414 int specifier_id = 0;
415 int version = 0;
416
417 fw_csr_iterator_init(&ci, directory);
418 while (fw_csr_iterator_next(&ci, &key, &value)) {
419 switch (key) {
420 case CSR_SPECIFIER_ID:
421 specifier_id = value;
422 break;
423 case CSR_VERSION:
424 version = value;
425 break;
426 }
427 }
428
429 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
430 }
431
432 static ssize_t units_show(struct device *dev,
433 struct device_attribute *attr, char *buf)
434 {
435 struct fw_device *device = fw_device(dev);
436 struct fw_csr_iterator ci;
437 int key, value, i = 0;
438
439 down_read(&fw_device_rwsem);
440 fw_csr_iterator_init(&ci, &device->config_rom[5]);
441 while (fw_csr_iterator_next(&ci, &key, &value)) {
442 if (key != (CSR_UNIT | CSR_DIRECTORY))
443 continue;
444 i += units_sprintf(&buf[i], ci.p + value - 1);
445 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
446 break;
447 }
448 up_read(&fw_device_rwsem);
449
450 if (i)
451 buf[i - 1] = '\n';
452
453 return i;
454 }
455
456 static struct device_attribute fw_device_attributes[] = {
457 __ATTR_RO(config_rom),
458 __ATTR_RO(guid),
459 __ATTR_RO(is_local),
460 __ATTR_RO(units),
461 __ATTR_NULL,
462 };
463
464 static int read_rom(struct fw_device *device,
465 int generation, int index, u32 *data)
466 {
467 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
468 int i, rcode;
469
470 /* device->node_id, accessed below, must not be older than generation */
471 smp_rmb();
472
473 for (i = 10; i < 100; i += 10) {
474 rcode = fw_run_transaction(device->card,
475 TCODE_READ_QUADLET_REQUEST, device->node_id,
476 generation, device->max_speed, offset, data, 4);
477 if (rcode != RCODE_BUSY)
478 break;
479 msleep(i);
480 }
481 be32_to_cpus(data);
482
483 return rcode;
484 }
485
486 #define MAX_CONFIG_ROM_SIZE 256
487
488 /*
489 * Read the bus info block, perform a speed probe, and read all of the rest of
490 * the config ROM. We do all this with a cached bus generation. If the bus
491 * generation changes under us, read_config_rom will fail and get retried.
492 * It's better to start all over in this case because the node from which we
493 * are reading the ROM may have changed the ROM during the reset.
494 * Returns either a result code or a negative error code.
495 */
496 static int read_config_rom(struct fw_device *device, int generation)
497 {
498 struct fw_card *card = device->card;
499 const u32 *old_rom, *new_rom;
500 u32 *rom, *stack;
501 u32 sp, key;
502 int i, end, length, ret;
503
504 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
505 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
506 if (rom == NULL)
507 return -ENOMEM;
508
509 stack = &rom[MAX_CONFIG_ROM_SIZE];
510 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
511
512 device->max_speed = SCODE_100;
513
514 /* First read the bus info block. */
515 for (i = 0; i < 5; i++) {
516 ret = read_rom(device, generation, i, &rom[i]);
517 if (ret != RCODE_COMPLETE)
518 goto out;
519 /*
520 * As per IEEE1212 7.2, during initialization, devices can
521 * reply with a 0 for the first quadlet of the config
522 * rom to indicate that they are booting (for example,
523 * if the firmware is on the disk of a external
524 * harddisk). In that case we just fail, and the
525 * retry mechanism will try again later.
526 */
527 if (i == 0 && rom[i] == 0) {
528 ret = RCODE_BUSY;
529 goto out;
530 }
531 }
532
533 device->max_speed = device->node->max_speed;
534
535 /*
536 * Determine the speed of
537 * - devices with link speed less than PHY speed,
538 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
539 * - all devices if there are 1394b repeaters.
540 * Note, we cannot use the bus info block's link_spd as starting point
541 * because some buggy firmwares set it lower than necessary and because
542 * 1394-1995 nodes do not have the field.
543 */
544 if ((rom[2] & 0x7) < device->max_speed ||
545 device->max_speed == SCODE_BETA ||
546 card->beta_repeaters_present) {
547 u32 dummy;
548
549 /* for S1600 and S3200 */
550 if (device->max_speed == SCODE_BETA)
551 device->max_speed = card->link_speed;
552
553 while (device->max_speed > SCODE_100) {
554 if (read_rom(device, generation, 0, &dummy) ==
555 RCODE_COMPLETE)
556 break;
557 device->max_speed--;
558 }
559 }
560
561 /*
562 * Now parse the config rom. The config rom is a recursive
563 * directory structure so we parse it using a stack of
564 * references to the blocks that make up the structure. We
565 * push a reference to the root directory on the stack to
566 * start things off.
567 */
568 length = i;
569 sp = 0;
570 stack[sp++] = 0xc0000005;
571 while (sp > 0) {
572 /*
573 * Pop the next block reference of the stack. The
574 * lower 24 bits is the offset into the config rom,
575 * the upper 8 bits are the type of the reference the
576 * block.
577 */
578 key = stack[--sp];
579 i = key & 0xffffff;
580 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
581 ret = -ENXIO;
582 goto out;
583 }
584
585 /* Read header quadlet for the block to get the length. */
586 ret = read_rom(device, generation, i, &rom[i]);
587 if (ret != RCODE_COMPLETE)
588 goto out;
589 end = i + (rom[i] >> 16) + 1;
590 if (end > MAX_CONFIG_ROM_SIZE) {
591 /*
592 * This block extends outside the config ROM which is
593 * a firmware bug. Ignore this whole block, i.e.
594 * simply set a fake block length of 0.
595 */
596 fw_err(card, "skipped invalid ROM block %x at %llx\n",
597 rom[i],
598 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
599 rom[i] = 0;
600 end = i;
601 }
602 i++;
603
604 /*
605 * Now read in the block. If this is a directory
606 * block, check the entries as we read them to see if
607 * it references another block, and push it in that case.
608 */
609 for (; i < end; i++) {
610 ret = read_rom(device, generation, i, &rom[i]);
611 if (ret != RCODE_COMPLETE)
612 goto out;
613
614 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
615 continue;
616 /*
617 * Offset points outside the ROM. May be a firmware
618 * bug or an Extended ROM entry (IEEE 1212-2001 clause
619 * 7.7.18). Simply overwrite this pointer here by a
620 * fake immediate entry so that later iterators over
621 * the ROM don't have to check offsets all the time.
622 */
623 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
624 fw_err(card,
625 "skipped unsupported ROM entry %x at %llx\n",
626 rom[i],
627 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
628 rom[i] = 0;
629 continue;
630 }
631 stack[sp++] = i + rom[i];
632 }
633 if (length < i)
634 length = i;
635 }
636
637 old_rom = device->config_rom;
638 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
639 if (new_rom == NULL) {
640 ret = -ENOMEM;
641 goto out;
642 }
643
644 down_write(&fw_device_rwsem);
645 device->config_rom = new_rom;
646 device->config_rom_length = length;
647 up_write(&fw_device_rwsem);
648
649 kfree(old_rom);
650 ret = RCODE_COMPLETE;
651 device->max_rec = rom[2] >> 12 & 0xf;
652 device->cmc = rom[2] >> 30 & 1;
653 device->irmc = rom[2] >> 31 & 1;
654 out:
655 kfree(rom);
656
657 return ret;
658 }
659
660 static void fw_unit_release(struct device *dev)
661 {
662 struct fw_unit *unit = fw_unit(dev);
663
664 fw_device_put(fw_parent_device(unit));
665 kfree(unit);
666 }
667
668 static struct device_type fw_unit_type = {
669 .uevent = fw_unit_uevent,
670 .release = fw_unit_release,
671 };
672
673 static bool is_fw_unit(struct device *dev)
674 {
675 return dev->type == &fw_unit_type;
676 }
677
678 static void create_units(struct fw_device *device)
679 {
680 struct fw_csr_iterator ci;
681 struct fw_unit *unit;
682 int key, value, i;
683
684 i = 0;
685 fw_csr_iterator_init(&ci, &device->config_rom[5]);
686 while (fw_csr_iterator_next(&ci, &key, &value)) {
687 if (key != (CSR_UNIT | CSR_DIRECTORY))
688 continue;
689
690 /*
691 * Get the address of the unit directory and try to
692 * match the drivers id_tables against it.
693 */
694 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
695 if (unit == NULL) {
696 fw_err(device->card, "out of memory for unit\n");
697 continue;
698 }
699
700 unit->directory = ci.p + value - 1;
701 unit->device.bus = &fw_bus_type;
702 unit->device.type = &fw_unit_type;
703 unit->device.parent = &device->device;
704 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
705
706 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
707 ARRAY_SIZE(fw_unit_attributes) +
708 ARRAY_SIZE(config_rom_attributes));
709 init_fw_attribute_group(&unit->device,
710 fw_unit_attributes,
711 &unit->attribute_group);
712
713 if (device_register(&unit->device) < 0)
714 goto skip_unit;
715
716 fw_device_get(device);
717 continue;
718
719 skip_unit:
720 kfree(unit);
721 }
722 }
723
724 static int shutdown_unit(struct device *device, void *data)
725 {
726 device_unregister(device);
727
728 return 0;
729 }
730
731 /*
732 * fw_device_rwsem acts as dual purpose mutex:
733 * - serializes accesses to fw_device_idr,
734 * - serializes accesses to fw_device.config_rom/.config_rom_length and
735 * fw_unit.directory, unless those accesses happen at safe occasions
736 */
737 DECLARE_RWSEM(fw_device_rwsem);
738
739 DEFINE_IDR(fw_device_idr);
740 int fw_cdev_major;
741
742 struct fw_device *fw_device_get_by_devt(dev_t devt)
743 {
744 struct fw_device *device;
745
746 down_read(&fw_device_rwsem);
747 device = idr_find(&fw_device_idr, MINOR(devt));
748 if (device)
749 fw_device_get(device);
750 up_read(&fw_device_rwsem);
751
752 return device;
753 }
754
755 struct workqueue_struct *fw_workqueue;
756 EXPORT_SYMBOL(fw_workqueue);
757
758 static void fw_schedule_device_work(struct fw_device *device,
759 unsigned long delay)
760 {
761 queue_delayed_work(fw_workqueue, &device->work, delay);
762 }
763
764 /*
765 * These defines control the retry behavior for reading the config
766 * rom. It shouldn't be necessary to tweak these; if the device
767 * doesn't respond to a config rom read within 10 seconds, it's not
768 * going to respond at all. As for the initial delay, a lot of
769 * devices will be able to respond within half a second after bus
770 * reset. On the other hand, it's not really worth being more
771 * aggressive than that, since it scales pretty well; if 10 devices
772 * are plugged in, they're all getting read within one second.
773 */
774
775 #define MAX_RETRIES 10
776 #define RETRY_DELAY (3 * HZ)
777 #define INITIAL_DELAY (HZ / 2)
778 #define SHUTDOWN_DELAY (2 * HZ)
779
780 static void fw_device_shutdown(struct work_struct *work)
781 {
782 struct fw_device *device =
783 container_of(work, struct fw_device, work.work);
784 int minor = MINOR(device->device.devt);
785
786 if (time_before64(get_jiffies_64(),
787 device->card->reset_jiffies + SHUTDOWN_DELAY)
788 && !list_empty(&device->card->link)) {
789 fw_schedule_device_work(device, SHUTDOWN_DELAY);
790 return;
791 }
792
793 if (atomic_cmpxchg(&device->state,
794 FW_DEVICE_GONE,
795 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
796 return;
797
798 fw_device_cdev_remove(device);
799 device_for_each_child(&device->device, NULL, shutdown_unit);
800 device_unregister(&device->device);
801
802 down_write(&fw_device_rwsem);
803 idr_remove(&fw_device_idr, minor);
804 up_write(&fw_device_rwsem);
805
806 fw_device_put(device);
807 }
808
809 static void fw_device_release(struct device *dev)
810 {
811 struct fw_device *device = fw_device(dev);
812 struct fw_card *card = device->card;
813 unsigned long flags;
814
815 /*
816 * Take the card lock so we don't set this to NULL while a
817 * FW_NODE_UPDATED callback is being handled or while the
818 * bus manager work looks at this node.
819 */
820 spin_lock_irqsave(&card->lock, flags);
821 device->node->data = NULL;
822 spin_unlock_irqrestore(&card->lock, flags);
823
824 fw_node_put(device->node);
825 kfree(device->config_rom);
826 kfree(device);
827 fw_card_put(card);
828 }
829
830 static struct device_type fw_device_type = {
831 .release = fw_device_release,
832 };
833
834 static bool is_fw_device(struct device *dev)
835 {
836 return dev->type == &fw_device_type;
837 }
838
839 static int update_unit(struct device *dev, void *data)
840 {
841 struct fw_unit *unit = fw_unit(dev);
842 struct fw_driver *driver = (struct fw_driver *)dev->driver;
843
844 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
845 device_lock(dev);
846 driver->update(unit);
847 device_unlock(dev);
848 }
849
850 return 0;
851 }
852
853 static void fw_device_update(struct work_struct *work)
854 {
855 struct fw_device *device =
856 container_of(work, struct fw_device, work.work);
857
858 fw_device_cdev_update(device);
859 device_for_each_child(&device->device, NULL, update_unit);
860 }
861
862 /*
863 * If a device was pending for deletion because its node went away but its
864 * bus info block and root directory header matches that of a newly discovered
865 * device, revive the existing fw_device.
866 * The newly allocated fw_device becomes obsolete instead.
867 */
868 static int lookup_existing_device(struct device *dev, void *data)
869 {
870 struct fw_device *old = fw_device(dev);
871 struct fw_device *new = data;
872 struct fw_card *card = new->card;
873 int match = 0;
874
875 if (!is_fw_device(dev))
876 return 0;
877
878 down_read(&fw_device_rwsem); /* serialize config_rom access */
879 spin_lock_irq(&card->lock); /* serialize node access */
880
881 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
882 atomic_cmpxchg(&old->state,
883 FW_DEVICE_GONE,
884 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
885 struct fw_node *current_node = new->node;
886 struct fw_node *obsolete_node = old->node;
887
888 new->node = obsolete_node;
889 new->node->data = new;
890 old->node = current_node;
891 old->node->data = old;
892
893 old->max_speed = new->max_speed;
894 old->node_id = current_node->node_id;
895 smp_wmb(); /* update node_id before generation */
896 old->generation = card->generation;
897 old->config_rom_retries = 0;
898 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
899
900 PREPARE_DELAYED_WORK(&old->work, fw_device_update);
901 fw_schedule_device_work(old, 0);
902
903 if (current_node == card->root_node)
904 fw_schedule_bm_work(card, 0);
905
906 match = 1;
907 }
908
909 spin_unlock_irq(&card->lock);
910 up_read(&fw_device_rwsem);
911
912 return match;
913 }
914
915 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
916
917 static void set_broadcast_channel(struct fw_device *device, int generation)
918 {
919 struct fw_card *card = device->card;
920 __be32 data;
921 int rcode;
922
923 if (!card->broadcast_channel_allocated)
924 return;
925
926 /*
927 * The Broadcast_Channel Valid bit is required by nodes which want to
928 * transmit on this channel. Such transmissions are practically
929 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
930 * to be IRM capable and have a max_rec of 8 or more. We use this fact
931 * to narrow down to which nodes we send Broadcast_Channel updates.
932 */
933 if (!device->irmc || device->max_rec < 8)
934 return;
935
936 /*
937 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
938 * Perform a read test first.
939 */
940 if (device->bc_implemented == BC_UNKNOWN) {
941 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
942 device->node_id, generation, device->max_speed,
943 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
944 &data, 4);
945 switch (rcode) {
946 case RCODE_COMPLETE:
947 if (data & cpu_to_be32(1 << 31)) {
948 device->bc_implemented = BC_IMPLEMENTED;
949 break;
950 }
951 /* else fall through to case address error */
952 case RCODE_ADDRESS_ERROR:
953 device->bc_implemented = BC_UNIMPLEMENTED;
954 }
955 }
956
957 if (device->bc_implemented == BC_IMPLEMENTED) {
958 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
959 BROADCAST_CHANNEL_VALID);
960 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
961 device->node_id, generation, device->max_speed,
962 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
963 &data, 4);
964 }
965 }
966
967 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
968 {
969 if (is_fw_device(dev))
970 set_broadcast_channel(fw_device(dev), (long)gen);
971
972 return 0;
973 }
974
975 static void fw_device_init(struct work_struct *work)
976 {
977 struct fw_device *device =
978 container_of(work, struct fw_device, work.work);
979 struct fw_card *card = device->card;
980 struct device *revived_dev;
981 int minor, ret;
982
983 /*
984 * All failure paths here set node->data to NULL, so that we
985 * don't try to do device_for_each_child() on a kfree()'d
986 * device.
987 */
988
989 ret = read_config_rom(device, device->generation);
990 if (ret != RCODE_COMPLETE) {
991 if (device->config_rom_retries < MAX_RETRIES &&
992 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
993 device->config_rom_retries++;
994 fw_schedule_device_work(device, RETRY_DELAY);
995 } else {
996 if (device->node->link_on)
997 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
998 device->node_id,
999 fw_rcode_string(ret));
1000 if (device->node == card->root_node)
1001 fw_schedule_bm_work(card, 0);
1002 fw_device_release(&device->device);
1003 }
1004 return;
1005 }
1006
1007 revived_dev = device_find_child(card->device,
1008 device, lookup_existing_device);
1009 if (revived_dev) {
1010 put_device(revived_dev);
1011 fw_device_release(&device->device);
1012
1013 return;
1014 }
1015
1016 device_initialize(&device->device);
1017
1018 fw_device_get(device);
1019 down_write(&fw_device_rwsem);
1020 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1021 idr_get_new(&fw_device_idr, device, &minor) :
1022 -ENOMEM;
1023 up_write(&fw_device_rwsem);
1024
1025 if (ret < 0)
1026 goto error;
1027
1028 device->device.bus = &fw_bus_type;
1029 device->device.type = &fw_device_type;
1030 device->device.parent = card->device;
1031 device->device.devt = MKDEV(fw_cdev_major, minor);
1032 dev_set_name(&device->device, "fw%d", minor);
1033
1034 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1035 ARRAY_SIZE(fw_device_attributes) +
1036 ARRAY_SIZE(config_rom_attributes));
1037 init_fw_attribute_group(&device->device,
1038 fw_device_attributes,
1039 &device->attribute_group);
1040
1041 if (device_add(&device->device)) {
1042 fw_err(card, "failed to add device\n");
1043 goto error_with_cdev;
1044 }
1045
1046 create_units(device);
1047
1048 /*
1049 * Transition the device to running state. If it got pulled
1050 * out from under us while we did the intialization work, we
1051 * have to shut down the device again here. Normally, though,
1052 * fw_node_event will be responsible for shutting it down when
1053 * necessary. We have to use the atomic cmpxchg here to avoid
1054 * racing with the FW_NODE_DESTROYED case in
1055 * fw_node_event().
1056 */
1057 if (atomic_cmpxchg(&device->state,
1058 FW_DEVICE_INITIALIZING,
1059 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1060 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1061 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1062 } else {
1063 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1064 dev_name(&device->device),
1065 device->config_rom[3], device->config_rom[4],
1066 1 << device->max_speed);
1067 device->config_rom_retries = 0;
1068
1069 set_broadcast_channel(device, device->generation);
1070
1071 add_device_randomness(&device->config_rom[3], 8);
1072 }
1073
1074 /*
1075 * Reschedule the IRM work if we just finished reading the
1076 * root node config rom. If this races with a bus reset we
1077 * just end up running the IRM work a couple of extra times -
1078 * pretty harmless.
1079 */
1080 if (device->node == card->root_node)
1081 fw_schedule_bm_work(card, 0);
1082
1083 return;
1084
1085 error_with_cdev:
1086 down_write(&fw_device_rwsem);
1087 idr_remove(&fw_device_idr, minor);
1088 up_write(&fw_device_rwsem);
1089 error:
1090 fw_device_put(device); /* fw_device_idr's reference */
1091
1092 put_device(&device->device); /* our reference */
1093 }
1094
1095 /* Reread and compare bus info block and header of root directory */
1096 static int reread_config_rom(struct fw_device *device, int generation,
1097 bool *changed)
1098 {
1099 u32 q;
1100 int i, rcode;
1101
1102 for (i = 0; i < 6; i++) {
1103 rcode = read_rom(device, generation, i, &q);
1104 if (rcode != RCODE_COMPLETE)
1105 return rcode;
1106
1107 if (i == 0 && q == 0)
1108 /* inaccessible (see read_config_rom); retry later */
1109 return RCODE_BUSY;
1110
1111 if (q != device->config_rom[i]) {
1112 *changed = true;
1113 return RCODE_COMPLETE;
1114 }
1115 }
1116
1117 *changed = false;
1118 return RCODE_COMPLETE;
1119 }
1120
1121 static void fw_device_refresh(struct work_struct *work)
1122 {
1123 struct fw_device *device =
1124 container_of(work, struct fw_device, work.work);
1125 struct fw_card *card = device->card;
1126 int ret, node_id = device->node_id;
1127 bool changed;
1128
1129 ret = reread_config_rom(device, device->generation, &changed);
1130 if (ret != RCODE_COMPLETE)
1131 goto failed_config_rom;
1132
1133 if (!changed) {
1134 if (atomic_cmpxchg(&device->state,
1135 FW_DEVICE_INITIALIZING,
1136 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1137 goto gone;
1138
1139 fw_device_update(work);
1140 device->config_rom_retries = 0;
1141 goto out;
1142 }
1143
1144 /*
1145 * Something changed. We keep things simple and don't investigate
1146 * further. We just destroy all previous units and create new ones.
1147 */
1148 device_for_each_child(&device->device, NULL, shutdown_unit);
1149
1150 ret = read_config_rom(device, device->generation);
1151 if (ret != RCODE_COMPLETE)
1152 goto failed_config_rom;
1153
1154 fw_device_cdev_update(device);
1155 create_units(device);
1156
1157 /* Userspace may want to re-read attributes. */
1158 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1159
1160 if (atomic_cmpxchg(&device->state,
1161 FW_DEVICE_INITIALIZING,
1162 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1163 goto gone;
1164
1165 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1166 device->config_rom_retries = 0;
1167 goto out;
1168
1169 failed_config_rom:
1170 if (device->config_rom_retries < MAX_RETRIES &&
1171 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1172 device->config_rom_retries++;
1173 fw_schedule_device_work(device, RETRY_DELAY);
1174 return;
1175 }
1176
1177 fw_notice(card, "giving up on refresh of device %s: %s\n",
1178 dev_name(&device->device), fw_rcode_string(ret));
1179 gone:
1180 atomic_set(&device->state, FW_DEVICE_GONE);
1181 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1182 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1183 out:
1184 if (node_id == card->root_node->node_id)
1185 fw_schedule_bm_work(card, 0);
1186 }
1187
1188 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1189 {
1190 struct fw_device *device;
1191
1192 switch (event) {
1193 case FW_NODE_CREATED:
1194 /*
1195 * Attempt to scan the node, regardless whether its self ID has
1196 * the L (link active) flag set or not. Some broken devices
1197 * send L=0 but have an up-and-running link; others send L=1
1198 * without actually having a link.
1199 */
1200 create:
1201 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1202 if (device == NULL)
1203 break;
1204
1205 /*
1206 * Do minimal intialization of the device here, the
1207 * rest will happen in fw_device_init().
1208 *
1209 * Attention: A lot of things, even fw_device_get(),
1210 * cannot be done before fw_device_init() finished!
1211 * You can basically just check device->state and
1212 * schedule work until then, but only while holding
1213 * card->lock.
1214 */
1215 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1216 device->card = fw_card_get(card);
1217 device->node = fw_node_get(node);
1218 device->node_id = node->node_id;
1219 device->generation = card->generation;
1220 device->is_local = node == card->local_node;
1221 mutex_init(&device->client_list_mutex);
1222 INIT_LIST_HEAD(&device->client_list);
1223
1224 /*
1225 * Set the node data to point back to this device so
1226 * FW_NODE_UPDATED callbacks can update the node_id
1227 * and generation for the device.
1228 */
1229 node->data = device;
1230
1231 /*
1232 * Many devices are slow to respond after bus resets,
1233 * especially if they are bus powered and go through
1234 * power-up after getting plugged in. We schedule the
1235 * first config rom scan half a second after bus reset.
1236 */
1237 INIT_DELAYED_WORK(&device->work, fw_device_init);
1238 fw_schedule_device_work(device, INITIAL_DELAY);
1239 break;
1240
1241 case FW_NODE_INITIATED_RESET:
1242 case FW_NODE_LINK_ON:
1243 device = node->data;
1244 if (device == NULL)
1245 goto create;
1246
1247 device->node_id = node->node_id;
1248 smp_wmb(); /* update node_id before generation */
1249 device->generation = card->generation;
1250 if (atomic_cmpxchg(&device->state,
1251 FW_DEVICE_RUNNING,
1252 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1253 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1254 fw_schedule_device_work(device,
1255 device->is_local ? 0 : INITIAL_DELAY);
1256 }
1257 break;
1258
1259 case FW_NODE_UPDATED:
1260 device = node->data;
1261 if (device == NULL)
1262 break;
1263
1264 device->node_id = node->node_id;
1265 smp_wmb(); /* update node_id before generation */
1266 device->generation = card->generation;
1267 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1268 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1269 fw_schedule_device_work(device, 0);
1270 }
1271 break;
1272
1273 case FW_NODE_DESTROYED:
1274 case FW_NODE_LINK_OFF:
1275 if (!node->data)
1276 break;
1277
1278 /*
1279 * Destroy the device associated with the node. There
1280 * are two cases here: either the device is fully
1281 * initialized (FW_DEVICE_RUNNING) or we're in the
1282 * process of reading its config rom
1283 * (FW_DEVICE_INITIALIZING). If it is fully
1284 * initialized we can reuse device->work to schedule a
1285 * full fw_device_shutdown(). If not, there's work
1286 * scheduled to read it's config rom, and we just put
1287 * the device in shutdown state to have that code fail
1288 * to create the device.
1289 */
1290 device = node->data;
1291 if (atomic_xchg(&device->state,
1292 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1293 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1294 fw_schedule_device_work(device,
1295 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1296 }
1297 break;
1298 }
1299 }
This page took 0.150791 seconds and 5 git commands to generate.