firewire: core: allocate the low memory region
[deliverable/linux.git] / drivers / firewire / core-transaction.c
1 /*
2 * Core IEEE1394 transaction logic
3 *
4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bug.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/idr.h>
30 #include <linux/jiffies.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/timer.h>
38 #include <linux/types.h>
39 #include <linux/workqueue.h>
40
41 #include <asm/byteorder.h>
42
43 #include "core.h"
44
45 #define HEADER_PRI(pri) ((pri) << 0)
46 #define HEADER_TCODE(tcode) ((tcode) << 4)
47 #define HEADER_RETRY(retry) ((retry) << 8)
48 #define HEADER_TLABEL(tlabel) ((tlabel) << 10)
49 #define HEADER_DESTINATION(destination) ((destination) << 16)
50 #define HEADER_SOURCE(source) ((source) << 16)
51 #define HEADER_RCODE(rcode) ((rcode) << 12)
52 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
53 #define HEADER_DATA_LENGTH(length) ((length) << 16)
54 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
55
56 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
57 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
58 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
59 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
60 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
61 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
62 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
63 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
64
65 #define HEADER_DESTINATION_IS_BROADCAST(q) \
66 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
67
68 #define PHY_PACKET_CONFIG 0x0
69 #define PHY_PACKET_LINK_ON 0x1
70 #define PHY_PACKET_SELF_ID 0x2
71
72 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
73 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
74 #define PHY_IDENTIFIER(id) ((id) << 30)
75
76 /* returns 0 if the split timeout handler is already running */
77 static int try_cancel_split_timeout(struct fw_transaction *t)
78 {
79 if (t->is_split_transaction)
80 return del_timer(&t->split_timeout_timer);
81 else
82 return 1;
83 }
84
85 static int close_transaction(struct fw_transaction *transaction,
86 struct fw_card *card, int rcode)
87 {
88 struct fw_transaction *t;
89 unsigned long flags;
90
91 spin_lock_irqsave(&card->lock, flags);
92 list_for_each_entry(t, &card->transaction_list, link) {
93 if (t == transaction) {
94 if (!try_cancel_split_timeout(t)) {
95 spin_unlock_irqrestore(&card->lock, flags);
96 goto timed_out;
97 }
98 list_del_init(&t->link);
99 card->tlabel_mask &= ~(1ULL << t->tlabel);
100 break;
101 }
102 }
103 spin_unlock_irqrestore(&card->lock, flags);
104
105 if (&t->link != &card->transaction_list) {
106 t->callback(card, rcode, NULL, 0, t->callback_data);
107 return 0;
108 }
109
110 timed_out:
111 return -ENOENT;
112 }
113
114 /*
115 * Only valid for transactions that are potentially pending (ie have
116 * been sent).
117 */
118 int fw_cancel_transaction(struct fw_card *card,
119 struct fw_transaction *transaction)
120 {
121 /*
122 * Cancel the packet transmission if it's still queued. That
123 * will call the packet transmission callback which cancels
124 * the transaction.
125 */
126
127 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
128 return 0;
129
130 /*
131 * If the request packet has already been sent, we need to see
132 * if the transaction is still pending and remove it in that case.
133 */
134
135 return close_transaction(transaction, card, RCODE_CANCELLED);
136 }
137 EXPORT_SYMBOL(fw_cancel_transaction);
138
139 static void split_transaction_timeout_callback(unsigned long data)
140 {
141 struct fw_transaction *t = (struct fw_transaction *)data;
142 struct fw_card *card = t->card;
143 unsigned long flags;
144
145 spin_lock_irqsave(&card->lock, flags);
146 if (list_empty(&t->link)) {
147 spin_unlock_irqrestore(&card->lock, flags);
148 return;
149 }
150 list_del(&t->link);
151 card->tlabel_mask &= ~(1ULL << t->tlabel);
152 spin_unlock_irqrestore(&card->lock, flags);
153
154 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
155 }
156
157 static void start_split_transaction_timeout(struct fw_transaction *t,
158 struct fw_card *card)
159 {
160 unsigned long flags;
161
162 spin_lock_irqsave(&card->lock, flags);
163
164 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
165 spin_unlock_irqrestore(&card->lock, flags);
166 return;
167 }
168
169 t->is_split_transaction = true;
170 mod_timer(&t->split_timeout_timer,
171 jiffies + card->split_timeout_jiffies);
172
173 spin_unlock_irqrestore(&card->lock, flags);
174 }
175
176 static void transmit_complete_callback(struct fw_packet *packet,
177 struct fw_card *card, int status)
178 {
179 struct fw_transaction *t =
180 container_of(packet, struct fw_transaction, packet);
181
182 switch (status) {
183 case ACK_COMPLETE:
184 close_transaction(t, card, RCODE_COMPLETE);
185 break;
186 case ACK_PENDING:
187 start_split_transaction_timeout(t, card);
188 break;
189 case ACK_BUSY_X:
190 case ACK_BUSY_A:
191 case ACK_BUSY_B:
192 close_transaction(t, card, RCODE_BUSY);
193 break;
194 case ACK_DATA_ERROR:
195 close_transaction(t, card, RCODE_DATA_ERROR);
196 break;
197 case ACK_TYPE_ERROR:
198 close_transaction(t, card, RCODE_TYPE_ERROR);
199 break;
200 default:
201 /*
202 * In this case the ack is really a juju specific
203 * rcode, so just forward that to the callback.
204 */
205 close_transaction(t, card, status);
206 break;
207 }
208 }
209
210 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
211 int destination_id, int source_id, int generation, int speed,
212 unsigned long long offset, void *payload, size_t length)
213 {
214 int ext_tcode;
215
216 if (tcode == TCODE_STREAM_DATA) {
217 packet->header[0] =
218 HEADER_DATA_LENGTH(length) |
219 destination_id |
220 HEADER_TCODE(TCODE_STREAM_DATA);
221 packet->header_length = 4;
222 packet->payload = payload;
223 packet->payload_length = length;
224
225 goto common;
226 }
227
228 if (tcode > 0x10) {
229 ext_tcode = tcode & ~0x10;
230 tcode = TCODE_LOCK_REQUEST;
231 } else
232 ext_tcode = 0;
233
234 packet->header[0] =
235 HEADER_RETRY(RETRY_X) |
236 HEADER_TLABEL(tlabel) |
237 HEADER_TCODE(tcode) |
238 HEADER_DESTINATION(destination_id);
239 packet->header[1] =
240 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
241 packet->header[2] =
242 offset;
243
244 switch (tcode) {
245 case TCODE_WRITE_QUADLET_REQUEST:
246 packet->header[3] = *(u32 *)payload;
247 packet->header_length = 16;
248 packet->payload_length = 0;
249 break;
250
251 case TCODE_LOCK_REQUEST:
252 case TCODE_WRITE_BLOCK_REQUEST:
253 packet->header[3] =
254 HEADER_DATA_LENGTH(length) |
255 HEADER_EXTENDED_TCODE(ext_tcode);
256 packet->header_length = 16;
257 packet->payload = payload;
258 packet->payload_length = length;
259 break;
260
261 case TCODE_READ_QUADLET_REQUEST:
262 packet->header_length = 12;
263 packet->payload_length = 0;
264 break;
265
266 case TCODE_READ_BLOCK_REQUEST:
267 packet->header[3] =
268 HEADER_DATA_LENGTH(length) |
269 HEADER_EXTENDED_TCODE(ext_tcode);
270 packet->header_length = 16;
271 packet->payload_length = 0;
272 break;
273
274 default:
275 WARN(1, "wrong tcode %d\n", tcode);
276 }
277 common:
278 packet->speed = speed;
279 packet->generation = generation;
280 packet->ack = 0;
281 packet->payload_mapped = false;
282 }
283
284 static int allocate_tlabel(struct fw_card *card)
285 {
286 int tlabel;
287
288 tlabel = card->current_tlabel;
289 while (card->tlabel_mask & (1ULL << tlabel)) {
290 tlabel = (tlabel + 1) & 0x3f;
291 if (tlabel == card->current_tlabel)
292 return -EBUSY;
293 }
294
295 card->current_tlabel = (tlabel + 1) & 0x3f;
296 card->tlabel_mask |= 1ULL << tlabel;
297
298 return tlabel;
299 }
300
301 /**
302 * fw_send_request() - submit a request packet for transmission
303 * @card: interface to send the request at
304 * @t: transaction instance to which the request belongs
305 * @tcode: transaction code
306 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
307 * @generation: bus generation in which request and response are valid
308 * @speed: transmission speed
309 * @offset: 48bit wide offset into destination's address space
310 * @payload: data payload for the request subaction
311 * @length: length of the payload, in bytes
312 * @callback: function to be called when the transaction is completed
313 * @callback_data: data to be passed to the transaction completion callback
314 *
315 * Submit a request packet into the asynchronous request transmission queue.
316 * Can be called from atomic context. If you prefer a blocking API, use
317 * fw_run_transaction() in a context that can sleep.
318 *
319 * In case of lock requests, specify one of the firewire-core specific %TCODE_
320 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
321 *
322 * Make sure that the value in @destination_id is not older than the one in
323 * @generation. Otherwise the request is in danger to be sent to a wrong node.
324 *
325 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
326 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
327 * It will contain tag, channel, and sy data instead of a node ID then.
328 *
329 * The payload buffer at @data is going to be DMA-mapped except in case of
330 * @length <= 8 or of local (loopback) requests. Hence make sure that the
331 * buffer complies with the restrictions of the streaming DMA mapping API.
332 * @payload must not be freed before the @callback is called.
333 *
334 * In case of request types without payload, @data is NULL and @length is 0.
335 *
336 * After the transaction is completed successfully or unsuccessfully, the
337 * @callback will be called. Among its parameters is the response code which
338 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
339 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
340 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
341 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
342 * generation, or missing ACK respectively.
343 *
344 * Note some timing corner cases: fw_send_request() may complete much earlier
345 * than when the request packet actually hits the wire. On the other hand,
346 * transaction completion and hence execution of @callback may happen even
347 * before fw_send_request() returns.
348 */
349 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
350 int destination_id, int generation, int speed,
351 unsigned long long offset, void *payload, size_t length,
352 fw_transaction_callback_t callback, void *callback_data)
353 {
354 unsigned long flags;
355 int tlabel;
356
357 /*
358 * Allocate tlabel from the bitmap and put the transaction on
359 * the list while holding the card spinlock.
360 */
361
362 spin_lock_irqsave(&card->lock, flags);
363
364 tlabel = allocate_tlabel(card);
365 if (tlabel < 0) {
366 spin_unlock_irqrestore(&card->lock, flags);
367 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
368 return;
369 }
370
371 t->node_id = destination_id;
372 t->tlabel = tlabel;
373 t->card = card;
374 t->is_split_transaction = false;
375 setup_timer(&t->split_timeout_timer,
376 split_transaction_timeout_callback, (unsigned long)t);
377 t->callback = callback;
378 t->callback_data = callback_data;
379
380 fw_fill_request(&t->packet, tcode, t->tlabel,
381 destination_id, card->node_id, generation,
382 speed, offset, payload, length);
383 t->packet.callback = transmit_complete_callback;
384
385 list_add_tail(&t->link, &card->transaction_list);
386
387 spin_unlock_irqrestore(&card->lock, flags);
388
389 card->driver->send_request(card, &t->packet);
390 }
391 EXPORT_SYMBOL(fw_send_request);
392
393 struct transaction_callback_data {
394 struct completion done;
395 void *payload;
396 int rcode;
397 };
398
399 static void transaction_callback(struct fw_card *card, int rcode,
400 void *payload, size_t length, void *data)
401 {
402 struct transaction_callback_data *d = data;
403
404 if (rcode == RCODE_COMPLETE)
405 memcpy(d->payload, payload, length);
406 d->rcode = rcode;
407 complete(&d->done);
408 }
409
410 /**
411 * fw_run_transaction() - send request and sleep until transaction is completed
412 *
413 * Returns the RCODE. See fw_send_request() for parameter documentation.
414 * Unlike fw_send_request(), @data points to the payload of the request or/and
415 * to the payload of the response. DMA mapping restrictions apply to outbound
416 * request payloads of >= 8 bytes but not to inbound response payloads.
417 */
418 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
419 int generation, int speed, unsigned long long offset,
420 void *payload, size_t length)
421 {
422 struct transaction_callback_data d;
423 struct fw_transaction t;
424
425 init_timer_on_stack(&t.split_timeout_timer);
426 init_completion(&d.done);
427 d.payload = payload;
428 fw_send_request(card, &t, tcode, destination_id, generation, speed,
429 offset, payload, length, transaction_callback, &d);
430 wait_for_completion(&d.done);
431 destroy_timer_on_stack(&t.split_timeout_timer);
432
433 return d.rcode;
434 }
435 EXPORT_SYMBOL(fw_run_transaction);
436
437 static DEFINE_MUTEX(phy_config_mutex);
438 static DECLARE_COMPLETION(phy_config_done);
439
440 static void transmit_phy_packet_callback(struct fw_packet *packet,
441 struct fw_card *card, int status)
442 {
443 complete(&phy_config_done);
444 }
445
446 static struct fw_packet phy_config_packet = {
447 .header_length = 12,
448 .header[0] = TCODE_LINK_INTERNAL << 4,
449 .payload_length = 0,
450 .speed = SCODE_100,
451 .callback = transmit_phy_packet_callback,
452 };
453
454 void fw_send_phy_config(struct fw_card *card,
455 int node_id, int generation, int gap_count)
456 {
457 long timeout = DIV_ROUND_UP(HZ, 10);
458 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
459
460 if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
461 data |= PHY_CONFIG_ROOT_ID(node_id);
462
463 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
464 gap_count = card->driver->read_phy_reg(card, 1);
465 if (gap_count < 0)
466 return;
467
468 gap_count &= 63;
469 if (gap_count == 63)
470 return;
471 }
472 data |= PHY_CONFIG_GAP_COUNT(gap_count);
473
474 mutex_lock(&phy_config_mutex);
475
476 phy_config_packet.header[1] = data;
477 phy_config_packet.header[2] = ~data;
478 phy_config_packet.generation = generation;
479 INIT_COMPLETION(phy_config_done);
480
481 card->driver->send_request(card, &phy_config_packet);
482 wait_for_completion_timeout(&phy_config_done, timeout);
483
484 mutex_unlock(&phy_config_mutex);
485 }
486
487 static struct fw_address_handler *lookup_overlapping_address_handler(
488 struct list_head *list, unsigned long long offset, size_t length)
489 {
490 struct fw_address_handler *handler;
491
492 list_for_each_entry(handler, list, link) {
493 if (handler->offset < offset + length &&
494 offset < handler->offset + handler->length)
495 return handler;
496 }
497
498 return NULL;
499 }
500
501 static bool is_enclosing_handler(struct fw_address_handler *handler,
502 unsigned long long offset, size_t length)
503 {
504 return handler->offset <= offset &&
505 offset + length <= handler->offset + handler->length;
506 }
507
508 static struct fw_address_handler *lookup_enclosing_address_handler(
509 struct list_head *list, unsigned long long offset, size_t length)
510 {
511 struct fw_address_handler *handler;
512
513 list_for_each_entry(handler, list, link) {
514 if (is_enclosing_handler(handler, offset, length))
515 return handler;
516 }
517
518 return NULL;
519 }
520
521 static DEFINE_SPINLOCK(address_handler_lock);
522 static LIST_HEAD(address_handler_list);
523
524 const struct fw_address_region fw_high_memory_region =
525 { .start = 0x000100000000ULL, .end = 0xffffe0000000ULL, };
526 EXPORT_SYMBOL(fw_high_memory_region);
527
528 static const struct fw_address_region low_memory_region =
529 { .start = 0x000000000000ULL, .end = 0x000100000000ULL, };
530
531 #if 0
532 const struct fw_address_region fw_private_region =
533 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
534 const struct fw_address_region fw_csr_region =
535 { .start = CSR_REGISTER_BASE,
536 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
537 const struct fw_address_region fw_unit_space_region =
538 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
539 #endif /* 0 */
540
541 static bool is_in_fcp_region(u64 offset, size_t length)
542 {
543 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
544 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
545 }
546
547 /**
548 * fw_core_add_address_handler() - register for incoming requests
549 * @handler: callback
550 * @region: region in the IEEE 1212 node space address range
551 *
552 * region->start, ->end, and handler->length have to be quadlet-aligned.
553 *
554 * When a request is received that falls within the specified address range,
555 * the specified callback is invoked. The parameters passed to the callback
556 * give the details of the particular request.
557 *
558 * Return value: 0 on success, non-zero otherwise.
559 *
560 * The start offset of the handler's address region is determined by
561 * fw_core_add_address_handler() and is returned in handler->offset.
562 *
563 * Address allocations are exclusive, except for the FCP registers.
564 */
565 int fw_core_add_address_handler(struct fw_address_handler *handler,
566 const struct fw_address_region *region)
567 {
568 struct fw_address_handler *other;
569 int ret = -EBUSY;
570
571 if (region->start & 0xffff000000000003ULL ||
572 region->start >= region->end ||
573 region->end > 0x0001000000000000ULL ||
574 handler->length & 3 ||
575 handler->length == 0)
576 return -EINVAL;
577
578 spin_lock_bh(&address_handler_lock);
579
580 handler->offset = region->start;
581 while (handler->offset + handler->length <= region->end) {
582 if (is_in_fcp_region(handler->offset, handler->length))
583 other = NULL;
584 else
585 other = lookup_overlapping_address_handler
586 (&address_handler_list,
587 handler->offset, handler->length);
588 if (other != NULL) {
589 handler->offset += other->length;
590 } else {
591 list_add_tail(&handler->link, &address_handler_list);
592 ret = 0;
593 break;
594 }
595 }
596
597 spin_unlock_bh(&address_handler_lock);
598
599 return ret;
600 }
601 EXPORT_SYMBOL(fw_core_add_address_handler);
602
603 /**
604 * fw_core_remove_address_handler() - unregister an address handler
605 *
606 * When fw_core_remove_address_handler() returns, @handler->callback() is
607 * guaranteed to not run on any CPU anymore.
608 */
609 void fw_core_remove_address_handler(struct fw_address_handler *handler)
610 {
611 spin_lock_bh(&address_handler_lock);
612 list_del(&handler->link);
613 spin_unlock_bh(&address_handler_lock);
614 }
615 EXPORT_SYMBOL(fw_core_remove_address_handler);
616
617 struct fw_request {
618 struct fw_packet response;
619 u32 request_header[4];
620 int ack;
621 u32 length;
622 u32 data[0];
623 };
624
625 static void free_response_callback(struct fw_packet *packet,
626 struct fw_card *card, int status)
627 {
628 struct fw_request *request;
629
630 request = container_of(packet, struct fw_request, response);
631 kfree(request);
632 }
633
634 int fw_get_response_length(struct fw_request *r)
635 {
636 int tcode, ext_tcode, data_length;
637
638 tcode = HEADER_GET_TCODE(r->request_header[0]);
639
640 switch (tcode) {
641 case TCODE_WRITE_QUADLET_REQUEST:
642 case TCODE_WRITE_BLOCK_REQUEST:
643 return 0;
644
645 case TCODE_READ_QUADLET_REQUEST:
646 return 4;
647
648 case TCODE_READ_BLOCK_REQUEST:
649 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
650 return data_length;
651
652 case TCODE_LOCK_REQUEST:
653 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
654 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
655 switch (ext_tcode) {
656 case EXTCODE_FETCH_ADD:
657 case EXTCODE_LITTLE_ADD:
658 return data_length;
659 default:
660 return data_length / 2;
661 }
662
663 default:
664 WARN(1, "wrong tcode %d\n", tcode);
665 return 0;
666 }
667 }
668
669 void fw_fill_response(struct fw_packet *response, u32 *request_header,
670 int rcode, void *payload, size_t length)
671 {
672 int tcode, tlabel, extended_tcode, source, destination;
673
674 tcode = HEADER_GET_TCODE(request_header[0]);
675 tlabel = HEADER_GET_TLABEL(request_header[0]);
676 source = HEADER_GET_DESTINATION(request_header[0]);
677 destination = HEADER_GET_SOURCE(request_header[1]);
678 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
679
680 response->header[0] =
681 HEADER_RETRY(RETRY_1) |
682 HEADER_TLABEL(tlabel) |
683 HEADER_DESTINATION(destination);
684 response->header[1] =
685 HEADER_SOURCE(source) |
686 HEADER_RCODE(rcode);
687 response->header[2] = 0;
688
689 switch (tcode) {
690 case TCODE_WRITE_QUADLET_REQUEST:
691 case TCODE_WRITE_BLOCK_REQUEST:
692 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
693 response->header_length = 12;
694 response->payload_length = 0;
695 break;
696
697 case TCODE_READ_QUADLET_REQUEST:
698 response->header[0] |=
699 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
700 if (payload != NULL)
701 response->header[3] = *(u32 *)payload;
702 else
703 response->header[3] = 0;
704 response->header_length = 16;
705 response->payload_length = 0;
706 break;
707
708 case TCODE_READ_BLOCK_REQUEST:
709 case TCODE_LOCK_REQUEST:
710 response->header[0] |= HEADER_TCODE(tcode + 2);
711 response->header[3] =
712 HEADER_DATA_LENGTH(length) |
713 HEADER_EXTENDED_TCODE(extended_tcode);
714 response->header_length = 16;
715 response->payload = payload;
716 response->payload_length = length;
717 break;
718
719 default:
720 WARN(1, "wrong tcode %d\n", tcode);
721 }
722
723 response->payload_mapped = false;
724 }
725 EXPORT_SYMBOL(fw_fill_response);
726
727 static u32 compute_split_timeout_timestamp(struct fw_card *card,
728 u32 request_timestamp)
729 {
730 unsigned int cycles;
731 u32 timestamp;
732
733 cycles = card->split_timeout_cycles;
734 cycles += request_timestamp & 0x1fff;
735
736 timestamp = request_timestamp & ~0x1fff;
737 timestamp += (cycles / 8000) << 13;
738 timestamp |= cycles % 8000;
739
740 return timestamp;
741 }
742
743 static struct fw_request *allocate_request(struct fw_card *card,
744 struct fw_packet *p)
745 {
746 struct fw_request *request;
747 u32 *data, length;
748 int request_tcode;
749
750 request_tcode = HEADER_GET_TCODE(p->header[0]);
751 switch (request_tcode) {
752 case TCODE_WRITE_QUADLET_REQUEST:
753 data = &p->header[3];
754 length = 4;
755 break;
756
757 case TCODE_WRITE_BLOCK_REQUEST:
758 case TCODE_LOCK_REQUEST:
759 data = p->payload;
760 length = HEADER_GET_DATA_LENGTH(p->header[3]);
761 break;
762
763 case TCODE_READ_QUADLET_REQUEST:
764 data = NULL;
765 length = 4;
766 break;
767
768 case TCODE_READ_BLOCK_REQUEST:
769 data = NULL;
770 length = HEADER_GET_DATA_LENGTH(p->header[3]);
771 break;
772
773 default:
774 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
775 p->header[0], p->header[1], p->header[2]);
776 return NULL;
777 }
778
779 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
780 if (request == NULL)
781 return NULL;
782
783 request->response.speed = p->speed;
784 request->response.timestamp =
785 compute_split_timeout_timestamp(card, p->timestamp);
786 request->response.generation = p->generation;
787 request->response.ack = 0;
788 request->response.callback = free_response_callback;
789 request->ack = p->ack;
790 request->length = length;
791 if (data)
792 memcpy(request->data, data, length);
793
794 memcpy(request->request_header, p->header, sizeof(p->header));
795
796 return request;
797 }
798
799 void fw_send_response(struct fw_card *card,
800 struct fw_request *request, int rcode)
801 {
802 if (WARN_ONCE(!request, "invalid for FCP address handlers"))
803 return;
804
805 /* unified transaction or broadcast transaction: don't respond */
806 if (request->ack != ACK_PENDING ||
807 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
808 kfree(request);
809 return;
810 }
811
812 if (rcode == RCODE_COMPLETE)
813 fw_fill_response(&request->response, request->request_header,
814 rcode, request->data,
815 fw_get_response_length(request));
816 else
817 fw_fill_response(&request->response, request->request_header,
818 rcode, NULL, 0);
819
820 card->driver->send_response(card, &request->response);
821 }
822 EXPORT_SYMBOL(fw_send_response);
823
824 static void handle_exclusive_region_request(struct fw_card *card,
825 struct fw_packet *p,
826 struct fw_request *request,
827 unsigned long long offset)
828 {
829 struct fw_address_handler *handler;
830 int tcode, destination, source;
831
832 destination = HEADER_GET_DESTINATION(p->header[0]);
833 source = HEADER_GET_SOURCE(p->header[1]);
834 tcode = HEADER_GET_TCODE(p->header[0]);
835 if (tcode == TCODE_LOCK_REQUEST)
836 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
837
838 spin_lock_bh(&address_handler_lock);
839 handler = lookup_enclosing_address_handler(&address_handler_list,
840 offset, request->length);
841 if (handler)
842 handler->address_callback(card, request,
843 tcode, destination, source,
844 p->generation, offset,
845 request->data, request->length,
846 handler->callback_data);
847 spin_unlock_bh(&address_handler_lock);
848
849 if (!handler)
850 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
851 }
852
853 static void handle_fcp_region_request(struct fw_card *card,
854 struct fw_packet *p,
855 struct fw_request *request,
856 unsigned long long offset)
857 {
858 struct fw_address_handler *handler;
859 int tcode, destination, source;
860
861 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
862 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
863 request->length > 0x200) {
864 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
865
866 return;
867 }
868
869 tcode = HEADER_GET_TCODE(p->header[0]);
870 destination = HEADER_GET_DESTINATION(p->header[0]);
871 source = HEADER_GET_SOURCE(p->header[1]);
872
873 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
874 tcode != TCODE_WRITE_BLOCK_REQUEST) {
875 fw_send_response(card, request, RCODE_TYPE_ERROR);
876
877 return;
878 }
879
880 spin_lock_bh(&address_handler_lock);
881 list_for_each_entry(handler, &address_handler_list, link) {
882 if (is_enclosing_handler(handler, offset, request->length))
883 handler->address_callback(card, NULL, tcode,
884 destination, source,
885 p->generation, offset,
886 request->data,
887 request->length,
888 handler->callback_data);
889 }
890 spin_unlock_bh(&address_handler_lock);
891
892 fw_send_response(card, request, RCODE_COMPLETE);
893 }
894
895 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
896 {
897 struct fw_request *request;
898 unsigned long long offset;
899
900 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
901 return;
902
903 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
904 fw_cdev_handle_phy_packet(card, p);
905 return;
906 }
907
908 request = allocate_request(card, p);
909 if (request == NULL) {
910 /* FIXME: send statically allocated busy packet. */
911 return;
912 }
913
914 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
915 p->header[2];
916
917 if (!is_in_fcp_region(offset, request->length))
918 handle_exclusive_region_request(card, p, request, offset);
919 else
920 handle_fcp_region_request(card, p, request, offset);
921
922 }
923 EXPORT_SYMBOL(fw_core_handle_request);
924
925 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
926 {
927 struct fw_transaction *t;
928 unsigned long flags;
929 u32 *data;
930 size_t data_length;
931 int tcode, tlabel, source, rcode;
932
933 tcode = HEADER_GET_TCODE(p->header[0]);
934 tlabel = HEADER_GET_TLABEL(p->header[0]);
935 source = HEADER_GET_SOURCE(p->header[1]);
936 rcode = HEADER_GET_RCODE(p->header[1]);
937
938 spin_lock_irqsave(&card->lock, flags);
939 list_for_each_entry(t, &card->transaction_list, link) {
940 if (t->node_id == source && t->tlabel == tlabel) {
941 if (!try_cancel_split_timeout(t)) {
942 spin_unlock_irqrestore(&card->lock, flags);
943 goto timed_out;
944 }
945 list_del_init(&t->link);
946 card->tlabel_mask &= ~(1ULL << t->tlabel);
947 break;
948 }
949 }
950 spin_unlock_irqrestore(&card->lock, flags);
951
952 if (&t->link == &card->transaction_list) {
953 timed_out:
954 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
955 source, tlabel);
956 return;
957 }
958
959 /*
960 * FIXME: sanity check packet, is length correct, does tcodes
961 * and addresses match.
962 */
963
964 switch (tcode) {
965 case TCODE_READ_QUADLET_RESPONSE:
966 data = (u32 *) &p->header[3];
967 data_length = 4;
968 break;
969
970 case TCODE_WRITE_RESPONSE:
971 data = NULL;
972 data_length = 0;
973 break;
974
975 case TCODE_READ_BLOCK_RESPONSE:
976 case TCODE_LOCK_RESPONSE:
977 data = p->payload;
978 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
979 break;
980
981 default:
982 /* Should never happen, this is just to shut up gcc. */
983 data = NULL;
984 data_length = 0;
985 break;
986 }
987
988 /*
989 * The response handler may be executed while the request handler
990 * is still pending. Cancel the request handler.
991 */
992 card->driver->cancel_packet(card, &t->packet);
993
994 t->callback(card, rcode, data, data_length, t->callback_data);
995 }
996 EXPORT_SYMBOL(fw_core_handle_response);
997
998 /**
999 * fw_rcode_string - convert a firewire result code to an error description
1000 * @rcode: the result code
1001 */
1002 const char *fw_rcode_string(int rcode)
1003 {
1004 static const char *const names[] = {
1005 [RCODE_COMPLETE] = "no error",
1006 [RCODE_CONFLICT_ERROR] = "conflict error",
1007 [RCODE_DATA_ERROR] = "data error",
1008 [RCODE_TYPE_ERROR] = "type error",
1009 [RCODE_ADDRESS_ERROR] = "address error",
1010 [RCODE_SEND_ERROR] = "send error",
1011 [RCODE_CANCELLED] = "timeout",
1012 [RCODE_BUSY] = "busy",
1013 [RCODE_GENERATION] = "bus reset",
1014 [RCODE_NO_ACK] = "no ack",
1015 };
1016
1017 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1018 return names[rcode];
1019 else
1020 return "unknown";
1021 }
1022 EXPORT_SYMBOL(fw_rcode_string);
1023
1024 static const struct fw_address_region topology_map_region =
1025 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1026 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1027
1028 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1029 int tcode, int destination, int source, int generation,
1030 unsigned long long offset, void *payload, size_t length,
1031 void *callback_data)
1032 {
1033 int start;
1034
1035 if (!TCODE_IS_READ_REQUEST(tcode)) {
1036 fw_send_response(card, request, RCODE_TYPE_ERROR);
1037 return;
1038 }
1039
1040 if ((offset & 3) > 0 || (length & 3) > 0) {
1041 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1042 return;
1043 }
1044
1045 start = (offset - topology_map_region.start) / 4;
1046 memcpy(payload, &card->topology_map[start], length);
1047
1048 fw_send_response(card, request, RCODE_COMPLETE);
1049 }
1050
1051 static struct fw_address_handler topology_map = {
1052 .length = 0x400,
1053 .address_callback = handle_topology_map,
1054 };
1055
1056 static const struct fw_address_region registers_region =
1057 { .start = CSR_REGISTER_BASE,
1058 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1059
1060 static void update_split_timeout(struct fw_card *card)
1061 {
1062 unsigned int cycles;
1063
1064 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1065
1066 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1067 cycles = clamp(cycles, 800u, 3u * 8000u);
1068
1069 card->split_timeout_cycles = cycles;
1070 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1071 }
1072
1073 static void handle_registers(struct fw_card *card, struct fw_request *request,
1074 int tcode, int destination, int source, int generation,
1075 unsigned long long offset, void *payload, size_t length,
1076 void *callback_data)
1077 {
1078 int reg = offset & ~CSR_REGISTER_BASE;
1079 __be32 *data = payload;
1080 int rcode = RCODE_COMPLETE;
1081 unsigned long flags;
1082
1083 switch (reg) {
1084 case CSR_PRIORITY_BUDGET:
1085 if (!card->priority_budget_implemented) {
1086 rcode = RCODE_ADDRESS_ERROR;
1087 break;
1088 }
1089 /* else fall through */
1090
1091 case CSR_NODE_IDS:
1092 /*
1093 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1094 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1095 */
1096 /* fall through */
1097
1098 case CSR_STATE_CLEAR:
1099 case CSR_STATE_SET:
1100 case CSR_CYCLE_TIME:
1101 case CSR_BUS_TIME:
1102 case CSR_BUSY_TIMEOUT:
1103 if (tcode == TCODE_READ_QUADLET_REQUEST)
1104 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1105 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1106 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1107 else
1108 rcode = RCODE_TYPE_ERROR;
1109 break;
1110
1111 case CSR_RESET_START:
1112 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1113 card->driver->write_csr(card, CSR_STATE_CLEAR,
1114 CSR_STATE_BIT_ABDICATE);
1115 else
1116 rcode = RCODE_TYPE_ERROR;
1117 break;
1118
1119 case CSR_SPLIT_TIMEOUT_HI:
1120 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1121 *data = cpu_to_be32(card->split_timeout_hi);
1122 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1123 spin_lock_irqsave(&card->lock, flags);
1124 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1125 update_split_timeout(card);
1126 spin_unlock_irqrestore(&card->lock, flags);
1127 } else {
1128 rcode = RCODE_TYPE_ERROR;
1129 }
1130 break;
1131
1132 case CSR_SPLIT_TIMEOUT_LO:
1133 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1134 *data = cpu_to_be32(card->split_timeout_lo);
1135 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1136 spin_lock_irqsave(&card->lock, flags);
1137 card->split_timeout_lo =
1138 be32_to_cpu(*data) & 0xfff80000;
1139 update_split_timeout(card);
1140 spin_unlock_irqrestore(&card->lock, flags);
1141 } else {
1142 rcode = RCODE_TYPE_ERROR;
1143 }
1144 break;
1145
1146 case CSR_MAINT_UTILITY:
1147 if (tcode == TCODE_READ_QUADLET_REQUEST)
1148 *data = card->maint_utility_register;
1149 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1150 card->maint_utility_register = *data;
1151 else
1152 rcode = RCODE_TYPE_ERROR;
1153 break;
1154
1155 case CSR_BROADCAST_CHANNEL:
1156 if (tcode == TCODE_READ_QUADLET_REQUEST)
1157 *data = cpu_to_be32(card->broadcast_channel);
1158 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1159 card->broadcast_channel =
1160 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1161 BROADCAST_CHANNEL_INITIAL;
1162 else
1163 rcode = RCODE_TYPE_ERROR;
1164 break;
1165
1166 case CSR_BUS_MANAGER_ID:
1167 case CSR_BANDWIDTH_AVAILABLE:
1168 case CSR_CHANNELS_AVAILABLE_HI:
1169 case CSR_CHANNELS_AVAILABLE_LO:
1170 /*
1171 * FIXME: these are handled by the OHCI hardware and
1172 * the stack never sees these request. If we add
1173 * support for a new type of controller that doesn't
1174 * handle this in hardware we need to deal with these
1175 * transactions.
1176 */
1177 BUG();
1178 break;
1179
1180 default:
1181 rcode = RCODE_ADDRESS_ERROR;
1182 break;
1183 }
1184
1185 fw_send_response(card, request, rcode);
1186 }
1187
1188 static struct fw_address_handler registers = {
1189 .length = 0x400,
1190 .address_callback = handle_registers,
1191 };
1192
1193 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1194 int tcode, int destination, int source, int generation,
1195 unsigned long long offset, void *payload, size_t length,
1196 void *callback_data)
1197 {
1198 /*
1199 * This catches requests not handled by the physical DMA unit,
1200 * i.e., wrong transaction types or unauthorized source nodes.
1201 */
1202 fw_send_response(card, request, RCODE_TYPE_ERROR);
1203 }
1204
1205 static struct fw_address_handler low_memory = {
1206 .length = 0x000100000000ULL,
1207 .address_callback = handle_low_memory,
1208 };
1209
1210 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1211 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1212 MODULE_LICENSE("GPL");
1213
1214 static const u32 vendor_textual_descriptor[] = {
1215 /* textual descriptor leaf () */
1216 0x00060000,
1217 0x00000000,
1218 0x00000000,
1219 0x4c696e75, /* L i n u */
1220 0x78204669, /* x F i */
1221 0x72657769, /* r e w i */
1222 0x72650000, /* r e */
1223 };
1224
1225 static const u32 model_textual_descriptor[] = {
1226 /* model descriptor leaf () */
1227 0x00030000,
1228 0x00000000,
1229 0x00000000,
1230 0x4a756a75, /* J u j u */
1231 };
1232
1233 static struct fw_descriptor vendor_id_descriptor = {
1234 .length = ARRAY_SIZE(vendor_textual_descriptor),
1235 .immediate = 0x03d00d1e,
1236 .key = 0x81000000,
1237 .data = vendor_textual_descriptor,
1238 };
1239
1240 static struct fw_descriptor model_id_descriptor = {
1241 .length = ARRAY_SIZE(model_textual_descriptor),
1242 .immediate = 0x17000001,
1243 .key = 0x81000000,
1244 .data = model_textual_descriptor,
1245 };
1246
1247 static int __init fw_core_init(void)
1248 {
1249 int ret;
1250
1251 fw_workqueue = alloc_workqueue("firewire",
1252 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1253 if (!fw_workqueue)
1254 return -ENOMEM;
1255
1256 ret = bus_register(&fw_bus_type);
1257 if (ret < 0) {
1258 destroy_workqueue(fw_workqueue);
1259 return ret;
1260 }
1261
1262 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1263 if (fw_cdev_major < 0) {
1264 bus_unregister(&fw_bus_type);
1265 destroy_workqueue(fw_workqueue);
1266 return fw_cdev_major;
1267 }
1268
1269 fw_core_add_address_handler(&topology_map, &topology_map_region);
1270 fw_core_add_address_handler(&registers, &registers_region);
1271 fw_core_add_address_handler(&low_memory, &low_memory_region);
1272 fw_core_add_descriptor(&vendor_id_descriptor);
1273 fw_core_add_descriptor(&model_id_descriptor);
1274
1275 return 0;
1276 }
1277
1278 static void __exit fw_core_cleanup(void)
1279 {
1280 unregister_chrdev(fw_cdev_major, "firewire");
1281 bus_unregister(&fw_bus_type);
1282 destroy_workqueue(fw_workqueue);
1283 idr_destroy(&fw_device_idr);
1284 }
1285
1286 module_init(fw_core_init);
1287 module_exit(fw_core_cleanup);
This page took 0.057162 seconds and 6 git commands to generate.