seccomp: Add SECCOMP_RET_TRAP
[deliverable/linux.git] / drivers / firewire / core-device.c
1 /*
2 * Device probing and sysfs code.
3 *
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/rwsem.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/workqueue.h>
40
41 #include <linux/atomic.h>
42 #include <asm/byteorder.h>
43
44 #include "core.h"
45
46 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
47 {
48 ci->p = p + 1;
49 ci->end = ci->p + (p[0] >> 16);
50 }
51 EXPORT_SYMBOL(fw_csr_iterator_init);
52
53 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
54 {
55 *key = *ci->p >> 24;
56 *value = *ci->p & 0xffffff;
57
58 return ci->p++ < ci->end;
59 }
60 EXPORT_SYMBOL(fw_csr_iterator_next);
61
62 static const u32 *search_leaf(const u32 *directory, int search_key)
63 {
64 struct fw_csr_iterator ci;
65 int last_key = 0, key, value;
66
67 fw_csr_iterator_init(&ci, directory);
68 while (fw_csr_iterator_next(&ci, &key, &value)) {
69 if (last_key == search_key &&
70 key == (CSR_DESCRIPTOR | CSR_LEAF))
71 return ci.p - 1 + value;
72
73 last_key = key;
74 }
75
76 return NULL;
77 }
78
79 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
80 {
81 unsigned int quadlets, i;
82 char c;
83
84 if (!size || !buf)
85 return -EINVAL;
86
87 quadlets = min(block[0] >> 16, 256U);
88 if (quadlets < 2)
89 return -ENODATA;
90
91 if (block[1] != 0 || block[2] != 0)
92 /* unknown language/character set */
93 return -ENODATA;
94
95 block += 3;
96 quadlets -= 2;
97 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
98 c = block[i / 4] >> (24 - 8 * (i % 4));
99 if (c == '\0')
100 break;
101 buf[i] = c;
102 }
103 buf[i] = '\0';
104
105 return i;
106 }
107
108 /**
109 * fw_csr_string() - reads a string from the configuration ROM
110 * @directory: e.g. root directory or unit directory
111 * @key: the key of the preceding directory entry
112 * @buf: where to put the string
113 * @size: size of @buf, in bytes
114 *
115 * The string is taken from a minimal ASCII text descriptor leaf after
116 * the immediate entry with @key. The string is zero-terminated.
117 * Returns strlen(buf) or a negative error code.
118 */
119 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
120 {
121 const u32 *leaf = search_leaf(directory, key);
122 if (!leaf)
123 return -ENOENT;
124
125 return textual_leaf_to_string(leaf, buf, size);
126 }
127 EXPORT_SYMBOL(fw_csr_string);
128
129 static void get_ids(const u32 *directory, int *id)
130 {
131 struct fw_csr_iterator ci;
132 int key, value;
133
134 fw_csr_iterator_init(&ci, directory);
135 while (fw_csr_iterator_next(&ci, &key, &value)) {
136 switch (key) {
137 case CSR_VENDOR: id[0] = value; break;
138 case CSR_MODEL: id[1] = value; break;
139 case CSR_SPECIFIER_ID: id[2] = value; break;
140 case CSR_VERSION: id[3] = value; break;
141 }
142 }
143 }
144
145 static void get_modalias_ids(struct fw_unit *unit, int *id)
146 {
147 get_ids(&fw_parent_device(unit)->config_rom[5], id);
148 get_ids(unit->directory, id);
149 }
150
151 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
152 {
153 int match = 0;
154
155 if (id[0] == id_table->vendor_id)
156 match |= IEEE1394_MATCH_VENDOR_ID;
157 if (id[1] == id_table->model_id)
158 match |= IEEE1394_MATCH_MODEL_ID;
159 if (id[2] == id_table->specifier_id)
160 match |= IEEE1394_MATCH_SPECIFIER_ID;
161 if (id[3] == id_table->version)
162 match |= IEEE1394_MATCH_VERSION;
163
164 return (match & id_table->match_flags) == id_table->match_flags;
165 }
166
167 static bool is_fw_unit(struct device *dev);
168
169 static int fw_unit_match(struct device *dev, struct device_driver *drv)
170 {
171 const struct ieee1394_device_id *id_table =
172 container_of(drv, struct fw_driver, driver)->id_table;
173 int id[] = {0, 0, 0, 0};
174
175 /* We only allow binding to fw_units. */
176 if (!is_fw_unit(dev))
177 return 0;
178
179 get_modalias_ids(fw_unit(dev), id);
180
181 for (; id_table->match_flags != 0; id_table++)
182 if (match_ids(id_table, id))
183 return 1;
184
185 return 0;
186 }
187
188 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
189 {
190 int id[] = {0, 0, 0, 0};
191
192 get_modalias_ids(unit, id);
193
194 return snprintf(buffer, buffer_size,
195 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
196 id[0], id[1], id[2], id[3]);
197 }
198
199 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
200 {
201 struct fw_unit *unit = fw_unit(dev);
202 char modalias[64];
203
204 get_modalias(unit, modalias, sizeof(modalias));
205
206 if (add_uevent_var(env, "MODALIAS=%s", modalias))
207 return -ENOMEM;
208
209 return 0;
210 }
211
212 struct bus_type fw_bus_type = {
213 .name = "firewire",
214 .match = fw_unit_match,
215 };
216 EXPORT_SYMBOL(fw_bus_type);
217
218 int fw_device_enable_phys_dma(struct fw_device *device)
219 {
220 int generation = device->generation;
221
222 /* device->node_id, accessed below, must not be older than generation */
223 smp_rmb();
224
225 return device->card->driver->enable_phys_dma(device->card,
226 device->node_id,
227 generation);
228 }
229 EXPORT_SYMBOL(fw_device_enable_phys_dma);
230
231 struct config_rom_attribute {
232 struct device_attribute attr;
233 u32 key;
234 };
235
236 static ssize_t show_immediate(struct device *dev,
237 struct device_attribute *dattr, char *buf)
238 {
239 struct config_rom_attribute *attr =
240 container_of(dattr, struct config_rom_attribute, attr);
241 struct fw_csr_iterator ci;
242 const u32 *dir;
243 int key, value, ret = -ENOENT;
244
245 down_read(&fw_device_rwsem);
246
247 if (is_fw_unit(dev))
248 dir = fw_unit(dev)->directory;
249 else
250 dir = fw_device(dev)->config_rom + 5;
251
252 fw_csr_iterator_init(&ci, dir);
253 while (fw_csr_iterator_next(&ci, &key, &value))
254 if (attr->key == key) {
255 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
256 "0x%06x\n", value);
257 break;
258 }
259
260 up_read(&fw_device_rwsem);
261
262 return ret;
263 }
264
265 #define IMMEDIATE_ATTR(name, key) \
266 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
267
268 static ssize_t show_text_leaf(struct device *dev,
269 struct device_attribute *dattr, char *buf)
270 {
271 struct config_rom_attribute *attr =
272 container_of(dattr, struct config_rom_attribute, attr);
273 const u32 *dir;
274 size_t bufsize;
275 char dummy_buf[2];
276 int ret;
277
278 down_read(&fw_device_rwsem);
279
280 if (is_fw_unit(dev))
281 dir = fw_unit(dev)->directory;
282 else
283 dir = fw_device(dev)->config_rom + 5;
284
285 if (buf) {
286 bufsize = PAGE_SIZE - 1;
287 } else {
288 buf = dummy_buf;
289 bufsize = 1;
290 }
291
292 ret = fw_csr_string(dir, attr->key, buf, bufsize);
293
294 if (ret >= 0) {
295 /* Strip trailing whitespace and add newline. */
296 while (ret > 0 && isspace(buf[ret - 1]))
297 ret--;
298 strcpy(buf + ret, "\n");
299 ret++;
300 }
301
302 up_read(&fw_device_rwsem);
303
304 return ret;
305 }
306
307 #define TEXT_LEAF_ATTR(name, key) \
308 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
309
310 static struct config_rom_attribute config_rom_attributes[] = {
311 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
312 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
313 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
314 IMMEDIATE_ATTR(version, CSR_VERSION),
315 IMMEDIATE_ATTR(model, CSR_MODEL),
316 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
317 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
318 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
319 };
320
321 static void init_fw_attribute_group(struct device *dev,
322 struct device_attribute *attrs,
323 struct fw_attribute_group *group)
324 {
325 struct device_attribute *attr;
326 int i, j;
327
328 for (j = 0; attrs[j].attr.name != NULL; j++)
329 group->attrs[j] = &attrs[j].attr;
330
331 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
332 attr = &config_rom_attributes[i].attr;
333 if (attr->show(dev, attr, NULL) < 0)
334 continue;
335 group->attrs[j++] = &attr->attr;
336 }
337
338 group->attrs[j] = NULL;
339 group->groups[0] = &group->group;
340 group->groups[1] = NULL;
341 group->group.attrs = group->attrs;
342 dev->groups = (const struct attribute_group **) group->groups;
343 }
344
345 static ssize_t modalias_show(struct device *dev,
346 struct device_attribute *attr, char *buf)
347 {
348 struct fw_unit *unit = fw_unit(dev);
349 int length;
350
351 length = get_modalias(unit, buf, PAGE_SIZE);
352 strcpy(buf + length, "\n");
353
354 return length + 1;
355 }
356
357 static ssize_t rom_index_show(struct device *dev,
358 struct device_attribute *attr, char *buf)
359 {
360 struct fw_device *device = fw_device(dev->parent);
361 struct fw_unit *unit = fw_unit(dev);
362
363 return snprintf(buf, PAGE_SIZE, "%d\n",
364 (int)(unit->directory - device->config_rom));
365 }
366
367 static struct device_attribute fw_unit_attributes[] = {
368 __ATTR_RO(modalias),
369 __ATTR_RO(rom_index),
370 __ATTR_NULL,
371 };
372
373 static ssize_t config_rom_show(struct device *dev,
374 struct device_attribute *attr, char *buf)
375 {
376 struct fw_device *device = fw_device(dev);
377 size_t length;
378
379 down_read(&fw_device_rwsem);
380 length = device->config_rom_length * 4;
381 memcpy(buf, device->config_rom, length);
382 up_read(&fw_device_rwsem);
383
384 return length;
385 }
386
387 static ssize_t guid_show(struct device *dev,
388 struct device_attribute *attr, char *buf)
389 {
390 struct fw_device *device = fw_device(dev);
391 int ret;
392
393 down_read(&fw_device_rwsem);
394 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
395 device->config_rom[3], device->config_rom[4]);
396 up_read(&fw_device_rwsem);
397
398 return ret;
399 }
400
401 static int units_sprintf(char *buf, const u32 *directory)
402 {
403 struct fw_csr_iterator ci;
404 int key, value;
405 int specifier_id = 0;
406 int version = 0;
407
408 fw_csr_iterator_init(&ci, directory);
409 while (fw_csr_iterator_next(&ci, &key, &value)) {
410 switch (key) {
411 case CSR_SPECIFIER_ID:
412 specifier_id = value;
413 break;
414 case CSR_VERSION:
415 version = value;
416 break;
417 }
418 }
419
420 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
421 }
422
423 static ssize_t units_show(struct device *dev,
424 struct device_attribute *attr, char *buf)
425 {
426 struct fw_device *device = fw_device(dev);
427 struct fw_csr_iterator ci;
428 int key, value, i = 0;
429
430 down_read(&fw_device_rwsem);
431 fw_csr_iterator_init(&ci, &device->config_rom[5]);
432 while (fw_csr_iterator_next(&ci, &key, &value)) {
433 if (key != (CSR_UNIT | CSR_DIRECTORY))
434 continue;
435 i += units_sprintf(&buf[i], ci.p + value - 1);
436 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
437 break;
438 }
439 up_read(&fw_device_rwsem);
440
441 if (i)
442 buf[i - 1] = '\n';
443
444 return i;
445 }
446
447 static struct device_attribute fw_device_attributes[] = {
448 __ATTR_RO(config_rom),
449 __ATTR_RO(guid),
450 __ATTR_RO(units),
451 __ATTR_NULL,
452 };
453
454 static int read_rom(struct fw_device *device,
455 int generation, int index, u32 *data)
456 {
457 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
458 int i, rcode;
459
460 /* device->node_id, accessed below, must not be older than generation */
461 smp_rmb();
462
463 for (i = 10; i < 100; i += 10) {
464 rcode = fw_run_transaction(device->card,
465 TCODE_READ_QUADLET_REQUEST, device->node_id,
466 generation, device->max_speed, offset, data, 4);
467 if (rcode != RCODE_BUSY)
468 break;
469 msleep(i);
470 }
471 be32_to_cpus(data);
472
473 return rcode;
474 }
475
476 #define MAX_CONFIG_ROM_SIZE 256
477
478 /*
479 * Read the bus info block, perform a speed probe, and read all of the rest of
480 * the config ROM. We do all this with a cached bus generation. If the bus
481 * generation changes under us, read_config_rom will fail and get retried.
482 * It's better to start all over in this case because the node from which we
483 * are reading the ROM may have changed the ROM during the reset.
484 */
485 static int read_config_rom(struct fw_device *device, int generation)
486 {
487 struct fw_card *card = device->card;
488 const u32 *old_rom, *new_rom;
489 u32 *rom, *stack;
490 u32 sp, key;
491 int i, end, length, ret = -1;
492
493 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
494 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
495 if (rom == NULL)
496 return -ENOMEM;
497
498 stack = &rom[MAX_CONFIG_ROM_SIZE];
499 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
500
501 device->max_speed = SCODE_100;
502
503 /* First read the bus info block. */
504 for (i = 0; i < 5; i++) {
505 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
506 goto out;
507 /*
508 * As per IEEE1212 7.2, during power-up, devices can
509 * reply with a 0 for the first quadlet of the config
510 * rom to indicate that they are booting (for example,
511 * if the firmware is on the disk of a external
512 * harddisk). In that case we just fail, and the
513 * retry mechanism will try again later.
514 */
515 if (i == 0 && rom[i] == 0)
516 goto out;
517 }
518
519 device->max_speed = device->node->max_speed;
520
521 /*
522 * Determine the speed of
523 * - devices with link speed less than PHY speed,
524 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
525 * - all devices if there are 1394b repeaters.
526 * Note, we cannot use the bus info block's link_spd as starting point
527 * because some buggy firmwares set it lower than necessary and because
528 * 1394-1995 nodes do not have the field.
529 */
530 if ((rom[2] & 0x7) < device->max_speed ||
531 device->max_speed == SCODE_BETA ||
532 card->beta_repeaters_present) {
533 u32 dummy;
534
535 /* for S1600 and S3200 */
536 if (device->max_speed == SCODE_BETA)
537 device->max_speed = card->link_speed;
538
539 while (device->max_speed > SCODE_100) {
540 if (read_rom(device, generation, 0, &dummy) ==
541 RCODE_COMPLETE)
542 break;
543 device->max_speed--;
544 }
545 }
546
547 /*
548 * Now parse the config rom. The config rom is a recursive
549 * directory structure so we parse it using a stack of
550 * references to the blocks that make up the structure. We
551 * push a reference to the root directory on the stack to
552 * start things off.
553 */
554 length = i;
555 sp = 0;
556 stack[sp++] = 0xc0000005;
557 while (sp > 0) {
558 /*
559 * Pop the next block reference of the stack. The
560 * lower 24 bits is the offset into the config rom,
561 * the upper 8 bits are the type of the reference the
562 * block.
563 */
564 key = stack[--sp];
565 i = key & 0xffffff;
566 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
567 goto out;
568
569 /* Read header quadlet for the block to get the length. */
570 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
571 goto out;
572 end = i + (rom[i] >> 16) + 1;
573 if (end > MAX_CONFIG_ROM_SIZE) {
574 /*
575 * This block extends outside the config ROM which is
576 * a firmware bug. Ignore this whole block, i.e.
577 * simply set a fake block length of 0.
578 */
579 fw_err(card, "skipped invalid ROM block %x at %llx\n",
580 rom[i],
581 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
582 rom[i] = 0;
583 end = i;
584 }
585 i++;
586
587 /*
588 * Now read in the block. If this is a directory
589 * block, check the entries as we read them to see if
590 * it references another block, and push it in that case.
591 */
592 for (; i < end; i++) {
593 if (read_rom(device, generation, i, &rom[i]) !=
594 RCODE_COMPLETE)
595 goto out;
596
597 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
598 continue;
599 /*
600 * Offset points outside the ROM. May be a firmware
601 * bug or an Extended ROM entry (IEEE 1212-2001 clause
602 * 7.7.18). Simply overwrite this pointer here by a
603 * fake immediate entry so that later iterators over
604 * the ROM don't have to check offsets all the time.
605 */
606 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
607 fw_err(card,
608 "skipped unsupported ROM entry %x at %llx\n",
609 rom[i],
610 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
611 rom[i] = 0;
612 continue;
613 }
614 stack[sp++] = i + rom[i];
615 }
616 if (length < i)
617 length = i;
618 }
619
620 old_rom = device->config_rom;
621 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
622 if (new_rom == NULL)
623 goto out;
624
625 down_write(&fw_device_rwsem);
626 device->config_rom = new_rom;
627 device->config_rom_length = length;
628 up_write(&fw_device_rwsem);
629
630 kfree(old_rom);
631 ret = 0;
632 device->max_rec = rom[2] >> 12 & 0xf;
633 device->cmc = rom[2] >> 30 & 1;
634 device->irmc = rom[2] >> 31 & 1;
635 out:
636 kfree(rom);
637
638 return ret;
639 }
640
641 static void fw_unit_release(struct device *dev)
642 {
643 struct fw_unit *unit = fw_unit(dev);
644
645 fw_device_put(fw_parent_device(unit));
646 kfree(unit);
647 }
648
649 static struct device_type fw_unit_type = {
650 .uevent = fw_unit_uevent,
651 .release = fw_unit_release,
652 };
653
654 static bool is_fw_unit(struct device *dev)
655 {
656 return dev->type == &fw_unit_type;
657 }
658
659 static void create_units(struct fw_device *device)
660 {
661 struct fw_csr_iterator ci;
662 struct fw_unit *unit;
663 int key, value, i;
664
665 i = 0;
666 fw_csr_iterator_init(&ci, &device->config_rom[5]);
667 while (fw_csr_iterator_next(&ci, &key, &value)) {
668 if (key != (CSR_UNIT | CSR_DIRECTORY))
669 continue;
670
671 /*
672 * Get the address of the unit directory and try to
673 * match the drivers id_tables against it.
674 */
675 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
676 if (unit == NULL) {
677 fw_err(device->card, "out of memory for unit\n");
678 continue;
679 }
680
681 unit->directory = ci.p + value - 1;
682 unit->device.bus = &fw_bus_type;
683 unit->device.type = &fw_unit_type;
684 unit->device.parent = &device->device;
685 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
686
687 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
688 ARRAY_SIZE(fw_unit_attributes) +
689 ARRAY_SIZE(config_rom_attributes));
690 init_fw_attribute_group(&unit->device,
691 fw_unit_attributes,
692 &unit->attribute_group);
693
694 if (device_register(&unit->device) < 0)
695 goto skip_unit;
696
697 fw_device_get(device);
698 continue;
699
700 skip_unit:
701 kfree(unit);
702 }
703 }
704
705 static int shutdown_unit(struct device *device, void *data)
706 {
707 device_unregister(device);
708
709 return 0;
710 }
711
712 /*
713 * fw_device_rwsem acts as dual purpose mutex:
714 * - serializes accesses to fw_device_idr,
715 * - serializes accesses to fw_device.config_rom/.config_rom_length and
716 * fw_unit.directory, unless those accesses happen at safe occasions
717 */
718 DECLARE_RWSEM(fw_device_rwsem);
719
720 DEFINE_IDR(fw_device_idr);
721 int fw_cdev_major;
722
723 struct fw_device *fw_device_get_by_devt(dev_t devt)
724 {
725 struct fw_device *device;
726
727 down_read(&fw_device_rwsem);
728 device = idr_find(&fw_device_idr, MINOR(devt));
729 if (device)
730 fw_device_get(device);
731 up_read(&fw_device_rwsem);
732
733 return device;
734 }
735
736 struct workqueue_struct *fw_workqueue;
737 EXPORT_SYMBOL(fw_workqueue);
738
739 static void fw_schedule_device_work(struct fw_device *device,
740 unsigned long delay)
741 {
742 queue_delayed_work(fw_workqueue, &device->work, delay);
743 }
744
745 /*
746 * These defines control the retry behavior for reading the config
747 * rom. It shouldn't be necessary to tweak these; if the device
748 * doesn't respond to a config rom read within 10 seconds, it's not
749 * going to respond at all. As for the initial delay, a lot of
750 * devices will be able to respond within half a second after bus
751 * reset. On the other hand, it's not really worth being more
752 * aggressive than that, since it scales pretty well; if 10 devices
753 * are plugged in, they're all getting read within one second.
754 */
755
756 #define MAX_RETRIES 10
757 #define RETRY_DELAY (3 * HZ)
758 #define INITIAL_DELAY (HZ / 2)
759 #define SHUTDOWN_DELAY (2 * HZ)
760
761 static void fw_device_shutdown(struct work_struct *work)
762 {
763 struct fw_device *device =
764 container_of(work, struct fw_device, work.work);
765 int minor = MINOR(device->device.devt);
766
767 if (time_before64(get_jiffies_64(),
768 device->card->reset_jiffies + SHUTDOWN_DELAY)
769 && !list_empty(&device->card->link)) {
770 fw_schedule_device_work(device, SHUTDOWN_DELAY);
771 return;
772 }
773
774 if (atomic_cmpxchg(&device->state,
775 FW_DEVICE_GONE,
776 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
777 return;
778
779 fw_device_cdev_remove(device);
780 device_for_each_child(&device->device, NULL, shutdown_unit);
781 device_unregister(&device->device);
782
783 down_write(&fw_device_rwsem);
784 idr_remove(&fw_device_idr, minor);
785 up_write(&fw_device_rwsem);
786
787 fw_device_put(device);
788 }
789
790 static void fw_device_release(struct device *dev)
791 {
792 struct fw_device *device = fw_device(dev);
793 struct fw_card *card = device->card;
794 unsigned long flags;
795
796 /*
797 * Take the card lock so we don't set this to NULL while a
798 * FW_NODE_UPDATED callback is being handled or while the
799 * bus manager work looks at this node.
800 */
801 spin_lock_irqsave(&card->lock, flags);
802 device->node->data = NULL;
803 spin_unlock_irqrestore(&card->lock, flags);
804
805 fw_node_put(device->node);
806 kfree(device->config_rom);
807 kfree(device);
808 fw_card_put(card);
809 }
810
811 static struct device_type fw_device_type = {
812 .release = fw_device_release,
813 };
814
815 static bool is_fw_device(struct device *dev)
816 {
817 return dev->type == &fw_device_type;
818 }
819
820 static int update_unit(struct device *dev, void *data)
821 {
822 struct fw_unit *unit = fw_unit(dev);
823 struct fw_driver *driver = (struct fw_driver *)dev->driver;
824
825 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
826 device_lock(dev);
827 driver->update(unit);
828 device_unlock(dev);
829 }
830
831 return 0;
832 }
833
834 static void fw_device_update(struct work_struct *work)
835 {
836 struct fw_device *device =
837 container_of(work, struct fw_device, work.work);
838
839 fw_device_cdev_update(device);
840 device_for_each_child(&device->device, NULL, update_unit);
841 }
842
843 /*
844 * If a device was pending for deletion because its node went away but its
845 * bus info block and root directory header matches that of a newly discovered
846 * device, revive the existing fw_device.
847 * The newly allocated fw_device becomes obsolete instead.
848 */
849 static int lookup_existing_device(struct device *dev, void *data)
850 {
851 struct fw_device *old = fw_device(dev);
852 struct fw_device *new = data;
853 struct fw_card *card = new->card;
854 int match = 0;
855
856 if (!is_fw_device(dev))
857 return 0;
858
859 down_read(&fw_device_rwsem); /* serialize config_rom access */
860 spin_lock_irq(&card->lock); /* serialize node access */
861
862 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
863 atomic_cmpxchg(&old->state,
864 FW_DEVICE_GONE,
865 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
866 struct fw_node *current_node = new->node;
867 struct fw_node *obsolete_node = old->node;
868
869 new->node = obsolete_node;
870 new->node->data = new;
871 old->node = current_node;
872 old->node->data = old;
873
874 old->max_speed = new->max_speed;
875 old->node_id = current_node->node_id;
876 smp_wmb(); /* update node_id before generation */
877 old->generation = card->generation;
878 old->config_rom_retries = 0;
879 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
880
881 PREPARE_DELAYED_WORK(&old->work, fw_device_update);
882 fw_schedule_device_work(old, 0);
883
884 if (current_node == card->root_node)
885 fw_schedule_bm_work(card, 0);
886
887 match = 1;
888 }
889
890 spin_unlock_irq(&card->lock);
891 up_read(&fw_device_rwsem);
892
893 return match;
894 }
895
896 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
897
898 static void set_broadcast_channel(struct fw_device *device, int generation)
899 {
900 struct fw_card *card = device->card;
901 __be32 data;
902 int rcode;
903
904 if (!card->broadcast_channel_allocated)
905 return;
906
907 /*
908 * The Broadcast_Channel Valid bit is required by nodes which want to
909 * transmit on this channel. Such transmissions are practically
910 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
911 * to be IRM capable and have a max_rec of 8 or more. We use this fact
912 * to narrow down to which nodes we send Broadcast_Channel updates.
913 */
914 if (!device->irmc || device->max_rec < 8)
915 return;
916
917 /*
918 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
919 * Perform a read test first.
920 */
921 if (device->bc_implemented == BC_UNKNOWN) {
922 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
923 device->node_id, generation, device->max_speed,
924 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
925 &data, 4);
926 switch (rcode) {
927 case RCODE_COMPLETE:
928 if (data & cpu_to_be32(1 << 31)) {
929 device->bc_implemented = BC_IMPLEMENTED;
930 break;
931 }
932 /* else fall through to case address error */
933 case RCODE_ADDRESS_ERROR:
934 device->bc_implemented = BC_UNIMPLEMENTED;
935 }
936 }
937
938 if (device->bc_implemented == BC_IMPLEMENTED) {
939 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
940 BROADCAST_CHANNEL_VALID);
941 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
942 device->node_id, generation, device->max_speed,
943 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
944 &data, 4);
945 }
946 }
947
948 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
949 {
950 if (is_fw_device(dev))
951 set_broadcast_channel(fw_device(dev), (long)gen);
952
953 return 0;
954 }
955
956 static void fw_device_init(struct work_struct *work)
957 {
958 struct fw_device *device =
959 container_of(work, struct fw_device, work.work);
960 struct fw_card *card = device->card;
961 struct device *revived_dev;
962 int minor, ret;
963
964 /*
965 * All failure paths here set node->data to NULL, so that we
966 * don't try to do device_for_each_child() on a kfree()'d
967 * device.
968 */
969
970 if (read_config_rom(device, device->generation) < 0) {
971 if (device->config_rom_retries < MAX_RETRIES &&
972 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
973 device->config_rom_retries++;
974 fw_schedule_device_work(device, RETRY_DELAY);
975 } else {
976 if (device->node->link_on)
977 fw_notice(card, "giving up on Config ROM for node id %x\n",
978 device->node_id);
979 if (device->node == card->root_node)
980 fw_schedule_bm_work(card, 0);
981 fw_device_release(&device->device);
982 }
983 return;
984 }
985
986 revived_dev = device_find_child(card->device,
987 device, lookup_existing_device);
988 if (revived_dev) {
989 put_device(revived_dev);
990 fw_device_release(&device->device);
991
992 return;
993 }
994
995 device_initialize(&device->device);
996
997 fw_device_get(device);
998 down_write(&fw_device_rwsem);
999 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1000 idr_get_new(&fw_device_idr, device, &minor) :
1001 -ENOMEM;
1002 up_write(&fw_device_rwsem);
1003
1004 if (ret < 0)
1005 goto error;
1006
1007 device->device.bus = &fw_bus_type;
1008 device->device.type = &fw_device_type;
1009 device->device.parent = card->device;
1010 device->device.devt = MKDEV(fw_cdev_major, minor);
1011 dev_set_name(&device->device, "fw%d", minor);
1012
1013 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1014 ARRAY_SIZE(fw_device_attributes) +
1015 ARRAY_SIZE(config_rom_attributes));
1016 init_fw_attribute_group(&device->device,
1017 fw_device_attributes,
1018 &device->attribute_group);
1019
1020 if (device_add(&device->device)) {
1021 fw_err(card, "failed to add device\n");
1022 goto error_with_cdev;
1023 }
1024
1025 create_units(device);
1026
1027 /*
1028 * Transition the device to running state. If it got pulled
1029 * out from under us while we did the intialization work, we
1030 * have to shut down the device again here. Normally, though,
1031 * fw_node_event will be responsible for shutting it down when
1032 * necessary. We have to use the atomic cmpxchg here to avoid
1033 * racing with the FW_NODE_DESTROYED case in
1034 * fw_node_event().
1035 */
1036 if (atomic_cmpxchg(&device->state,
1037 FW_DEVICE_INITIALIZING,
1038 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1039 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1040 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1041 } else {
1042 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1043 dev_name(&device->device),
1044 device->config_rom[3], device->config_rom[4],
1045 1 << device->max_speed);
1046 device->config_rom_retries = 0;
1047
1048 set_broadcast_channel(device, device->generation);
1049 }
1050
1051 /*
1052 * Reschedule the IRM work if we just finished reading the
1053 * root node config rom. If this races with a bus reset we
1054 * just end up running the IRM work a couple of extra times -
1055 * pretty harmless.
1056 */
1057 if (device->node == card->root_node)
1058 fw_schedule_bm_work(card, 0);
1059
1060 return;
1061
1062 error_with_cdev:
1063 down_write(&fw_device_rwsem);
1064 idr_remove(&fw_device_idr, minor);
1065 up_write(&fw_device_rwsem);
1066 error:
1067 fw_device_put(device); /* fw_device_idr's reference */
1068
1069 put_device(&device->device); /* our reference */
1070 }
1071
1072 enum {
1073 REREAD_BIB_ERROR,
1074 REREAD_BIB_GONE,
1075 REREAD_BIB_UNCHANGED,
1076 REREAD_BIB_CHANGED,
1077 };
1078
1079 /* Reread and compare bus info block and header of root directory */
1080 static int reread_config_rom(struct fw_device *device, int generation)
1081 {
1082 u32 q;
1083 int i;
1084
1085 for (i = 0; i < 6; i++) {
1086 if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
1087 return REREAD_BIB_ERROR;
1088
1089 if (i == 0 && q == 0)
1090 return REREAD_BIB_GONE;
1091
1092 if (q != device->config_rom[i])
1093 return REREAD_BIB_CHANGED;
1094 }
1095
1096 return REREAD_BIB_UNCHANGED;
1097 }
1098
1099 static void fw_device_refresh(struct work_struct *work)
1100 {
1101 struct fw_device *device =
1102 container_of(work, struct fw_device, work.work);
1103 struct fw_card *card = device->card;
1104 int node_id = device->node_id;
1105
1106 switch (reread_config_rom(device, device->generation)) {
1107 case REREAD_BIB_ERROR:
1108 if (device->config_rom_retries < MAX_RETRIES / 2 &&
1109 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1110 device->config_rom_retries++;
1111 fw_schedule_device_work(device, RETRY_DELAY / 2);
1112
1113 return;
1114 }
1115 goto give_up;
1116
1117 case REREAD_BIB_GONE:
1118 goto gone;
1119
1120 case REREAD_BIB_UNCHANGED:
1121 if (atomic_cmpxchg(&device->state,
1122 FW_DEVICE_INITIALIZING,
1123 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1124 goto gone;
1125
1126 fw_device_update(work);
1127 device->config_rom_retries = 0;
1128 goto out;
1129
1130 case REREAD_BIB_CHANGED:
1131 break;
1132 }
1133
1134 /*
1135 * Something changed. We keep things simple and don't investigate
1136 * further. We just destroy all previous units and create new ones.
1137 */
1138 device_for_each_child(&device->device, NULL, shutdown_unit);
1139
1140 if (read_config_rom(device, device->generation) < 0) {
1141 if (device->config_rom_retries < MAX_RETRIES &&
1142 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1143 device->config_rom_retries++;
1144 fw_schedule_device_work(device, RETRY_DELAY);
1145
1146 return;
1147 }
1148 goto give_up;
1149 }
1150
1151 fw_device_cdev_update(device);
1152 create_units(device);
1153
1154 /* Userspace may want to re-read attributes. */
1155 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1156
1157 if (atomic_cmpxchg(&device->state,
1158 FW_DEVICE_INITIALIZING,
1159 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1160 goto gone;
1161
1162 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1163 device->config_rom_retries = 0;
1164 goto out;
1165
1166 give_up:
1167 fw_notice(card, "giving up on refresh of device %s\n",
1168 dev_name(&device->device));
1169 gone:
1170 atomic_set(&device->state, FW_DEVICE_GONE);
1171 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1172 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1173 out:
1174 if (node_id == card->root_node->node_id)
1175 fw_schedule_bm_work(card, 0);
1176 }
1177
1178 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1179 {
1180 struct fw_device *device;
1181
1182 switch (event) {
1183 case FW_NODE_CREATED:
1184 /*
1185 * Attempt to scan the node, regardless whether its self ID has
1186 * the L (link active) flag set or not. Some broken devices
1187 * send L=0 but have an up-and-running link; others send L=1
1188 * without actually having a link.
1189 */
1190 create:
1191 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1192 if (device == NULL)
1193 break;
1194
1195 /*
1196 * Do minimal intialization of the device here, the
1197 * rest will happen in fw_device_init().
1198 *
1199 * Attention: A lot of things, even fw_device_get(),
1200 * cannot be done before fw_device_init() finished!
1201 * You can basically just check device->state and
1202 * schedule work until then, but only while holding
1203 * card->lock.
1204 */
1205 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1206 device->card = fw_card_get(card);
1207 device->node = fw_node_get(node);
1208 device->node_id = node->node_id;
1209 device->generation = card->generation;
1210 device->is_local = node == card->local_node;
1211 mutex_init(&device->client_list_mutex);
1212 INIT_LIST_HEAD(&device->client_list);
1213
1214 /*
1215 * Set the node data to point back to this device so
1216 * FW_NODE_UPDATED callbacks can update the node_id
1217 * and generation for the device.
1218 */
1219 node->data = device;
1220
1221 /*
1222 * Many devices are slow to respond after bus resets,
1223 * especially if they are bus powered and go through
1224 * power-up after getting plugged in. We schedule the
1225 * first config rom scan half a second after bus reset.
1226 */
1227 INIT_DELAYED_WORK(&device->work, fw_device_init);
1228 fw_schedule_device_work(device, INITIAL_DELAY);
1229 break;
1230
1231 case FW_NODE_INITIATED_RESET:
1232 case FW_NODE_LINK_ON:
1233 device = node->data;
1234 if (device == NULL)
1235 goto create;
1236
1237 device->node_id = node->node_id;
1238 smp_wmb(); /* update node_id before generation */
1239 device->generation = card->generation;
1240 if (atomic_cmpxchg(&device->state,
1241 FW_DEVICE_RUNNING,
1242 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1243 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1244 fw_schedule_device_work(device,
1245 device->is_local ? 0 : INITIAL_DELAY);
1246 }
1247 break;
1248
1249 case FW_NODE_UPDATED:
1250 device = node->data;
1251 if (device == NULL)
1252 break;
1253
1254 device->node_id = node->node_id;
1255 smp_wmb(); /* update node_id before generation */
1256 device->generation = card->generation;
1257 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1258 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1259 fw_schedule_device_work(device, 0);
1260 }
1261 break;
1262
1263 case FW_NODE_DESTROYED:
1264 case FW_NODE_LINK_OFF:
1265 if (!node->data)
1266 break;
1267
1268 /*
1269 * Destroy the device associated with the node. There
1270 * are two cases here: either the device is fully
1271 * initialized (FW_DEVICE_RUNNING) or we're in the
1272 * process of reading its config rom
1273 * (FW_DEVICE_INITIALIZING). If it is fully
1274 * initialized we can reuse device->work to schedule a
1275 * full fw_device_shutdown(). If not, there's work
1276 * scheduled to read it's config rom, and we just put
1277 * the device in shutdown state to have that code fail
1278 * to create the device.
1279 */
1280 device = node->data;
1281 if (atomic_xchg(&device->state,
1282 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1283 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1284 fw_schedule_device_work(device,
1285 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1286 }
1287 break;
1288 }
1289 }
This page took 0.071164 seconds and 5 git commands to generate.