firewire: fix "kobject_add failed for fw* with -EEXIST"
[deliverable/linux.git] / drivers / firewire / fw-device.c
1 /*
2 * Device probing and sysfs code.
3 *
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/module.h>
22 #include <linux/wait.h>
23 #include <linux/errno.h>
24 #include <linux/kthread.h>
25 #include <linux/device.h>
26 #include <linux/delay.h>
27 #include <linux/idr.h>
28 #include <linux/rwsem.h>
29 #include <asm/semaphore.h>
30 #include <asm/system.h>
31 #include <linux/ctype.h>
32 #include "fw-transaction.h"
33 #include "fw-topology.h"
34 #include "fw-device.h"
35
36 void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p)
37 {
38 ci->p = p + 1;
39 ci->end = ci->p + (p[0] >> 16);
40 }
41 EXPORT_SYMBOL(fw_csr_iterator_init);
42
43 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
44 {
45 *key = *ci->p >> 24;
46 *value = *ci->p & 0xffffff;
47
48 return ci->p++ < ci->end;
49 }
50 EXPORT_SYMBOL(fw_csr_iterator_next);
51
52 static int is_fw_unit(struct device *dev);
53
54 static int match_unit_directory(u32 * directory, const struct fw_device_id *id)
55 {
56 struct fw_csr_iterator ci;
57 int key, value, match;
58
59 match = 0;
60 fw_csr_iterator_init(&ci, directory);
61 while (fw_csr_iterator_next(&ci, &key, &value)) {
62 if (key == CSR_VENDOR && value == id->vendor)
63 match |= FW_MATCH_VENDOR;
64 if (key == CSR_MODEL && value == id->model)
65 match |= FW_MATCH_MODEL;
66 if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
67 match |= FW_MATCH_SPECIFIER_ID;
68 if (key == CSR_VERSION && value == id->version)
69 match |= FW_MATCH_VERSION;
70 }
71
72 return (match & id->match_flags) == id->match_flags;
73 }
74
75 static int fw_unit_match(struct device *dev, struct device_driver *drv)
76 {
77 struct fw_unit *unit = fw_unit(dev);
78 struct fw_driver *driver = fw_driver(drv);
79 int i;
80
81 /* We only allow binding to fw_units. */
82 if (!is_fw_unit(dev))
83 return 0;
84
85 for (i = 0; driver->id_table[i].match_flags != 0; i++) {
86 if (match_unit_directory(unit->directory, &driver->id_table[i]))
87 return 1;
88 }
89
90 return 0;
91 }
92
93 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
94 {
95 struct fw_device *device = fw_device(unit->device.parent);
96 struct fw_csr_iterator ci;
97
98 int key, value;
99 int vendor = 0;
100 int model = 0;
101 int specifier_id = 0;
102 int version = 0;
103
104 fw_csr_iterator_init(&ci, &device->config_rom[5]);
105 while (fw_csr_iterator_next(&ci, &key, &value)) {
106 switch (key) {
107 case CSR_VENDOR:
108 vendor = value;
109 break;
110 case CSR_MODEL:
111 model = value;
112 break;
113 }
114 }
115
116 fw_csr_iterator_init(&ci, unit->directory);
117 while (fw_csr_iterator_next(&ci, &key, &value)) {
118 switch (key) {
119 case CSR_SPECIFIER_ID:
120 specifier_id = value;
121 break;
122 case CSR_VERSION:
123 version = value;
124 break;
125 }
126 }
127
128 return snprintf(buffer, buffer_size,
129 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
130 vendor, model, specifier_id, version);
131 }
132
133 static int
134 fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
135 {
136 struct fw_unit *unit = fw_unit(dev);
137 char modalias[64];
138
139 get_modalias(unit, modalias, sizeof(modalias));
140
141 if (add_uevent_var(env, "MODALIAS=%s", modalias))
142 return -ENOMEM;
143
144 return 0;
145 }
146
147 struct bus_type fw_bus_type = {
148 .name = "firewire",
149 .match = fw_unit_match,
150 };
151 EXPORT_SYMBOL(fw_bus_type);
152
153 struct fw_device *fw_device_get(struct fw_device *device)
154 {
155 get_device(&device->device);
156
157 return device;
158 }
159
160 void fw_device_put(struct fw_device *device)
161 {
162 put_device(&device->device);
163 }
164
165 static void fw_device_release(struct device *dev)
166 {
167 struct fw_device *device = fw_device(dev);
168 unsigned long flags;
169
170 /*
171 * Take the card lock so we don't set this to NULL while a
172 * FW_NODE_UPDATED callback is being handled.
173 */
174 spin_lock_irqsave(&device->card->lock, flags);
175 device->node->data = NULL;
176 spin_unlock_irqrestore(&device->card->lock, flags);
177
178 fw_node_put(device->node);
179 fw_card_put(device->card);
180 kfree(device->config_rom);
181 kfree(device);
182 }
183
184 int fw_device_enable_phys_dma(struct fw_device *device)
185 {
186 int generation = device->generation;
187
188 /* device->node_id, accessed below, must not be older than generation */
189 smp_rmb();
190
191 return device->card->driver->enable_phys_dma(device->card,
192 device->node_id,
193 generation);
194 }
195 EXPORT_SYMBOL(fw_device_enable_phys_dma);
196
197 struct config_rom_attribute {
198 struct device_attribute attr;
199 u32 key;
200 };
201
202 static ssize_t
203 show_immediate(struct device *dev, struct device_attribute *dattr, char *buf)
204 {
205 struct config_rom_attribute *attr =
206 container_of(dattr, struct config_rom_attribute, attr);
207 struct fw_csr_iterator ci;
208 u32 *dir;
209 int key, value;
210
211 if (is_fw_unit(dev))
212 dir = fw_unit(dev)->directory;
213 else
214 dir = fw_device(dev)->config_rom + 5;
215
216 fw_csr_iterator_init(&ci, dir);
217 while (fw_csr_iterator_next(&ci, &key, &value))
218 if (attr->key == key)
219 return snprintf(buf, buf ? PAGE_SIZE : 0,
220 "0x%06x\n", value);
221
222 return -ENOENT;
223 }
224
225 #define IMMEDIATE_ATTR(name, key) \
226 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
227
228 static ssize_t
229 show_text_leaf(struct device *dev, struct device_attribute *dattr, char *buf)
230 {
231 struct config_rom_attribute *attr =
232 container_of(dattr, struct config_rom_attribute, attr);
233 struct fw_csr_iterator ci;
234 u32 *dir, *block = NULL, *p, *end;
235 int length, key, value, last_key = 0;
236 char *b;
237
238 if (is_fw_unit(dev))
239 dir = fw_unit(dev)->directory;
240 else
241 dir = fw_device(dev)->config_rom + 5;
242
243 fw_csr_iterator_init(&ci, dir);
244 while (fw_csr_iterator_next(&ci, &key, &value)) {
245 if (attr->key == last_key &&
246 key == (CSR_DESCRIPTOR | CSR_LEAF))
247 block = ci.p - 1 + value;
248 last_key = key;
249 }
250
251 if (block == NULL)
252 return -ENOENT;
253
254 length = min(block[0] >> 16, 256U);
255 if (length < 3)
256 return -ENOENT;
257
258 if (block[1] != 0 || block[2] != 0)
259 /* Unknown encoding. */
260 return -ENOENT;
261
262 if (buf == NULL)
263 return length * 4;
264
265 b = buf;
266 end = &block[length + 1];
267 for (p = &block[3]; p < end; p++, b += 4)
268 * (u32 *) b = (__force u32) __cpu_to_be32(*p);
269
270 /* Strip trailing whitespace and add newline. */
271 while (b--, (isspace(*b) || *b == '\0') && b > buf);
272 strcpy(b + 1, "\n");
273
274 return b + 2 - buf;
275 }
276
277 #define TEXT_LEAF_ATTR(name, key) \
278 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
279
280 static struct config_rom_attribute config_rom_attributes[] = {
281 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
282 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
283 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
284 IMMEDIATE_ATTR(version, CSR_VERSION),
285 IMMEDIATE_ATTR(model, CSR_MODEL),
286 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
287 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
288 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
289 };
290
291 static void
292 init_fw_attribute_group(struct device *dev,
293 struct device_attribute *attrs,
294 struct fw_attribute_group *group)
295 {
296 struct device_attribute *attr;
297 int i, j;
298
299 for (j = 0; attrs[j].attr.name != NULL; j++)
300 group->attrs[j] = &attrs[j].attr;
301
302 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
303 attr = &config_rom_attributes[i].attr;
304 if (attr->show(dev, attr, NULL) < 0)
305 continue;
306 group->attrs[j++] = &attr->attr;
307 }
308
309 BUG_ON(j >= ARRAY_SIZE(group->attrs));
310 group->attrs[j++] = NULL;
311 group->groups[0] = &group->group;
312 group->groups[1] = NULL;
313 group->group.attrs = group->attrs;
314 dev->groups = group->groups;
315 }
316
317 static ssize_t
318 modalias_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
320 {
321 struct fw_unit *unit = fw_unit(dev);
322 int length;
323
324 length = get_modalias(unit, buf, PAGE_SIZE);
325 strcpy(buf + length, "\n");
326
327 return length + 1;
328 }
329
330 static ssize_t
331 rom_index_show(struct device *dev,
332 struct device_attribute *attr, char *buf)
333 {
334 struct fw_device *device = fw_device(dev->parent);
335 struct fw_unit *unit = fw_unit(dev);
336
337 return snprintf(buf, PAGE_SIZE, "%d\n",
338 (int)(unit->directory - device->config_rom));
339 }
340
341 static struct device_attribute fw_unit_attributes[] = {
342 __ATTR_RO(modalias),
343 __ATTR_RO(rom_index),
344 __ATTR_NULL,
345 };
346
347 static ssize_t
348 config_rom_show(struct device *dev, struct device_attribute *attr, char *buf)
349 {
350 struct fw_device *device = fw_device(dev);
351
352 memcpy(buf, device->config_rom, device->config_rom_length * 4);
353
354 return device->config_rom_length * 4;
355 }
356
357 static ssize_t
358 guid_show(struct device *dev, struct device_attribute *attr, char *buf)
359 {
360 struct fw_device *device = fw_device(dev);
361 u64 guid;
362
363 guid = ((u64)device->config_rom[3] << 32) | device->config_rom[4];
364
365 return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
366 (unsigned long long)guid);
367 }
368
369 static struct device_attribute fw_device_attributes[] = {
370 __ATTR_RO(config_rom),
371 __ATTR_RO(guid),
372 __ATTR_NULL,
373 };
374
375 struct read_quadlet_callback_data {
376 struct completion done;
377 int rcode;
378 u32 data;
379 };
380
381 static void
382 complete_transaction(struct fw_card *card, int rcode,
383 void *payload, size_t length, void *data)
384 {
385 struct read_quadlet_callback_data *callback_data = data;
386
387 if (rcode == RCODE_COMPLETE)
388 callback_data->data = be32_to_cpu(*(__be32 *)payload);
389 callback_data->rcode = rcode;
390 complete(&callback_data->done);
391 }
392
393 static int
394 read_rom(struct fw_device *device, int generation, int index, u32 *data)
395 {
396 struct read_quadlet_callback_data callback_data;
397 struct fw_transaction t;
398 u64 offset;
399
400 /* device->node_id, accessed below, must not be older than generation */
401 smp_rmb();
402
403 init_completion(&callback_data.done);
404
405 offset = 0xfffff0000400ULL + index * 4;
406 fw_send_request(device->card, &t, TCODE_READ_QUADLET_REQUEST,
407 device->node_id, generation, device->max_speed,
408 offset, NULL, 4, complete_transaction, &callback_data);
409
410 wait_for_completion(&callback_data.done);
411
412 *data = callback_data.data;
413
414 return callback_data.rcode;
415 }
416
417 /*
418 * Read the bus info block, perform a speed probe, and read all of the rest of
419 * the config ROM. We do all this with a cached bus generation. If the bus
420 * generation changes under us, read_bus_info_block will fail and get retried.
421 * It's better to start all over in this case because the node from which we
422 * are reading the ROM may have changed the ROM during the reset.
423 */
424 static int read_bus_info_block(struct fw_device *device, int generation)
425 {
426 static u32 rom[256];
427 u32 stack[16], sp, key;
428 int i, end, length;
429
430 device->max_speed = SCODE_100;
431
432 /* First read the bus info block. */
433 for (i = 0; i < 5; i++) {
434 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
435 return -1;
436 /*
437 * As per IEEE1212 7.2, during power-up, devices can
438 * reply with a 0 for the first quadlet of the config
439 * rom to indicate that they are booting (for example,
440 * if the firmware is on the disk of a external
441 * harddisk). In that case we just fail, and the
442 * retry mechanism will try again later.
443 */
444 if (i == 0 && rom[i] == 0)
445 return -1;
446 }
447
448 device->max_speed = device->node->max_speed;
449
450 /*
451 * Determine the speed of
452 * - devices with link speed less than PHY speed,
453 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
454 * - all devices if there are 1394b repeaters.
455 * Note, we cannot use the bus info block's link_spd as starting point
456 * because some buggy firmwares set it lower than necessary and because
457 * 1394-1995 nodes do not have the field.
458 */
459 if ((rom[2] & 0x7) < device->max_speed ||
460 device->max_speed == SCODE_BETA ||
461 device->card->beta_repeaters_present) {
462 u32 dummy;
463
464 /* for S1600 and S3200 */
465 if (device->max_speed == SCODE_BETA)
466 device->max_speed = device->card->link_speed;
467
468 while (device->max_speed > SCODE_100) {
469 if (read_rom(device, generation, 0, &dummy) ==
470 RCODE_COMPLETE)
471 break;
472 device->max_speed--;
473 }
474 }
475
476 /*
477 * Now parse the config rom. The config rom is a recursive
478 * directory structure so we parse it using a stack of
479 * references to the blocks that make up the structure. We
480 * push a reference to the root directory on the stack to
481 * start things off.
482 */
483 length = i;
484 sp = 0;
485 stack[sp++] = 0xc0000005;
486 while (sp > 0) {
487 /*
488 * Pop the next block reference of the stack. The
489 * lower 24 bits is the offset into the config rom,
490 * the upper 8 bits are the type of the reference the
491 * block.
492 */
493 key = stack[--sp];
494 i = key & 0xffffff;
495 if (i >= ARRAY_SIZE(rom))
496 /*
497 * The reference points outside the standard
498 * config rom area, something's fishy.
499 */
500 return -1;
501
502 /* Read header quadlet for the block to get the length. */
503 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
504 return -1;
505 end = i + (rom[i] >> 16) + 1;
506 i++;
507 if (end > ARRAY_SIZE(rom))
508 /*
509 * This block extends outside standard config
510 * area (and the array we're reading it
511 * into). That's broken, so ignore this
512 * device.
513 */
514 return -1;
515
516 /*
517 * Now read in the block. If this is a directory
518 * block, check the entries as we read them to see if
519 * it references another block, and push it in that case.
520 */
521 while (i < end) {
522 if (read_rom(device, generation, i, &rom[i]) !=
523 RCODE_COMPLETE)
524 return -1;
525 if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
526 sp < ARRAY_SIZE(stack))
527 stack[sp++] = i + rom[i];
528 i++;
529 }
530 if (length < i)
531 length = i;
532 }
533
534 device->config_rom = kmalloc(length * 4, GFP_KERNEL);
535 if (device->config_rom == NULL)
536 return -1;
537 memcpy(device->config_rom, rom, length * 4);
538 device->config_rom_length = length;
539
540 return 0;
541 }
542
543 static void fw_unit_release(struct device *dev)
544 {
545 struct fw_unit *unit = fw_unit(dev);
546
547 kfree(unit);
548 }
549
550 static struct device_type fw_unit_type = {
551 .uevent = fw_unit_uevent,
552 .release = fw_unit_release,
553 };
554
555 static int is_fw_unit(struct device *dev)
556 {
557 return dev->type == &fw_unit_type;
558 }
559
560 static void create_units(struct fw_device *device)
561 {
562 struct fw_csr_iterator ci;
563 struct fw_unit *unit;
564 int key, value, i;
565
566 i = 0;
567 fw_csr_iterator_init(&ci, &device->config_rom[5]);
568 while (fw_csr_iterator_next(&ci, &key, &value)) {
569 if (key != (CSR_UNIT | CSR_DIRECTORY))
570 continue;
571
572 /*
573 * Get the address of the unit directory and try to
574 * match the drivers id_tables against it.
575 */
576 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
577 if (unit == NULL) {
578 fw_error("failed to allocate memory for unit\n");
579 continue;
580 }
581
582 unit->directory = ci.p + value - 1;
583 unit->device.bus = &fw_bus_type;
584 unit->device.type = &fw_unit_type;
585 unit->device.parent = &device->device;
586 snprintf(unit->device.bus_id, sizeof(unit->device.bus_id),
587 "%s.%d", device->device.bus_id, i++);
588
589 init_fw_attribute_group(&unit->device,
590 fw_unit_attributes,
591 &unit->attribute_group);
592 if (device_register(&unit->device) < 0)
593 goto skip_unit;
594
595 continue;
596
597 skip_unit:
598 kfree(unit);
599 }
600 }
601
602 static int shutdown_unit(struct device *device, void *data)
603 {
604 device_unregister(device);
605
606 return 0;
607 }
608
609 static DECLARE_RWSEM(idr_rwsem);
610 static DEFINE_IDR(fw_device_idr);
611 int fw_cdev_major;
612
613 struct fw_device *fw_device_get_by_devt(dev_t devt)
614 {
615 struct fw_device *device;
616
617 down_read(&idr_rwsem);
618 device = idr_find(&fw_device_idr, MINOR(devt));
619 if (device)
620 fw_device_get(device);
621 up_read(&idr_rwsem);
622
623 return device;
624 }
625
626 static void fw_device_shutdown(struct work_struct *work)
627 {
628 struct fw_device *device =
629 container_of(work, struct fw_device, work.work);
630 int minor = MINOR(device->device.devt);
631
632 fw_device_cdev_remove(device);
633 device_for_each_child(&device->device, NULL, shutdown_unit);
634 device_unregister(&device->device);
635
636 down_write(&idr_rwsem);
637 idr_remove(&fw_device_idr, minor);
638 up_write(&idr_rwsem);
639 fw_device_put(device);
640 }
641
642 static struct device_type fw_device_type = {
643 .release = fw_device_release,
644 };
645
646 /*
647 * These defines control the retry behavior for reading the config
648 * rom. It shouldn't be necessary to tweak these; if the device
649 * doesn't respond to a config rom read within 10 seconds, it's not
650 * going to respond at all. As for the initial delay, a lot of
651 * devices will be able to respond within half a second after bus
652 * reset. On the other hand, it's not really worth being more
653 * aggressive than that, since it scales pretty well; if 10 devices
654 * are plugged in, they're all getting read within one second.
655 */
656
657 #define MAX_RETRIES 10
658 #define RETRY_DELAY (3 * HZ)
659 #define INITIAL_DELAY (HZ / 2)
660
661 static void fw_device_init(struct work_struct *work)
662 {
663 struct fw_device *device =
664 container_of(work, struct fw_device, work.work);
665 int minor, err;
666
667 /*
668 * All failure paths here set node->data to NULL, so that we
669 * don't try to do device_for_each_child() on a kfree()'d
670 * device.
671 */
672
673 if (read_bus_info_block(device, device->generation) < 0) {
674 if (device->config_rom_retries < MAX_RETRIES) {
675 device->config_rom_retries++;
676 schedule_delayed_work(&device->work, RETRY_DELAY);
677 } else {
678 fw_notify("giving up on config rom for node id %x\n",
679 device->node_id);
680 if (device->node == device->card->root_node)
681 schedule_delayed_work(&device->card->work, 0);
682 fw_device_release(&device->device);
683 }
684 return;
685 }
686
687 err = -ENOMEM;
688
689 fw_device_get(device);
690 down_write(&idr_rwsem);
691 if (idr_pre_get(&fw_device_idr, GFP_KERNEL))
692 err = idr_get_new(&fw_device_idr, device, &minor);
693 up_write(&idr_rwsem);
694
695 if (err < 0)
696 goto error;
697
698 device->device.bus = &fw_bus_type;
699 device->device.type = &fw_device_type;
700 device->device.parent = device->card->device;
701 device->device.devt = MKDEV(fw_cdev_major, minor);
702 snprintf(device->device.bus_id, sizeof(device->device.bus_id),
703 "fw%d", minor);
704
705 init_fw_attribute_group(&device->device,
706 fw_device_attributes,
707 &device->attribute_group);
708 if (device_add(&device->device)) {
709 fw_error("Failed to add device.\n");
710 goto error_with_cdev;
711 }
712
713 create_units(device);
714
715 /*
716 * Transition the device to running state. If it got pulled
717 * out from under us while we did the intialization work, we
718 * have to shut down the device again here. Normally, though,
719 * fw_node_event will be responsible for shutting it down when
720 * necessary. We have to use the atomic cmpxchg here to avoid
721 * racing with the FW_NODE_DESTROYED case in
722 * fw_node_event().
723 */
724 if (atomic_cmpxchg(&device->state,
725 FW_DEVICE_INITIALIZING,
726 FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN)
727 fw_device_shutdown(&device->work.work);
728 else
729 fw_notify("created new fw device %s "
730 "(%d config rom retries, S%d00)\n",
731 device->device.bus_id, device->config_rom_retries,
732 1 << device->max_speed);
733
734 /*
735 * Reschedule the IRM work if we just finished reading the
736 * root node config rom. If this races with a bus reset we
737 * just end up running the IRM work a couple of extra times -
738 * pretty harmless.
739 */
740 if (device->node == device->card->root_node)
741 schedule_delayed_work(&device->card->work, 0);
742
743 return;
744
745 error_with_cdev:
746 down_write(&idr_rwsem);
747 idr_remove(&fw_device_idr, minor);
748 up_write(&idr_rwsem);
749 error:
750 fw_device_put(device); /* fw_device_idr's reference */
751
752 put_device(&device->device); /* our reference */
753 }
754
755 static int update_unit(struct device *dev, void *data)
756 {
757 struct fw_unit *unit = fw_unit(dev);
758 struct fw_driver *driver = (struct fw_driver *)dev->driver;
759
760 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
761 down(&dev->sem);
762 driver->update(unit);
763 up(&dev->sem);
764 }
765
766 return 0;
767 }
768
769 static void fw_device_update(struct work_struct *work)
770 {
771 struct fw_device *device =
772 container_of(work, struct fw_device, work.work);
773
774 fw_device_cdev_update(device);
775 device_for_each_child(&device->device, NULL, update_unit);
776 }
777
778 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
779 {
780 struct fw_device *device;
781
782 switch (event) {
783 case FW_NODE_CREATED:
784 case FW_NODE_LINK_ON:
785 if (!node->link_on)
786 break;
787
788 device = kzalloc(sizeof(*device), GFP_ATOMIC);
789 if (device == NULL)
790 break;
791
792 /*
793 * Do minimal intialization of the device here, the
794 * rest will happen in fw_device_init(). We need the
795 * card and node so we can read the config rom and we
796 * need to do device_initialize() now so
797 * device_for_each_child() in FW_NODE_UPDATED is
798 * doesn't freak out.
799 */
800 device_initialize(&device->device);
801 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
802 device->card = fw_card_get(card);
803 device->node = fw_node_get(node);
804 device->node_id = node->node_id;
805 device->generation = card->generation;
806 INIT_LIST_HEAD(&device->client_list);
807
808 /*
809 * Set the node data to point back to this device so
810 * FW_NODE_UPDATED callbacks can update the node_id
811 * and generation for the device.
812 */
813 node->data = device;
814
815 /*
816 * Many devices are slow to respond after bus resets,
817 * especially if they are bus powered and go through
818 * power-up after getting plugged in. We schedule the
819 * first config rom scan half a second after bus reset.
820 */
821 INIT_DELAYED_WORK(&device->work, fw_device_init);
822 schedule_delayed_work(&device->work, INITIAL_DELAY);
823 break;
824
825 case FW_NODE_UPDATED:
826 if (!node->link_on || node->data == NULL)
827 break;
828
829 device = node->data;
830 device->node_id = node->node_id;
831 smp_wmb(); /* update node_id before generation */
832 device->generation = card->generation;
833 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
834 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
835 schedule_delayed_work(&device->work, 0);
836 }
837 break;
838
839 case FW_NODE_DESTROYED:
840 case FW_NODE_LINK_OFF:
841 if (!node->data)
842 break;
843
844 /*
845 * Destroy the device associated with the node. There
846 * are two cases here: either the device is fully
847 * initialized (FW_DEVICE_RUNNING) or we're in the
848 * process of reading its config rom
849 * (FW_DEVICE_INITIALIZING). If it is fully
850 * initialized we can reuse device->work to schedule a
851 * full fw_device_shutdown(). If not, there's work
852 * scheduled to read it's config rom, and we just put
853 * the device in shutdown state to have that code fail
854 * to create the device.
855 */
856 device = node->data;
857 if (atomic_xchg(&device->state,
858 FW_DEVICE_SHUTDOWN) == FW_DEVICE_RUNNING) {
859 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
860 schedule_delayed_work(&device->work, 0);
861 }
862 break;
863 }
864 }
This page took 0.080621 seconds and 5 git commands to generate.