net/mlx4_en: Add Low Latency Socket (LLS) support
[deliverable/linux.git] / drivers / firewire / core-device.c
1 /*
2 * Device probing and sysfs code.
3 *
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/random.h>
36 #include <linux/rwsem.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/atomic.h>
43 #include <asm/byteorder.h>
44
45 #include "core.h"
46
47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 {
49 ci->p = p + 1;
50 ci->end = ci->p + (p[0] >> 16);
51 }
52 EXPORT_SYMBOL(fw_csr_iterator_init);
53
54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55 {
56 *key = *ci->p >> 24;
57 *value = *ci->p & 0xffffff;
58
59 return ci->p++ < ci->end;
60 }
61 EXPORT_SYMBOL(fw_csr_iterator_next);
62
63 static const u32 *search_leaf(const u32 *directory, int search_key)
64 {
65 struct fw_csr_iterator ci;
66 int last_key = 0, key, value;
67
68 fw_csr_iterator_init(&ci, directory);
69 while (fw_csr_iterator_next(&ci, &key, &value)) {
70 if (last_key == search_key &&
71 key == (CSR_DESCRIPTOR | CSR_LEAF))
72 return ci.p - 1 + value;
73
74 last_key = key;
75 }
76
77 return NULL;
78 }
79
80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81 {
82 unsigned int quadlets, i;
83 char c;
84
85 if (!size || !buf)
86 return -EINVAL;
87
88 quadlets = min(block[0] >> 16, 256U);
89 if (quadlets < 2)
90 return -ENODATA;
91
92 if (block[1] != 0 || block[2] != 0)
93 /* unknown language/character set */
94 return -ENODATA;
95
96 block += 3;
97 quadlets -= 2;
98 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99 c = block[i / 4] >> (24 - 8 * (i % 4));
100 if (c == '\0')
101 break;
102 buf[i] = c;
103 }
104 buf[i] = '\0';
105
106 return i;
107 }
108
109 /**
110 * fw_csr_string() - reads a string from the configuration ROM
111 * @directory: e.g. root directory or unit directory
112 * @key: the key of the preceding directory entry
113 * @buf: where to put the string
114 * @size: size of @buf, in bytes
115 *
116 * The string is taken from a minimal ASCII text descriptor leaf after
117 * the immediate entry with @key. The string is zero-terminated.
118 * Returns strlen(buf) or a negative error code.
119 */
120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121 {
122 const u32 *leaf = search_leaf(directory, key);
123 if (!leaf)
124 return -ENOENT;
125
126 return textual_leaf_to_string(leaf, buf, size);
127 }
128 EXPORT_SYMBOL(fw_csr_string);
129
130 static void get_ids(const u32 *directory, int *id)
131 {
132 struct fw_csr_iterator ci;
133 int key, value;
134
135 fw_csr_iterator_init(&ci, directory);
136 while (fw_csr_iterator_next(&ci, &key, &value)) {
137 switch (key) {
138 case CSR_VENDOR: id[0] = value; break;
139 case CSR_MODEL: id[1] = value; break;
140 case CSR_SPECIFIER_ID: id[2] = value; break;
141 case CSR_VERSION: id[3] = value; break;
142 }
143 }
144 }
145
146 static void get_modalias_ids(struct fw_unit *unit, int *id)
147 {
148 get_ids(&fw_parent_device(unit)->config_rom[5], id);
149 get_ids(unit->directory, id);
150 }
151
152 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
153 {
154 int match = 0;
155
156 if (id[0] == id_table->vendor_id)
157 match |= IEEE1394_MATCH_VENDOR_ID;
158 if (id[1] == id_table->model_id)
159 match |= IEEE1394_MATCH_MODEL_ID;
160 if (id[2] == id_table->specifier_id)
161 match |= IEEE1394_MATCH_SPECIFIER_ID;
162 if (id[3] == id_table->version)
163 match |= IEEE1394_MATCH_VERSION;
164
165 return (match & id_table->match_flags) == id_table->match_flags;
166 }
167
168 static bool is_fw_unit(struct device *dev);
169
170 static int fw_unit_match(struct device *dev, struct device_driver *drv)
171 {
172 const struct ieee1394_device_id *id_table =
173 container_of(drv, struct fw_driver, driver)->id_table;
174 int id[] = {0, 0, 0, 0};
175
176 /* We only allow binding to fw_units. */
177 if (!is_fw_unit(dev))
178 return 0;
179
180 get_modalias_ids(fw_unit(dev), id);
181
182 for (; id_table->match_flags != 0; id_table++)
183 if (match_ids(id_table, id))
184 return 1;
185
186 return 0;
187 }
188
189 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
190 {
191 int id[] = {0, 0, 0, 0};
192
193 get_modalias_ids(unit, id);
194
195 return snprintf(buffer, buffer_size,
196 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
197 id[0], id[1], id[2], id[3]);
198 }
199
200 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
201 {
202 struct fw_unit *unit = fw_unit(dev);
203 char modalias[64];
204
205 get_modalias(unit, modalias, sizeof(modalias));
206
207 if (add_uevent_var(env, "MODALIAS=%s", modalias))
208 return -ENOMEM;
209
210 return 0;
211 }
212
213 struct bus_type fw_bus_type = {
214 .name = "firewire",
215 .match = fw_unit_match,
216 };
217 EXPORT_SYMBOL(fw_bus_type);
218
219 int fw_device_enable_phys_dma(struct fw_device *device)
220 {
221 int generation = device->generation;
222
223 /* device->node_id, accessed below, must not be older than generation */
224 smp_rmb();
225
226 return device->card->driver->enable_phys_dma(device->card,
227 device->node_id,
228 generation);
229 }
230 EXPORT_SYMBOL(fw_device_enable_phys_dma);
231
232 struct config_rom_attribute {
233 struct device_attribute attr;
234 u32 key;
235 };
236
237 static ssize_t show_immediate(struct device *dev,
238 struct device_attribute *dattr, char *buf)
239 {
240 struct config_rom_attribute *attr =
241 container_of(dattr, struct config_rom_attribute, attr);
242 struct fw_csr_iterator ci;
243 const u32 *dir;
244 int key, value, ret = -ENOENT;
245
246 down_read(&fw_device_rwsem);
247
248 if (is_fw_unit(dev))
249 dir = fw_unit(dev)->directory;
250 else
251 dir = fw_device(dev)->config_rom + 5;
252
253 fw_csr_iterator_init(&ci, dir);
254 while (fw_csr_iterator_next(&ci, &key, &value))
255 if (attr->key == key) {
256 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
257 "0x%06x\n", value);
258 break;
259 }
260
261 up_read(&fw_device_rwsem);
262
263 return ret;
264 }
265
266 #define IMMEDIATE_ATTR(name, key) \
267 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
268
269 static ssize_t show_text_leaf(struct device *dev,
270 struct device_attribute *dattr, char *buf)
271 {
272 struct config_rom_attribute *attr =
273 container_of(dattr, struct config_rom_attribute, attr);
274 const u32 *dir;
275 size_t bufsize;
276 char dummy_buf[2];
277 int ret;
278
279 down_read(&fw_device_rwsem);
280
281 if (is_fw_unit(dev))
282 dir = fw_unit(dev)->directory;
283 else
284 dir = fw_device(dev)->config_rom + 5;
285
286 if (buf) {
287 bufsize = PAGE_SIZE - 1;
288 } else {
289 buf = dummy_buf;
290 bufsize = 1;
291 }
292
293 ret = fw_csr_string(dir, attr->key, buf, bufsize);
294
295 if (ret >= 0) {
296 /* Strip trailing whitespace and add newline. */
297 while (ret > 0 && isspace(buf[ret - 1]))
298 ret--;
299 strcpy(buf + ret, "\n");
300 ret++;
301 }
302
303 up_read(&fw_device_rwsem);
304
305 return ret;
306 }
307
308 #define TEXT_LEAF_ATTR(name, key) \
309 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
310
311 static struct config_rom_attribute config_rom_attributes[] = {
312 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
313 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
314 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
315 IMMEDIATE_ATTR(version, CSR_VERSION),
316 IMMEDIATE_ATTR(model, CSR_MODEL),
317 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
318 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
319 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
320 };
321
322 static void init_fw_attribute_group(struct device *dev,
323 struct device_attribute *attrs,
324 struct fw_attribute_group *group)
325 {
326 struct device_attribute *attr;
327 int i, j;
328
329 for (j = 0; attrs[j].attr.name != NULL; j++)
330 group->attrs[j] = &attrs[j].attr;
331
332 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
333 attr = &config_rom_attributes[i].attr;
334 if (attr->show(dev, attr, NULL) < 0)
335 continue;
336 group->attrs[j++] = &attr->attr;
337 }
338
339 group->attrs[j] = NULL;
340 group->groups[0] = &group->group;
341 group->groups[1] = NULL;
342 group->group.attrs = group->attrs;
343 dev->groups = (const struct attribute_group **) group->groups;
344 }
345
346 static ssize_t modalias_show(struct device *dev,
347 struct device_attribute *attr, char *buf)
348 {
349 struct fw_unit *unit = fw_unit(dev);
350 int length;
351
352 length = get_modalias(unit, buf, PAGE_SIZE);
353 strcpy(buf + length, "\n");
354
355 return length + 1;
356 }
357
358 static ssize_t rom_index_show(struct device *dev,
359 struct device_attribute *attr, char *buf)
360 {
361 struct fw_device *device = fw_device(dev->parent);
362 struct fw_unit *unit = fw_unit(dev);
363
364 return snprintf(buf, PAGE_SIZE, "%d\n",
365 (int)(unit->directory - device->config_rom));
366 }
367
368 static struct device_attribute fw_unit_attributes[] = {
369 __ATTR_RO(modalias),
370 __ATTR_RO(rom_index),
371 __ATTR_NULL,
372 };
373
374 static ssize_t config_rom_show(struct device *dev,
375 struct device_attribute *attr, char *buf)
376 {
377 struct fw_device *device = fw_device(dev);
378 size_t length;
379
380 down_read(&fw_device_rwsem);
381 length = device->config_rom_length * 4;
382 memcpy(buf, device->config_rom, length);
383 up_read(&fw_device_rwsem);
384
385 return length;
386 }
387
388 static ssize_t guid_show(struct device *dev,
389 struct device_attribute *attr, char *buf)
390 {
391 struct fw_device *device = fw_device(dev);
392 int ret;
393
394 down_read(&fw_device_rwsem);
395 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
396 device->config_rom[3], device->config_rom[4]);
397 up_read(&fw_device_rwsem);
398
399 return ret;
400 }
401
402 static ssize_t is_local_show(struct device *dev,
403 struct device_attribute *attr, char *buf)
404 {
405 struct fw_device *device = fw_device(dev);
406
407 return sprintf(buf, "%u\n", device->is_local);
408 }
409
410 static int units_sprintf(char *buf, const u32 *directory)
411 {
412 struct fw_csr_iterator ci;
413 int key, value;
414 int specifier_id = 0;
415 int version = 0;
416
417 fw_csr_iterator_init(&ci, directory);
418 while (fw_csr_iterator_next(&ci, &key, &value)) {
419 switch (key) {
420 case CSR_SPECIFIER_ID:
421 specifier_id = value;
422 break;
423 case CSR_VERSION:
424 version = value;
425 break;
426 }
427 }
428
429 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
430 }
431
432 static ssize_t units_show(struct device *dev,
433 struct device_attribute *attr, char *buf)
434 {
435 struct fw_device *device = fw_device(dev);
436 struct fw_csr_iterator ci;
437 int key, value, i = 0;
438
439 down_read(&fw_device_rwsem);
440 fw_csr_iterator_init(&ci, &device->config_rom[5]);
441 while (fw_csr_iterator_next(&ci, &key, &value)) {
442 if (key != (CSR_UNIT | CSR_DIRECTORY))
443 continue;
444 i += units_sprintf(&buf[i], ci.p + value - 1);
445 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
446 break;
447 }
448 up_read(&fw_device_rwsem);
449
450 if (i)
451 buf[i - 1] = '\n';
452
453 return i;
454 }
455
456 static struct device_attribute fw_device_attributes[] = {
457 __ATTR_RO(config_rom),
458 __ATTR_RO(guid),
459 __ATTR_RO(is_local),
460 __ATTR_RO(units),
461 __ATTR_NULL,
462 };
463
464 static int read_rom(struct fw_device *device,
465 int generation, int index, u32 *data)
466 {
467 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
468 int i, rcode;
469
470 /* device->node_id, accessed below, must not be older than generation */
471 smp_rmb();
472
473 for (i = 10; i < 100; i += 10) {
474 rcode = fw_run_transaction(device->card,
475 TCODE_READ_QUADLET_REQUEST, device->node_id,
476 generation, device->max_speed, offset, data, 4);
477 if (rcode != RCODE_BUSY)
478 break;
479 msleep(i);
480 }
481 be32_to_cpus(data);
482
483 return rcode;
484 }
485
486 #define MAX_CONFIG_ROM_SIZE 256
487
488 /*
489 * Read the bus info block, perform a speed probe, and read all of the rest of
490 * the config ROM. We do all this with a cached bus generation. If the bus
491 * generation changes under us, read_config_rom will fail and get retried.
492 * It's better to start all over in this case because the node from which we
493 * are reading the ROM may have changed the ROM during the reset.
494 * Returns either a result code or a negative error code.
495 */
496 static int read_config_rom(struct fw_device *device, int generation)
497 {
498 struct fw_card *card = device->card;
499 const u32 *old_rom, *new_rom;
500 u32 *rom, *stack;
501 u32 sp, key;
502 int i, end, length, ret;
503
504 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
505 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
506 if (rom == NULL)
507 return -ENOMEM;
508
509 stack = &rom[MAX_CONFIG_ROM_SIZE];
510 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
511
512 device->max_speed = SCODE_100;
513
514 /* First read the bus info block. */
515 for (i = 0; i < 5; i++) {
516 ret = read_rom(device, generation, i, &rom[i]);
517 if (ret != RCODE_COMPLETE)
518 goto out;
519 /*
520 * As per IEEE1212 7.2, during initialization, devices can
521 * reply with a 0 for the first quadlet of the config
522 * rom to indicate that they are booting (for example,
523 * if the firmware is on the disk of a external
524 * harddisk). In that case we just fail, and the
525 * retry mechanism will try again later.
526 */
527 if (i == 0 && rom[i] == 0) {
528 ret = RCODE_BUSY;
529 goto out;
530 }
531 }
532
533 device->max_speed = device->node->max_speed;
534
535 /*
536 * Determine the speed of
537 * - devices with link speed less than PHY speed,
538 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
539 * - all devices if there are 1394b repeaters.
540 * Note, we cannot use the bus info block's link_spd as starting point
541 * because some buggy firmwares set it lower than necessary and because
542 * 1394-1995 nodes do not have the field.
543 */
544 if ((rom[2] & 0x7) < device->max_speed ||
545 device->max_speed == SCODE_BETA ||
546 card->beta_repeaters_present) {
547 u32 dummy;
548
549 /* for S1600 and S3200 */
550 if (device->max_speed == SCODE_BETA)
551 device->max_speed = card->link_speed;
552
553 while (device->max_speed > SCODE_100) {
554 if (read_rom(device, generation, 0, &dummy) ==
555 RCODE_COMPLETE)
556 break;
557 device->max_speed--;
558 }
559 }
560
561 /*
562 * Now parse the config rom. The config rom is a recursive
563 * directory structure so we parse it using a stack of
564 * references to the blocks that make up the structure. We
565 * push a reference to the root directory on the stack to
566 * start things off.
567 */
568 length = i;
569 sp = 0;
570 stack[sp++] = 0xc0000005;
571 while (sp > 0) {
572 /*
573 * Pop the next block reference of the stack. The
574 * lower 24 bits is the offset into the config rom,
575 * the upper 8 bits are the type of the reference the
576 * block.
577 */
578 key = stack[--sp];
579 i = key & 0xffffff;
580 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
581 ret = -ENXIO;
582 goto out;
583 }
584
585 /* Read header quadlet for the block to get the length. */
586 ret = read_rom(device, generation, i, &rom[i]);
587 if (ret != RCODE_COMPLETE)
588 goto out;
589 end = i + (rom[i] >> 16) + 1;
590 if (end > MAX_CONFIG_ROM_SIZE) {
591 /*
592 * This block extends outside the config ROM which is
593 * a firmware bug. Ignore this whole block, i.e.
594 * simply set a fake block length of 0.
595 */
596 fw_err(card, "skipped invalid ROM block %x at %llx\n",
597 rom[i],
598 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
599 rom[i] = 0;
600 end = i;
601 }
602 i++;
603
604 /*
605 * Now read in the block. If this is a directory
606 * block, check the entries as we read them to see if
607 * it references another block, and push it in that case.
608 */
609 for (; i < end; i++) {
610 ret = read_rom(device, generation, i, &rom[i]);
611 if (ret != RCODE_COMPLETE)
612 goto out;
613
614 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
615 continue;
616 /*
617 * Offset points outside the ROM. May be a firmware
618 * bug or an Extended ROM entry (IEEE 1212-2001 clause
619 * 7.7.18). Simply overwrite this pointer here by a
620 * fake immediate entry so that later iterators over
621 * the ROM don't have to check offsets all the time.
622 */
623 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
624 fw_err(card,
625 "skipped unsupported ROM entry %x at %llx\n",
626 rom[i],
627 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
628 rom[i] = 0;
629 continue;
630 }
631 stack[sp++] = i + rom[i];
632 }
633 if (length < i)
634 length = i;
635 }
636
637 old_rom = device->config_rom;
638 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
639 if (new_rom == NULL) {
640 ret = -ENOMEM;
641 goto out;
642 }
643
644 down_write(&fw_device_rwsem);
645 device->config_rom = new_rom;
646 device->config_rom_length = length;
647 up_write(&fw_device_rwsem);
648
649 kfree(old_rom);
650 ret = RCODE_COMPLETE;
651 device->max_rec = rom[2] >> 12 & 0xf;
652 device->cmc = rom[2] >> 30 & 1;
653 device->irmc = rom[2] >> 31 & 1;
654 out:
655 kfree(rom);
656
657 return ret;
658 }
659
660 static void fw_unit_release(struct device *dev)
661 {
662 struct fw_unit *unit = fw_unit(dev);
663
664 fw_device_put(fw_parent_device(unit));
665 kfree(unit);
666 }
667
668 static struct device_type fw_unit_type = {
669 .uevent = fw_unit_uevent,
670 .release = fw_unit_release,
671 };
672
673 static bool is_fw_unit(struct device *dev)
674 {
675 return dev->type == &fw_unit_type;
676 }
677
678 static void create_units(struct fw_device *device)
679 {
680 struct fw_csr_iterator ci;
681 struct fw_unit *unit;
682 int key, value, i;
683
684 i = 0;
685 fw_csr_iterator_init(&ci, &device->config_rom[5]);
686 while (fw_csr_iterator_next(&ci, &key, &value)) {
687 if (key != (CSR_UNIT | CSR_DIRECTORY))
688 continue;
689
690 /*
691 * Get the address of the unit directory and try to
692 * match the drivers id_tables against it.
693 */
694 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
695 if (unit == NULL)
696 continue;
697
698 unit->directory = ci.p + value - 1;
699 unit->device.bus = &fw_bus_type;
700 unit->device.type = &fw_unit_type;
701 unit->device.parent = &device->device;
702 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
703
704 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
705 ARRAY_SIZE(fw_unit_attributes) +
706 ARRAY_SIZE(config_rom_attributes));
707 init_fw_attribute_group(&unit->device,
708 fw_unit_attributes,
709 &unit->attribute_group);
710
711 if (device_register(&unit->device) < 0)
712 goto skip_unit;
713
714 fw_device_get(device);
715 continue;
716
717 skip_unit:
718 kfree(unit);
719 }
720 }
721
722 static int shutdown_unit(struct device *device, void *data)
723 {
724 device_unregister(device);
725
726 return 0;
727 }
728
729 /*
730 * fw_device_rwsem acts as dual purpose mutex:
731 * - serializes accesses to fw_device_idr,
732 * - serializes accesses to fw_device.config_rom/.config_rom_length and
733 * fw_unit.directory, unless those accesses happen at safe occasions
734 */
735 DECLARE_RWSEM(fw_device_rwsem);
736
737 DEFINE_IDR(fw_device_idr);
738 int fw_cdev_major;
739
740 struct fw_device *fw_device_get_by_devt(dev_t devt)
741 {
742 struct fw_device *device;
743
744 down_read(&fw_device_rwsem);
745 device = idr_find(&fw_device_idr, MINOR(devt));
746 if (device)
747 fw_device_get(device);
748 up_read(&fw_device_rwsem);
749
750 return device;
751 }
752
753 struct workqueue_struct *fw_workqueue;
754 EXPORT_SYMBOL(fw_workqueue);
755
756 static void fw_schedule_device_work(struct fw_device *device,
757 unsigned long delay)
758 {
759 queue_delayed_work(fw_workqueue, &device->work, delay);
760 }
761
762 /*
763 * These defines control the retry behavior for reading the config
764 * rom. It shouldn't be necessary to tweak these; if the device
765 * doesn't respond to a config rom read within 10 seconds, it's not
766 * going to respond at all. As for the initial delay, a lot of
767 * devices will be able to respond within half a second after bus
768 * reset. On the other hand, it's not really worth being more
769 * aggressive than that, since it scales pretty well; if 10 devices
770 * are plugged in, they're all getting read within one second.
771 */
772
773 #define MAX_RETRIES 10
774 #define RETRY_DELAY (3 * HZ)
775 #define INITIAL_DELAY (HZ / 2)
776 #define SHUTDOWN_DELAY (2 * HZ)
777
778 static void fw_device_shutdown(struct work_struct *work)
779 {
780 struct fw_device *device =
781 container_of(work, struct fw_device, work.work);
782 int minor = MINOR(device->device.devt);
783
784 if (time_before64(get_jiffies_64(),
785 device->card->reset_jiffies + SHUTDOWN_DELAY)
786 && !list_empty(&device->card->link)) {
787 fw_schedule_device_work(device, SHUTDOWN_DELAY);
788 return;
789 }
790
791 if (atomic_cmpxchg(&device->state,
792 FW_DEVICE_GONE,
793 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
794 return;
795
796 fw_device_cdev_remove(device);
797 device_for_each_child(&device->device, NULL, shutdown_unit);
798 device_unregister(&device->device);
799
800 down_write(&fw_device_rwsem);
801 idr_remove(&fw_device_idr, minor);
802 up_write(&fw_device_rwsem);
803
804 fw_device_put(device);
805 }
806
807 static void fw_device_release(struct device *dev)
808 {
809 struct fw_device *device = fw_device(dev);
810 struct fw_card *card = device->card;
811 unsigned long flags;
812
813 /*
814 * Take the card lock so we don't set this to NULL while a
815 * FW_NODE_UPDATED callback is being handled or while the
816 * bus manager work looks at this node.
817 */
818 spin_lock_irqsave(&card->lock, flags);
819 device->node->data = NULL;
820 spin_unlock_irqrestore(&card->lock, flags);
821
822 fw_node_put(device->node);
823 kfree(device->config_rom);
824 kfree(device);
825 fw_card_put(card);
826 }
827
828 static struct device_type fw_device_type = {
829 .release = fw_device_release,
830 };
831
832 static bool is_fw_device(struct device *dev)
833 {
834 return dev->type == &fw_device_type;
835 }
836
837 static int update_unit(struct device *dev, void *data)
838 {
839 struct fw_unit *unit = fw_unit(dev);
840 struct fw_driver *driver = (struct fw_driver *)dev->driver;
841
842 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
843 device_lock(dev);
844 driver->update(unit);
845 device_unlock(dev);
846 }
847
848 return 0;
849 }
850
851 static void fw_device_update(struct work_struct *work)
852 {
853 struct fw_device *device =
854 container_of(work, struct fw_device, work.work);
855
856 fw_device_cdev_update(device);
857 device_for_each_child(&device->device, NULL, update_unit);
858 }
859
860 /*
861 * If a device was pending for deletion because its node went away but its
862 * bus info block and root directory header matches that of a newly discovered
863 * device, revive the existing fw_device.
864 * The newly allocated fw_device becomes obsolete instead.
865 */
866 static int lookup_existing_device(struct device *dev, void *data)
867 {
868 struct fw_device *old = fw_device(dev);
869 struct fw_device *new = data;
870 struct fw_card *card = new->card;
871 int match = 0;
872
873 if (!is_fw_device(dev))
874 return 0;
875
876 down_read(&fw_device_rwsem); /* serialize config_rom access */
877 spin_lock_irq(&card->lock); /* serialize node access */
878
879 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
880 atomic_cmpxchg(&old->state,
881 FW_DEVICE_GONE,
882 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
883 struct fw_node *current_node = new->node;
884 struct fw_node *obsolete_node = old->node;
885
886 new->node = obsolete_node;
887 new->node->data = new;
888 old->node = current_node;
889 old->node->data = old;
890
891 old->max_speed = new->max_speed;
892 old->node_id = current_node->node_id;
893 smp_wmb(); /* update node_id before generation */
894 old->generation = card->generation;
895 old->config_rom_retries = 0;
896 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
897
898 PREPARE_DELAYED_WORK(&old->work, fw_device_update);
899 fw_schedule_device_work(old, 0);
900
901 if (current_node == card->root_node)
902 fw_schedule_bm_work(card, 0);
903
904 match = 1;
905 }
906
907 spin_unlock_irq(&card->lock);
908 up_read(&fw_device_rwsem);
909
910 return match;
911 }
912
913 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
914
915 static void set_broadcast_channel(struct fw_device *device, int generation)
916 {
917 struct fw_card *card = device->card;
918 __be32 data;
919 int rcode;
920
921 if (!card->broadcast_channel_allocated)
922 return;
923
924 /*
925 * The Broadcast_Channel Valid bit is required by nodes which want to
926 * transmit on this channel. Such transmissions are practically
927 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
928 * to be IRM capable and have a max_rec of 8 or more. We use this fact
929 * to narrow down to which nodes we send Broadcast_Channel updates.
930 */
931 if (!device->irmc || device->max_rec < 8)
932 return;
933
934 /*
935 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
936 * Perform a read test first.
937 */
938 if (device->bc_implemented == BC_UNKNOWN) {
939 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
940 device->node_id, generation, device->max_speed,
941 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
942 &data, 4);
943 switch (rcode) {
944 case RCODE_COMPLETE:
945 if (data & cpu_to_be32(1 << 31)) {
946 device->bc_implemented = BC_IMPLEMENTED;
947 break;
948 }
949 /* else fall through to case address error */
950 case RCODE_ADDRESS_ERROR:
951 device->bc_implemented = BC_UNIMPLEMENTED;
952 }
953 }
954
955 if (device->bc_implemented == BC_IMPLEMENTED) {
956 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
957 BROADCAST_CHANNEL_VALID);
958 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
959 device->node_id, generation, device->max_speed,
960 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
961 &data, 4);
962 }
963 }
964
965 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
966 {
967 if (is_fw_device(dev))
968 set_broadcast_channel(fw_device(dev), (long)gen);
969
970 return 0;
971 }
972
973 static void fw_device_init(struct work_struct *work)
974 {
975 struct fw_device *device =
976 container_of(work, struct fw_device, work.work);
977 struct fw_card *card = device->card;
978 struct device *revived_dev;
979 int minor, ret;
980
981 /*
982 * All failure paths here set node->data to NULL, so that we
983 * don't try to do device_for_each_child() on a kfree()'d
984 * device.
985 */
986
987 ret = read_config_rom(device, device->generation);
988 if (ret != RCODE_COMPLETE) {
989 if (device->config_rom_retries < MAX_RETRIES &&
990 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
991 device->config_rom_retries++;
992 fw_schedule_device_work(device, RETRY_DELAY);
993 } else {
994 if (device->node->link_on)
995 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
996 device->node_id,
997 fw_rcode_string(ret));
998 if (device->node == card->root_node)
999 fw_schedule_bm_work(card, 0);
1000 fw_device_release(&device->device);
1001 }
1002 return;
1003 }
1004
1005 revived_dev = device_find_child(card->device,
1006 device, lookup_existing_device);
1007 if (revived_dev) {
1008 put_device(revived_dev);
1009 fw_device_release(&device->device);
1010
1011 return;
1012 }
1013
1014 device_initialize(&device->device);
1015
1016 fw_device_get(device);
1017 down_write(&fw_device_rwsem);
1018 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1019 GFP_KERNEL);
1020 up_write(&fw_device_rwsem);
1021
1022 if (minor < 0)
1023 goto error;
1024
1025 device->device.bus = &fw_bus_type;
1026 device->device.type = &fw_device_type;
1027 device->device.parent = card->device;
1028 device->device.devt = MKDEV(fw_cdev_major, minor);
1029 dev_set_name(&device->device, "fw%d", minor);
1030
1031 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1032 ARRAY_SIZE(fw_device_attributes) +
1033 ARRAY_SIZE(config_rom_attributes));
1034 init_fw_attribute_group(&device->device,
1035 fw_device_attributes,
1036 &device->attribute_group);
1037
1038 if (device_add(&device->device)) {
1039 fw_err(card, "failed to add device\n");
1040 goto error_with_cdev;
1041 }
1042
1043 create_units(device);
1044
1045 /*
1046 * Transition the device to running state. If it got pulled
1047 * out from under us while we did the intialization work, we
1048 * have to shut down the device again here. Normally, though,
1049 * fw_node_event will be responsible for shutting it down when
1050 * necessary. We have to use the atomic cmpxchg here to avoid
1051 * racing with the FW_NODE_DESTROYED case in
1052 * fw_node_event().
1053 */
1054 if (atomic_cmpxchg(&device->state,
1055 FW_DEVICE_INITIALIZING,
1056 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1057 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1058 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1059 } else {
1060 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1061 dev_name(&device->device),
1062 device->config_rom[3], device->config_rom[4],
1063 1 << device->max_speed);
1064 device->config_rom_retries = 0;
1065
1066 set_broadcast_channel(device, device->generation);
1067
1068 add_device_randomness(&device->config_rom[3], 8);
1069 }
1070
1071 /*
1072 * Reschedule the IRM work if we just finished reading the
1073 * root node config rom. If this races with a bus reset we
1074 * just end up running the IRM work a couple of extra times -
1075 * pretty harmless.
1076 */
1077 if (device->node == card->root_node)
1078 fw_schedule_bm_work(card, 0);
1079
1080 return;
1081
1082 error_with_cdev:
1083 down_write(&fw_device_rwsem);
1084 idr_remove(&fw_device_idr, minor);
1085 up_write(&fw_device_rwsem);
1086 error:
1087 fw_device_put(device); /* fw_device_idr's reference */
1088
1089 put_device(&device->device); /* our reference */
1090 }
1091
1092 /* Reread and compare bus info block and header of root directory */
1093 static int reread_config_rom(struct fw_device *device, int generation,
1094 bool *changed)
1095 {
1096 u32 q;
1097 int i, rcode;
1098
1099 for (i = 0; i < 6; i++) {
1100 rcode = read_rom(device, generation, i, &q);
1101 if (rcode != RCODE_COMPLETE)
1102 return rcode;
1103
1104 if (i == 0 && q == 0)
1105 /* inaccessible (see read_config_rom); retry later */
1106 return RCODE_BUSY;
1107
1108 if (q != device->config_rom[i]) {
1109 *changed = true;
1110 return RCODE_COMPLETE;
1111 }
1112 }
1113
1114 *changed = false;
1115 return RCODE_COMPLETE;
1116 }
1117
1118 static void fw_device_refresh(struct work_struct *work)
1119 {
1120 struct fw_device *device =
1121 container_of(work, struct fw_device, work.work);
1122 struct fw_card *card = device->card;
1123 int ret, node_id = device->node_id;
1124 bool changed;
1125
1126 ret = reread_config_rom(device, device->generation, &changed);
1127 if (ret != RCODE_COMPLETE)
1128 goto failed_config_rom;
1129
1130 if (!changed) {
1131 if (atomic_cmpxchg(&device->state,
1132 FW_DEVICE_INITIALIZING,
1133 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1134 goto gone;
1135
1136 fw_device_update(work);
1137 device->config_rom_retries = 0;
1138 goto out;
1139 }
1140
1141 /*
1142 * Something changed. We keep things simple and don't investigate
1143 * further. We just destroy all previous units and create new ones.
1144 */
1145 device_for_each_child(&device->device, NULL, shutdown_unit);
1146
1147 ret = read_config_rom(device, device->generation);
1148 if (ret != RCODE_COMPLETE)
1149 goto failed_config_rom;
1150
1151 fw_device_cdev_update(device);
1152 create_units(device);
1153
1154 /* Userspace may want to re-read attributes. */
1155 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1156
1157 if (atomic_cmpxchg(&device->state,
1158 FW_DEVICE_INITIALIZING,
1159 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1160 goto gone;
1161
1162 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1163 device->config_rom_retries = 0;
1164 goto out;
1165
1166 failed_config_rom:
1167 if (device->config_rom_retries < MAX_RETRIES &&
1168 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1169 device->config_rom_retries++;
1170 fw_schedule_device_work(device, RETRY_DELAY);
1171 return;
1172 }
1173
1174 fw_notice(card, "giving up on refresh of device %s: %s\n",
1175 dev_name(&device->device), fw_rcode_string(ret));
1176 gone:
1177 atomic_set(&device->state, FW_DEVICE_GONE);
1178 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1179 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1180 out:
1181 if (node_id == card->root_node->node_id)
1182 fw_schedule_bm_work(card, 0);
1183 }
1184
1185 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1186 {
1187 struct fw_device *device;
1188
1189 switch (event) {
1190 case FW_NODE_CREATED:
1191 /*
1192 * Attempt to scan the node, regardless whether its self ID has
1193 * the L (link active) flag set or not. Some broken devices
1194 * send L=0 but have an up-and-running link; others send L=1
1195 * without actually having a link.
1196 */
1197 create:
1198 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1199 if (device == NULL)
1200 break;
1201
1202 /*
1203 * Do minimal intialization of the device here, the
1204 * rest will happen in fw_device_init().
1205 *
1206 * Attention: A lot of things, even fw_device_get(),
1207 * cannot be done before fw_device_init() finished!
1208 * You can basically just check device->state and
1209 * schedule work until then, but only while holding
1210 * card->lock.
1211 */
1212 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1213 device->card = fw_card_get(card);
1214 device->node = fw_node_get(node);
1215 device->node_id = node->node_id;
1216 device->generation = card->generation;
1217 device->is_local = node == card->local_node;
1218 mutex_init(&device->client_list_mutex);
1219 INIT_LIST_HEAD(&device->client_list);
1220
1221 /*
1222 * Set the node data to point back to this device so
1223 * FW_NODE_UPDATED callbacks can update the node_id
1224 * and generation for the device.
1225 */
1226 node->data = device;
1227
1228 /*
1229 * Many devices are slow to respond after bus resets,
1230 * especially if they are bus powered and go through
1231 * power-up after getting plugged in. We schedule the
1232 * first config rom scan half a second after bus reset.
1233 */
1234 INIT_DELAYED_WORK(&device->work, fw_device_init);
1235 fw_schedule_device_work(device, INITIAL_DELAY);
1236 break;
1237
1238 case FW_NODE_INITIATED_RESET:
1239 case FW_NODE_LINK_ON:
1240 device = node->data;
1241 if (device == NULL)
1242 goto create;
1243
1244 device->node_id = node->node_id;
1245 smp_wmb(); /* update node_id before generation */
1246 device->generation = card->generation;
1247 if (atomic_cmpxchg(&device->state,
1248 FW_DEVICE_RUNNING,
1249 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1250 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1251 fw_schedule_device_work(device,
1252 device->is_local ? 0 : INITIAL_DELAY);
1253 }
1254 break;
1255
1256 case FW_NODE_UPDATED:
1257 device = node->data;
1258 if (device == NULL)
1259 break;
1260
1261 device->node_id = node->node_id;
1262 smp_wmb(); /* update node_id before generation */
1263 device->generation = card->generation;
1264 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1265 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1266 fw_schedule_device_work(device, 0);
1267 }
1268 break;
1269
1270 case FW_NODE_DESTROYED:
1271 case FW_NODE_LINK_OFF:
1272 if (!node->data)
1273 break;
1274
1275 /*
1276 * Destroy the device associated with the node. There
1277 * are two cases here: either the device is fully
1278 * initialized (FW_DEVICE_RUNNING) or we're in the
1279 * process of reading its config rom
1280 * (FW_DEVICE_INITIALIZING). If it is fully
1281 * initialized we can reuse device->work to schedule a
1282 * full fw_device_shutdown(). If not, there's work
1283 * scheduled to read it's config rom, and we just put
1284 * the device in shutdown state to have that code fail
1285 * to create the device.
1286 */
1287 device = node->data;
1288 if (atomic_xchg(&device->state,
1289 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1290 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1291 fw_schedule_device_work(device,
1292 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1293 }
1294 break;
1295 }
1296 }
This page took 0.059885 seconds and 5 git commands to generate.