firewire: fw-sbp2: set single-phase retry_limit
[deliverable/linux.git] / drivers / firewire / fw-ohci.c
1 /*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32
33 #include <asm/page.h>
34 #include <asm/system.h>
35
36 #ifdef CONFIG_PPC_PMAC
37 #include <asm/pmac_feature.h>
38 #endif
39
40 #include "fw-ohci.h"
41 #include "fw-transaction.h"
42
43 #define DESCRIPTOR_OUTPUT_MORE 0
44 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
45 #define DESCRIPTOR_INPUT_MORE (2 << 12)
46 #define DESCRIPTOR_INPUT_LAST (3 << 12)
47 #define DESCRIPTOR_STATUS (1 << 11)
48 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
49 #define DESCRIPTOR_PING (1 << 7)
50 #define DESCRIPTOR_YY (1 << 6)
51 #define DESCRIPTOR_NO_IRQ (0 << 4)
52 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
53 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
54 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
55 #define DESCRIPTOR_WAIT (3 << 0)
56
57 struct descriptor {
58 __le16 req_count;
59 __le16 control;
60 __le32 data_address;
61 __le32 branch_address;
62 __le16 res_count;
63 __le16 transfer_status;
64 } __attribute__((aligned(16)));
65
66 struct db_descriptor {
67 __le16 first_size;
68 __le16 control;
69 __le16 second_req_count;
70 __le16 first_req_count;
71 __le32 branch_address;
72 __le16 second_res_count;
73 __le16 first_res_count;
74 __le32 reserved0;
75 __le32 first_buffer;
76 __le32 second_buffer;
77 __le32 reserved1;
78 } __attribute__((aligned(16)));
79
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
84
85 struct ar_buffer {
86 struct descriptor descriptor;
87 struct ar_buffer *next;
88 __le32 data[0];
89 };
90
91 struct ar_context {
92 struct fw_ohci *ohci;
93 struct ar_buffer *current_buffer;
94 struct ar_buffer *last_buffer;
95 void *pointer;
96 u32 regs;
97 struct tasklet_struct tasklet;
98 };
99
100 struct context;
101
102 typedef int (*descriptor_callback_t)(struct context *ctx,
103 struct descriptor *d,
104 struct descriptor *last);
105
106 /*
107 * A buffer that contains a block of DMA-able coherent memory used for
108 * storing a portion of a DMA descriptor program.
109 */
110 struct descriptor_buffer {
111 struct list_head list;
112 dma_addr_t buffer_bus;
113 size_t buffer_size;
114 size_t used;
115 struct descriptor buffer[0];
116 };
117
118 struct context {
119 struct fw_ohci *ohci;
120 u32 regs;
121 int total_allocation;
122
123 /*
124 * List of page-sized buffers for storing DMA descriptors.
125 * Head of list contains buffers in use and tail of list contains
126 * free buffers.
127 */
128 struct list_head buffer_list;
129
130 /*
131 * Pointer to a buffer inside buffer_list that contains the tail
132 * end of the current DMA program.
133 */
134 struct descriptor_buffer *buffer_tail;
135
136 /*
137 * The descriptor containing the branch address of the first
138 * descriptor that has not yet been filled by the device.
139 */
140 struct descriptor *last;
141
142 /*
143 * The last descriptor in the DMA program. It contains the branch
144 * address that must be updated upon appending a new descriptor.
145 */
146 struct descriptor *prev;
147
148 descriptor_callback_t callback;
149
150 struct tasklet_struct tasklet;
151 };
152
153 #define IT_HEADER_SY(v) ((v) << 0)
154 #define IT_HEADER_TCODE(v) ((v) << 4)
155 #define IT_HEADER_CHANNEL(v) ((v) << 8)
156 #define IT_HEADER_TAG(v) ((v) << 14)
157 #define IT_HEADER_SPEED(v) ((v) << 16)
158 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
159
160 struct iso_context {
161 struct fw_iso_context base;
162 struct context context;
163 int excess_bytes;
164 void *header;
165 size_t header_length;
166 };
167
168 #define CONFIG_ROM_SIZE 1024
169
170 struct fw_ohci {
171 struct fw_card card;
172
173 u32 version;
174 __iomem char *registers;
175 dma_addr_t self_id_bus;
176 __le32 *self_id_cpu;
177 struct tasklet_struct bus_reset_tasklet;
178 int node_id;
179 int generation;
180 int request_generation;
181 u32 bus_seconds;
182 bool old_uninorth;
183
184 /*
185 * Spinlock for accessing fw_ohci data. Never call out of
186 * this driver with this lock held.
187 */
188 spinlock_t lock;
189 u32 self_id_buffer[512];
190
191 /* Config rom buffers */
192 __be32 *config_rom;
193 dma_addr_t config_rom_bus;
194 __be32 *next_config_rom;
195 dma_addr_t next_config_rom_bus;
196 u32 next_header;
197
198 struct ar_context ar_request_ctx;
199 struct ar_context ar_response_ctx;
200 struct context at_request_ctx;
201 struct context at_response_ctx;
202
203 u32 it_context_mask;
204 struct iso_context *it_context_list;
205 u32 ir_context_mask;
206 struct iso_context *ir_context_list;
207 };
208
209 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
210 {
211 return container_of(card, struct fw_ohci, card);
212 }
213
214 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
215 #define IR_CONTEXT_BUFFER_FILL 0x80000000
216 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
217 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
218 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
219 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
220
221 #define CONTEXT_RUN 0x8000
222 #define CONTEXT_WAKE 0x1000
223 #define CONTEXT_DEAD 0x0800
224 #define CONTEXT_ACTIVE 0x0400
225
226 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
227 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
228 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
229
230 #define FW_OHCI_MAJOR 240
231 #define OHCI1394_REGISTER_SIZE 0x800
232 #define OHCI_LOOP_COUNT 500
233 #define OHCI1394_PCI_HCI_Control 0x40
234 #define SELF_ID_BUF_SIZE 0x800
235 #define OHCI_TCODE_PHY_PACKET 0x0e
236 #define OHCI_VERSION_1_1 0x010010
237
238 static char ohci_driver_name[] = KBUILD_MODNAME;
239
240 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
241 {
242 writel(data, ohci->registers + offset);
243 }
244
245 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
246 {
247 return readl(ohci->registers + offset);
248 }
249
250 static inline void flush_writes(const struct fw_ohci *ohci)
251 {
252 /* Do a dummy read to flush writes. */
253 reg_read(ohci, OHCI1394_Version);
254 }
255
256 static int
257 ohci_update_phy_reg(struct fw_card *card, int addr,
258 int clear_bits, int set_bits)
259 {
260 struct fw_ohci *ohci = fw_ohci(card);
261 u32 val, old;
262
263 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
264 flush_writes(ohci);
265 msleep(2);
266 val = reg_read(ohci, OHCI1394_PhyControl);
267 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
268 fw_error("failed to set phy reg bits.\n");
269 return -EBUSY;
270 }
271
272 old = OHCI1394_PhyControl_ReadData(val);
273 old = (old & ~clear_bits) | set_bits;
274 reg_write(ohci, OHCI1394_PhyControl,
275 OHCI1394_PhyControl_Write(addr, old));
276
277 return 0;
278 }
279
280 static int ar_context_add_page(struct ar_context *ctx)
281 {
282 struct device *dev = ctx->ohci->card.device;
283 struct ar_buffer *ab;
284 dma_addr_t ab_bus;
285 size_t offset;
286
287 ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
288 if (ab == NULL)
289 return -ENOMEM;
290
291 ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
292 if (dma_mapping_error(ab_bus)) {
293 free_page((unsigned long) ab);
294 return -ENOMEM;
295 }
296
297 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
298 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
299 DESCRIPTOR_STATUS |
300 DESCRIPTOR_BRANCH_ALWAYS);
301 offset = offsetof(struct ar_buffer, data);
302 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
303 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
304 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
305 ab->descriptor.branch_address = 0;
306
307 dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
308
309 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
310 ctx->last_buffer->next = ab;
311 ctx->last_buffer = ab;
312
313 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
314 flush_writes(ctx->ohci);
315
316 return 0;
317 }
318
319 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
320 #define cond_le32_to_cpu(v) \
321 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
322 #else
323 #define cond_le32_to_cpu(v) le32_to_cpu(v)
324 #endif
325
326 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
327 {
328 struct fw_ohci *ohci = ctx->ohci;
329 struct fw_packet p;
330 u32 status, length, tcode;
331
332 p.header[0] = cond_le32_to_cpu(buffer[0]);
333 p.header[1] = cond_le32_to_cpu(buffer[1]);
334 p.header[2] = cond_le32_to_cpu(buffer[2]);
335
336 tcode = (p.header[0] >> 4) & 0x0f;
337 switch (tcode) {
338 case TCODE_WRITE_QUADLET_REQUEST:
339 case TCODE_READ_QUADLET_RESPONSE:
340 p.header[3] = (__force __u32) buffer[3];
341 p.header_length = 16;
342 p.payload_length = 0;
343 break;
344
345 case TCODE_READ_BLOCK_REQUEST :
346 p.header[3] = cond_le32_to_cpu(buffer[3]);
347 p.header_length = 16;
348 p.payload_length = 0;
349 break;
350
351 case TCODE_WRITE_BLOCK_REQUEST:
352 case TCODE_READ_BLOCK_RESPONSE:
353 case TCODE_LOCK_REQUEST:
354 case TCODE_LOCK_RESPONSE:
355 p.header[3] = cond_le32_to_cpu(buffer[3]);
356 p.header_length = 16;
357 p.payload_length = p.header[3] >> 16;
358 break;
359
360 case TCODE_WRITE_RESPONSE:
361 case TCODE_READ_QUADLET_REQUEST:
362 case OHCI_TCODE_PHY_PACKET:
363 p.header_length = 12;
364 p.payload_length = 0;
365 break;
366 }
367
368 p.payload = (void *) buffer + p.header_length;
369
370 /* FIXME: What to do about evt_* errors? */
371 length = (p.header_length + p.payload_length + 3) / 4;
372 status = cond_le32_to_cpu(buffer[length]);
373
374 p.ack = ((status >> 16) & 0x1f) - 16;
375 p.speed = (status >> 21) & 0x7;
376 p.timestamp = status & 0xffff;
377 p.generation = ohci->request_generation;
378
379 /*
380 * The OHCI bus reset handler synthesizes a phy packet with
381 * the new generation number when a bus reset happens (see
382 * section 8.4.2.3). This helps us determine when a request
383 * was received and make sure we send the response in the same
384 * generation. We only need this for requests; for responses
385 * we use the unique tlabel for finding the matching
386 * request.
387 */
388
389 if (p.ack + 16 == 0x09)
390 ohci->request_generation = (p.header[2] >> 16) & 0xff;
391 else if (ctx == &ohci->ar_request_ctx)
392 fw_core_handle_request(&ohci->card, &p);
393 else
394 fw_core_handle_response(&ohci->card, &p);
395
396 return buffer + length + 1;
397 }
398
399 static void ar_context_tasklet(unsigned long data)
400 {
401 struct ar_context *ctx = (struct ar_context *)data;
402 struct fw_ohci *ohci = ctx->ohci;
403 struct ar_buffer *ab;
404 struct descriptor *d;
405 void *buffer, *end;
406
407 ab = ctx->current_buffer;
408 d = &ab->descriptor;
409
410 if (d->res_count == 0) {
411 size_t size, rest, offset;
412
413 /*
414 * This descriptor is finished and we may have a
415 * packet split across this and the next buffer. We
416 * reuse the page for reassembling the split packet.
417 */
418
419 offset = offsetof(struct ar_buffer, data);
420 dma_unmap_single(ohci->card.device,
421 le32_to_cpu(ab->descriptor.data_address) - offset,
422 PAGE_SIZE, DMA_BIDIRECTIONAL);
423
424 buffer = ab;
425 ab = ab->next;
426 d = &ab->descriptor;
427 size = buffer + PAGE_SIZE - ctx->pointer;
428 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
429 memmove(buffer, ctx->pointer, size);
430 memcpy(buffer + size, ab->data, rest);
431 ctx->current_buffer = ab;
432 ctx->pointer = (void *) ab->data + rest;
433 end = buffer + size + rest;
434
435 while (buffer < end)
436 buffer = handle_ar_packet(ctx, buffer);
437
438 free_page((unsigned long)buffer);
439 ar_context_add_page(ctx);
440 } else {
441 buffer = ctx->pointer;
442 ctx->pointer = end =
443 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
444
445 while (buffer < end)
446 buffer = handle_ar_packet(ctx, buffer);
447 }
448 }
449
450 static int
451 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
452 {
453 struct ar_buffer ab;
454
455 ctx->regs = regs;
456 ctx->ohci = ohci;
457 ctx->last_buffer = &ab;
458 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
459
460 ar_context_add_page(ctx);
461 ar_context_add_page(ctx);
462 ctx->current_buffer = ab.next;
463 ctx->pointer = ctx->current_buffer->data;
464
465 return 0;
466 }
467
468 static void ar_context_run(struct ar_context *ctx)
469 {
470 struct ar_buffer *ab = ctx->current_buffer;
471 dma_addr_t ab_bus;
472 size_t offset;
473
474 offset = offsetof(struct ar_buffer, data);
475 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
476
477 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
478 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
479 flush_writes(ctx->ohci);
480 }
481
482 static struct descriptor *
483 find_branch_descriptor(struct descriptor *d, int z)
484 {
485 int b, key;
486
487 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
488 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
489
490 /* figure out which descriptor the branch address goes in */
491 if (z == 2 && (b == 3 || key == 2))
492 return d;
493 else
494 return d + z - 1;
495 }
496
497 static void context_tasklet(unsigned long data)
498 {
499 struct context *ctx = (struct context *) data;
500 struct descriptor *d, *last;
501 u32 address;
502 int z;
503 struct descriptor_buffer *desc;
504
505 desc = list_entry(ctx->buffer_list.next,
506 struct descriptor_buffer, list);
507 last = ctx->last;
508 while (last->branch_address != 0) {
509 struct descriptor_buffer *old_desc = desc;
510 address = le32_to_cpu(last->branch_address);
511 z = address & 0xf;
512 address &= ~0xf;
513
514 /* If the branch address points to a buffer outside of the
515 * current buffer, advance to the next buffer. */
516 if (address < desc->buffer_bus ||
517 address >= desc->buffer_bus + desc->used)
518 desc = list_entry(desc->list.next,
519 struct descriptor_buffer, list);
520 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
521 last = find_branch_descriptor(d, z);
522
523 if (!ctx->callback(ctx, d, last))
524 break;
525
526 if (old_desc != desc) {
527 /* If we've advanced to the next buffer, move the
528 * previous buffer to the free list. */
529 unsigned long flags;
530 old_desc->used = 0;
531 spin_lock_irqsave(&ctx->ohci->lock, flags);
532 list_move_tail(&old_desc->list, &ctx->buffer_list);
533 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
534 }
535 ctx->last = last;
536 }
537 }
538
539 /*
540 * Allocate a new buffer and add it to the list of free buffers for this
541 * context. Must be called with ohci->lock held.
542 */
543 static int
544 context_add_buffer(struct context *ctx)
545 {
546 struct descriptor_buffer *desc;
547 dma_addr_t bus_addr;
548 int offset;
549
550 /*
551 * 16MB of descriptors should be far more than enough for any DMA
552 * program. This will catch run-away userspace or DoS attacks.
553 */
554 if (ctx->total_allocation >= 16*1024*1024)
555 return -ENOMEM;
556
557 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
558 &bus_addr, GFP_ATOMIC);
559 if (!desc)
560 return -ENOMEM;
561
562 offset = (void *)&desc->buffer - (void *)desc;
563 desc->buffer_size = PAGE_SIZE - offset;
564 desc->buffer_bus = bus_addr + offset;
565 desc->used = 0;
566
567 list_add_tail(&desc->list, &ctx->buffer_list);
568 ctx->total_allocation += PAGE_SIZE;
569
570 return 0;
571 }
572
573 static int
574 context_init(struct context *ctx, struct fw_ohci *ohci,
575 u32 regs, descriptor_callback_t callback)
576 {
577 ctx->ohci = ohci;
578 ctx->regs = regs;
579 ctx->total_allocation = 0;
580
581 INIT_LIST_HEAD(&ctx->buffer_list);
582 if (context_add_buffer(ctx) < 0)
583 return -ENOMEM;
584
585 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
586 struct descriptor_buffer, list);
587
588 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
589 ctx->callback = callback;
590
591 /*
592 * We put a dummy descriptor in the buffer that has a NULL
593 * branch address and looks like it's been sent. That way we
594 * have a descriptor to append DMA programs to.
595 */
596 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
597 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
598 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
599 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
600 ctx->last = ctx->buffer_tail->buffer;
601 ctx->prev = ctx->buffer_tail->buffer;
602
603 return 0;
604 }
605
606 static void
607 context_release(struct context *ctx)
608 {
609 struct fw_card *card = &ctx->ohci->card;
610 struct descriptor_buffer *desc, *tmp;
611
612 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
613 dma_free_coherent(card->device, PAGE_SIZE, desc,
614 desc->buffer_bus -
615 ((void *)&desc->buffer - (void *)desc));
616 }
617
618 /* Must be called with ohci->lock held */
619 static struct descriptor *
620 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
621 {
622 struct descriptor *d = NULL;
623 struct descriptor_buffer *desc = ctx->buffer_tail;
624
625 if (z * sizeof(*d) > desc->buffer_size)
626 return NULL;
627
628 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
629 /* No room for the descriptor in this buffer, so advance to the
630 * next one. */
631
632 if (desc->list.next == &ctx->buffer_list) {
633 /* If there is no free buffer next in the list,
634 * allocate one. */
635 if (context_add_buffer(ctx) < 0)
636 return NULL;
637 }
638 desc = list_entry(desc->list.next,
639 struct descriptor_buffer, list);
640 ctx->buffer_tail = desc;
641 }
642
643 d = desc->buffer + desc->used / sizeof(*d);
644 memset(d, 0, z * sizeof(*d));
645 *d_bus = desc->buffer_bus + desc->used;
646
647 return d;
648 }
649
650 static void context_run(struct context *ctx, u32 extra)
651 {
652 struct fw_ohci *ohci = ctx->ohci;
653
654 reg_write(ohci, COMMAND_PTR(ctx->regs),
655 le32_to_cpu(ctx->last->branch_address));
656 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
657 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
658 flush_writes(ohci);
659 }
660
661 static void context_append(struct context *ctx,
662 struct descriptor *d, int z, int extra)
663 {
664 dma_addr_t d_bus;
665 struct descriptor_buffer *desc = ctx->buffer_tail;
666
667 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
668
669 desc->used += (z + extra) * sizeof(*d);
670 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
671 ctx->prev = find_branch_descriptor(d, z);
672
673 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
674 flush_writes(ctx->ohci);
675 }
676
677 static void context_stop(struct context *ctx)
678 {
679 u32 reg;
680 int i;
681
682 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
683 flush_writes(ctx->ohci);
684
685 for (i = 0; i < 10; i++) {
686 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
687 if ((reg & CONTEXT_ACTIVE) == 0)
688 break;
689
690 fw_notify("context_stop: still active (0x%08x)\n", reg);
691 mdelay(1);
692 }
693 }
694
695 struct driver_data {
696 struct fw_packet *packet;
697 };
698
699 /*
700 * This function apppends a packet to the DMA queue for transmission.
701 * Must always be called with the ochi->lock held to ensure proper
702 * generation handling and locking around packet queue manipulation.
703 */
704 static int
705 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
706 {
707 struct fw_ohci *ohci = ctx->ohci;
708 dma_addr_t d_bus, uninitialized_var(payload_bus);
709 struct driver_data *driver_data;
710 struct descriptor *d, *last;
711 __le32 *header;
712 int z, tcode;
713 u32 reg;
714
715 d = context_get_descriptors(ctx, 4, &d_bus);
716 if (d == NULL) {
717 packet->ack = RCODE_SEND_ERROR;
718 return -1;
719 }
720
721 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
722 d[0].res_count = cpu_to_le16(packet->timestamp);
723
724 /*
725 * The DMA format for asyncronous link packets is different
726 * from the IEEE1394 layout, so shift the fields around
727 * accordingly. If header_length is 8, it's a PHY packet, to
728 * which we need to prepend an extra quadlet.
729 */
730
731 header = (__le32 *) &d[1];
732 if (packet->header_length > 8) {
733 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
734 (packet->speed << 16));
735 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
736 (packet->header[0] & 0xffff0000));
737 header[2] = cpu_to_le32(packet->header[2]);
738
739 tcode = (packet->header[0] >> 4) & 0x0f;
740 if (TCODE_IS_BLOCK_PACKET(tcode))
741 header[3] = cpu_to_le32(packet->header[3]);
742 else
743 header[3] = (__force __le32) packet->header[3];
744
745 d[0].req_count = cpu_to_le16(packet->header_length);
746 } else {
747 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
748 (packet->speed << 16));
749 header[1] = cpu_to_le32(packet->header[0]);
750 header[2] = cpu_to_le32(packet->header[1]);
751 d[0].req_count = cpu_to_le16(12);
752 }
753
754 driver_data = (struct driver_data *) &d[3];
755 driver_data->packet = packet;
756 packet->driver_data = driver_data;
757
758 if (packet->payload_length > 0) {
759 payload_bus =
760 dma_map_single(ohci->card.device, packet->payload,
761 packet->payload_length, DMA_TO_DEVICE);
762 if (dma_mapping_error(payload_bus)) {
763 packet->ack = RCODE_SEND_ERROR;
764 return -1;
765 }
766
767 d[2].req_count = cpu_to_le16(packet->payload_length);
768 d[2].data_address = cpu_to_le32(payload_bus);
769 last = &d[2];
770 z = 3;
771 } else {
772 last = &d[0];
773 z = 2;
774 }
775
776 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
777 DESCRIPTOR_IRQ_ALWAYS |
778 DESCRIPTOR_BRANCH_ALWAYS);
779
780 /* FIXME: Document how the locking works. */
781 if (ohci->generation != packet->generation) {
782 if (packet->payload_length > 0)
783 dma_unmap_single(ohci->card.device, payload_bus,
784 packet->payload_length, DMA_TO_DEVICE);
785 packet->ack = RCODE_GENERATION;
786 return -1;
787 }
788
789 context_append(ctx, d, z, 4 - z);
790
791 /* If the context isn't already running, start it up. */
792 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
793 if ((reg & CONTEXT_RUN) == 0)
794 context_run(ctx, 0);
795
796 return 0;
797 }
798
799 static int handle_at_packet(struct context *context,
800 struct descriptor *d,
801 struct descriptor *last)
802 {
803 struct driver_data *driver_data;
804 struct fw_packet *packet;
805 struct fw_ohci *ohci = context->ohci;
806 dma_addr_t payload_bus;
807 int evt;
808
809 if (last->transfer_status == 0)
810 /* This descriptor isn't done yet, stop iteration. */
811 return 0;
812
813 driver_data = (struct driver_data *) &d[3];
814 packet = driver_data->packet;
815 if (packet == NULL)
816 /* This packet was cancelled, just continue. */
817 return 1;
818
819 payload_bus = le32_to_cpu(last->data_address);
820 if (payload_bus != 0)
821 dma_unmap_single(ohci->card.device, payload_bus,
822 packet->payload_length, DMA_TO_DEVICE);
823
824 evt = le16_to_cpu(last->transfer_status) & 0x1f;
825 packet->timestamp = le16_to_cpu(last->res_count);
826
827 switch (evt) {
828 case OHCI1394_evt_timeout:
829 /* Async response transmit timed out. */
830 packet->ack = RCODE_CANCELLED;
831 break;
832
833 case OHCI1394_evt_flushed:
834 /*
835 * The packet was flushed should give same error as
836 * when we try to use a stale generation count.
837 */
838 packet->ack = RCODE_GENERATION;
839 break;
840
841 case OHCI1394_evt_missing_ack:
842 /*
843 * Using a valid (current) generation count, but the
844 * node is not on the bus or not sending acks.
845 */
846 packet->ack = RCODE_NO_ACK;
847 break;
848
849 case ACK_COMPLETE + 0x10:
850 case ACK_PENDING + 0x10:
851 case ACK_BUSY_X + 0x10:
852 case ACK_BUSY_A + 0x10:
853 case ACK_BUSY_B + 0x10:
854 case ACK_DATA_ERROR + 0x10:
855 case ACK_TYPE_ERROR + 0x10:
856 packet->ack = evt - 0x10;
857 break;
858
859 default:
860 packet->ack = RCODE_SEND_ERROR;
861 break;
862 }
863
864 packet->callback(packet, &ohci->card, packet->ack);
865
866 return 1;
867 }
868
869 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
870 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
871 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
872 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
873 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
874
875 static void
876 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
877 {
878 struct fw_packet response;
879 int tcode, length, i;
880
881 tcode = HEADER_GET_TCODE(packet->header[0]);
882 if (TCODE_IS_BLOCK_PACKET(tcode))
883 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
884 else
885 length = 4;
886
887 i = csr - CSR_CONFIG_ROM;
888 if (i + length > CONFIG_ROM_SIZE) {
889 fw_fill_response(&response, packet->header,
890 RCODE_ADDRESS_ERROR, NULL, 0);
891 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
892 fw_fill_response(&response, packet->header,
893 RCODE_TYPE_ERROR, NULL, 0);
894 } else {
895 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
896 (void *) ohci->config_rom + i, length);
897 }
898
899 fw_core_handle_response(&ohci->card, &response);
900 }
901
902 static void
903 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
904 {
905 struct fw_packet response;
906 int tcode, length, ext_tcode, sel;
907 __be32 *payload, lock_old;
908 u32 lock_arg, lock_data;
909
910 tcode = HEADER_GET_TCODE(packet->header[0]);
911 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
912 payload = packet->payload;
913 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
914
915 if (tcode == TCODE_LOCK_REQUEST &&
916 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
917 lock_arg = be32_to_cpu(payload[0]);
918 lock_data = be32_to_cpu(payload[1]);
919 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
920 lock_arg = 0;
921 lock_data = 0;
922 } else {
923 fw_fill_response(&response, packet->header,
924 RCODE_TYPE_ERROR, NULL, 0);
925 goto out;
926 }
927
928 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
929 reg_write(ohci, OHCI1394_CSRData, lock_data);
930 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
931 reg_write(ohci, OHCI1394_CSRControl, sel);
932
933 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
934 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
935 else
936 fw_notify("swap not done yet\n");
937
938 fw_fill_response(&response, packet->header,
939 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
940 out:
941 fw_core_handle_response(&ohci->card, &response);
942 }
943
944 static void
945 handle_local_request(struct context *ctx, struct fw_packet *packet)
946 {
947 u64 offset;
948 u32 csr;
949
950 if (ctx == &ctx->ohci->at_request_ctx) {
951 packet->ack = ACK_PENDING;
952 packet->callback(packet, &ctx->ohci->card, packet->ack);
953 }
954
955 offset =
956 ((unsigned long long)
957 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
958 packet->header[2];
959 csr = offset - CSR_REGISTER_BASE;
960
961 /* Handle config rom reads. */
962 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
963 handle_local_rom(ctx->ohci, packet, csr);
964 else switch (csr) {
965 case CSR_BUS_MANAGER_ID:
966 case CSR_BANDWIDTH_AVAILABLE:
967 case CSR_CHANNELS_AVAILABLE_HI:
968 case CSR_CHANNELS_AVAILABLE_LO:
969 handle_local_lock(ctx->ohci, packet, csr);
970 break;
971 default:
972 if (ctx == &ctx->ohci->at_request_ctx)
973 fw_core_handle_request(&ctx->ohci->card, packet);
974 else
975 fw_core_handle_response(&ctx->ohci->card, packet);
976 break;
977 }
978
979 if (ctx == &ctx->ohci->at_response_ctx) {
980 packet->ack = ACK_COMPLETE;
981 packet->callback(packet, &ctx->ohci->card, packet->ack);
982 }
983 }
984
985 static void
986 at_context_transmit(struct context *ctx, struct fw_packet *packet)
987 {
988 unsigned long flags;
989 int retval;
990
991 spin_lock_irqsave(&ctx->ohci->lock, flags);
992
993 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
994 ctx->ohci->generation == packet->generation) {
995 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
996 handle_local_request(ctx, packet);
997 return;
998 }
999
1000 retval = at_context_queue_packet(ctx, packet);
1001 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1002
1003 if (retval < 0)
1004 packet->callback(packet, &ctx->ohci->card, packet->ack);
1005
1006 }
1007
1008 static void bus_reset_tasklet(unsigned long data)
1009 {
1010 struct fw_ohci *ohci = (struct fw_ohci *)data;
1011 int self_id_count, i, j, reg;
1012 int generation, new_generation;
1013 unsigned long flags;
1014 void *free_rom = NULL;
1015 dma_addr_t free_rom_bus = 0;
1016
1017 reg = reg_read(ohci, OHCI1394_NodeID);
1018 if (!(reg & OHCI1394_NodeID_idValid)) {
1019 fw_notify("node ID not valid, new bus reset in progress\n");
1020 return;
1021 }
1022 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1023 fw_notify("malconfigured bus\n");
1024 return;
1025 }
1026 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1027 OHCI1394_NodeID_nodeNumber);
1028
1029 /*
1030 * The count in the SelfIDCount register is the number of
1031 * bytes in the self ID receive buffer. Since we also receive
1032 * the inverted quadlets and a header quadlet, we shift one
1033 * bit extra to get the actual number of self IDs.
1034 */
1035
1036 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
1037 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1038 rmb();
1039
1040 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1041 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
1042 fw_error("inconsistent self IDs\n");
1043 ohci->self_id_buffer[j] =
1044 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1045 }
1046 rmb();
1047
1048 /*
1049 * Check the consistency of the self IDs we just read. The
1050 * problem we face is that a new bus reset can start while we
1051 * read out the self IDs from the DMA buffer. If this happens,
1052 * the DMA buffer will be overwritten with new self IDs and we
1053 * will read out inconsistent data. The OHCI specification
1054 * (section 11.2) recommends a technique similar to
1055 * linux/seqlock.h, where we remember the generation of the
1056 * self IDs in the buffer before reading them out and compare
1057 * it to the current generation after reading them out. If
1058 * the two generations match we know we have a consistent set
1059 * of self IDs.
1060 */
1061
1062 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1063 if (new_generation != generation) {
1064 fw_notify("recursive bus reset detected, "
1065 "discarding self ids\n");
1066 return;
1067 }
1068
1069 /* FIXME: Document how the locking works. */
1070 spin_lock_irqsave(&ohci->lock, flags);
1071
1072 ohci->generation = generation;
1073 context_stop(&ohci->at_request_ctx);
1074 context_stop(&ohci->at_response_ctx);
1075 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1076
1077 /*
1078 * This next bit is unrelated to the AT context stuff but we
1079 * have to do it under the spinlock also. If a new config rom
1080 * was set up before this reset, the old one is now no longer
1081 * in use and we can free it. Update the config rom pointers
1082 * to point to the current config rom and clear the
1083 * next_config_rom pointer so a new udpate can take place.
1084 */
1085
1086 if (ohci->next_config_rom != NULL) {
1087 if (ohci->next_config_rom != ohci->config_rom) {
1088 free_rom = ohci->config_rom;
1089 free_rom_bus = ohci->config_rom_bus;
1090 }
1091 ohci->config_rom = ohci->next_config_rom;
1092 ohci->config_rom_bus = ohci->next_config_rom_bus;
1093 ohci->next_config_rom = NULL;
1094
1095 /*
1096 * Restore config_rom image and manually update
1097 * config_rom registers. Writing the header quadlet
1098 * will indicate that the config rom is ready, so we
1099 * do that last.
1100 */
1101 reg_write(ohci, OHCI1394_BusOptions,
1102 be32_to_cpu(ohci->config_rom[2]));
1103 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1104 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1105 }
1106
1107 spin_unlock_irqrestore(&ohci->lock, flags);
1108
1109 if (free_rom)
1110 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1111 free_rom, free_rom_bus);
1112
1113 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1114 self_id_count, ohci->self_id_buffer);
1115 }
1116
1117 static irqreturn_t irq_handler(int irq, void *data)
1118 {
1119 struct fw_ohci *ohci = data;
1120 u32 event, iso_event, cycle_time;
1121 int i;
1122
1123 event = reg_read(ohci, OHCI1394_IntEventClear);
1124
1125 if (!event || !~event)
1126 return IRQ_NONE;
1127
1128 reg_write(ohci, OHCI1394_IntEventClear, event);
1129
1130 if (event & OHCI1394_selfIDComplete)
1131 tasklet_schedule(&ohci->bus_reset_tasklet);
1132
1133 if (event & OHCI1394_RQPkt)
1134 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1135
1136 if (event & OHCI1394_RSPkt)
1137 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1138
1139 if (event & OHCI1394_reqTxComplete)
1140 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1141
1142 if (event & OHCI1394_respTxComplete)
1143 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1144
1145 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1146 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1147
1148 while (iso_event) {
1149 i = ffs(iso_event) - 1;
1150 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1151 iso_event &= ~(1 << i);
1152 }
1153
1154 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1155 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1156
1157 while (iso_event) {
1158 i = ffs(iso_event) - 1;
1159 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1160 iso_event &= ~(1 << i);
1161 }
1162
1163 if (unlikely(event & OHCI1394_postedWriteErr))
1164 fw_error("PCI posted write error\n");
1165
1166 if (unlikely(event & OHCI1394_cycleTooLong)) {
1167 if (printk_ratelimit())
1168 fw_notify("isochronous cycle too long\n");
1169 reg_write(ohci, OHCI1394_LinkControlSet,
1170 OHCI1394_LinkControl_cycleMaster);
1171 }
1172
1173 if (event & OHCI1394_cycle64Seconds) {
1174 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1175 if ((cycle_time & 0x80000000) == 0)
1176 ohci->bus_seconds++;
1177 }
1178
1179 return IRQ_HANDLED;
1180 }
1181
1182 static int software_reset(struct fw_ohci *ohci)
1183 {
1184 int i;
1185
1186 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1187
1188 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1189 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1190 OHCI1394_HCControl_softReset) == 0)
1191 return 0;
1192 msleep(1);
1193 }
1194
1195 return -EBUSY;
1196 }
1197
1198 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1199 {
1200 struct fw_ohci *ohci = fw_ohci(card);
1201 struct pci_dev *dev = to_pci_dev(card->device);
1202
1203 if (software_reset(ohci)) {
1204 fw_error("Failed to reset ohci card.\n");
1205 return -EBUSY;
1206 }
1207
1208 /*
1209 * Now enable LPS, which we need in order to start accessing
1210 * most of the registers. In fact, on some cards (ALI M5251),
1211 * accessing registers in the SClk domain without LPS enabled
1212 * will lock up the machine. Wait 50msec to make sure we have
1213 * full link enabled.
1214 */
1215 reg_write(ohci, OHCI1394_HCControlSet,
1216 OHCI1394_HCControl_LPS |
1217 OHCI1394_HCControl_postedWriteEnable);
1218 flush_writes(ohci);
1219 msleep(50);
1220
1221 reg_write(ohci, OHCI1394_HCControlClear,
1222 OHCI1394_HCControl_noByteSwapData);
1223
1224 reg_write(ohci, OHCI1394_LinkControlSet,
1225 OHCI1394_LinkControl_rcvSelfID |
1226 OHCI1394_LinkControl_cycleTimerEnable |
1227 OHCI1394_LinkControl_cycleMaster);
1228
1229 reg_write(ohci, OHCI1394_ATRetries,
1230 OHCI1394_MAX_AT_REQ_RETRIES |
1231 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1232 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1233
1234 ar_context_run(&ohci->ar_request_ctx);
1235 ar_context_run(&ohci->ar_response_ctx);
1236
1237 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1238 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1239 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1240 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1241 reg_write(ohci, OHCI1394_IntMaskSet,
1242 OHCI1394_selfIDComplete |
1243 OHCI1394_RQPkt | OHCI1394_RSPkt |
1244 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1245 OHCI1394_isochRx | OHCI1394_isochTx |
1246 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1247 OHCI1394_cycle64Seconds | OHCI1394_masterIntEnable);
1248
1249 /* Activate link_on bit and contender bit in our self ID packets.*/
1250 if (ohci_update_phy_reg(card, 4, 0,
1251 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1252 return -EIO;
1253
1254 /*
1255 * When the link is not yet enabled, the atomic config rom
1256 * update mechanism described below in ohci_set_config_rom()
1257 * is not active. We have to update ConfigRomHeader and
1258 * BusOptions manually, and the write to ConfigROMmap takes
1259 * effect immediately. We tie this to the enabling of the
1260 * link, so we have a valid config rom before enabling - the
1261 * OHCI requires that ConfigROMhdr and BusOptions have valid
1262 * values before enabling.
1263 *
1264 * However, when the ConfigROMmap is written, some controllers
1265 * always read back quadlets 0 and 2 from the config rom to
1266 * the ConfigRomHeader and BusOptions registers on bus reset.
1267 * They shouldn't do that in this initial case where the link
1268 * isn't enabled. This means we have to use the same
1269 * workaround here, setting the bus header to 0 and then write
1270 * the right values in the bus reset tasklet.
1271 */
1272
1273 if (config_rom) {
1274 ohci->next_config_rom =
1275 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1276 &ohci->next_config_rom_bus,
1277 GFP_KERNEL);
1278 if (ohci->next_config_rom == NULL)
1279 return -ENOMEM;
1280
1281 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1282 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1283 } else {
1284 /*
1285 * In the suspend case, config_rom is NULL, which
1286 * means that we just reuse the old config rom.
1287 */
1288 ohci->next_config_rom = ohci->config_rom;
1289 ohci->next_config_rom_bus = ohci->config_rom_bus;
1290 }
1291
1292 ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1293 ohci->next_config_rom[0] = 0;
1294 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1295 reg_write(ohci, OHCI1394_BusOptions,
1296 be32_to_cpu(ohci->next_config_rom[2]));
1297 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1298
1299 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1300
1301 if (request_irq(dev->irq, irq_handler,
1302 IRQF_SHARED, ohci_driver_name, ohci)) {
1303 fw_error("Failed to allocate shared interrupt %d.\n",
1304 dev->irq);
1305 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1306 ohci->config_rom, ohci->config_rom_bus);
1307 return -EIO;
1308 }
1309
1310 reg_write(ohci, OHCI1394_HCControlSet,
1311 OHCI1394_HCControl_linkEnable |
1312 OHCI1394_HCControl_BIBimageValid);
1313 flush_writes(ohci);
1314
1315 /*
1316 * We are ready to go, initiate bus reset to finish the
1317 * initialization.
1318 */
1319
1320 fw_core_initiate_bus_reset(&ohci->card, 1);
1321
1322 return 0;
1323 }
1324
1325 static int
1326 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1327 {
1328 struct fw_ohci *ohci;
1329 unsigned long flags;
1330 int retval = -EBUSY;
1331 __be32 *next_config_rom;
1332 dma_addr_t next_config_rom_bus;
1333
1334 ohci = fw_ohci(card);
1335
1336 /*
1337 * When the OHCI controller is enabled, the config rom update
1338 * mechanism is a bit tricky, but easy enough to use. See
1339 * section 5.5.6 in the OHCI specification.
1340 *
1341 * The OHCI controller caches the new config rom address in a
1342 * shadow register (ConfigROMmapNext) and needs a bus reset
1343 * for the changes to take place. When the bus reset is
1344 * detected, the controller loads the new values for the
1345 * ConfigRomHeader and BusOptions registers from the specified
1346 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1347 * shadow register. All automatically and atomically.
1348 *
1349 * Now, there's a twist to this story. The automatic load of
1350 * ConfigRomHeader and BusOptions doesn't honor the
1351 * noByteSwapData bit, so with a be32 config rom, the
1352 * controller will load be32 values in to these registers
1353 * during the atomic update, even on litte endian
1354 * architectures. The workaround we use is to put a 0 in the
1355 * header quadlet; 0 is endian agnostic and means that the
1356 * config rom isn't ready yet. In the bus reset tasklet we
1357 * then set up the real values for the two registers.
1358 *
1359 * We use ohci->lock to avoid racing with the code that sets
1360 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1361 */
1362
1363 next_config_rom =
1364 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1365 &next_config_rom_bus, GFP_KERNEL);
1366 if (next_config_rom == NULL)
1367 return -ENOMEM;
1368
1369 spin_lock_irqsave(&ohci->lock, flags);
1370
1371 if (ohci->next_config_rom == NULL) {
1372 ohci->next_config_rom = next_config_rom;
1373 ohci->next_config_rom_bus = next_config_rom_bus;
1374
1375 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1376 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1377 length * 4);
1378
1379 ohci->next_header = config_rom[0];
1380 ohci->next_config_rom[0] = 0;
1381
1382 reg_write(ohci, OHCI1394_ConfigROMmap,
1383 ohci->next_config_rom_bus);
1384 retval = 0;
1385 }
1386
1387 spin_unlock_irqrestore(&ohci->lock, flags);
1388
1389 /*
1390 * Now initiate a bus reset to have the changes take
1391 * effect. We clean up the old config rom memory and DMA
1392 * mappings in the bus reset tasklet, since the OHCI
1393 * controller could need to access it before the bus reset
1394 * takes effect.
1395 */
1396 if (retval == 0)
1397 fw_core_initiate_bus_reset(&ohci->card, 1);
1398 else
1399 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1400 next_config_rom, next_config_rom_bus);
1401
1402 return retval;
1403 }
1404
1405 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1406 {
1407 struct fw_ohci *ohci = fw_ohci(card);
1408
1409 at_context_transmit(&ohci->at_request_ctx, packet);
1410 }
1411
1412 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1413 {
1414 struct fw_ohci *ohci = fw_ohci(card);
1415
1416 at_context_transmit(&ohci->at_response_ctx, packet);
1417 }
1418
1419 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1420 {
1421 struct fw_ohci *ohci = fw_ohci(card);
1422 struct context *ctx = &ohci->at_request_ctx;
1423 struct driver_data *driver_data = packet->driver_data;
1424 int retval = -ENOENT;
1425
1426 tasklet_disable(&ctx->tasklet);
1427
1428 if (packet->ack != 0)
1429 goto out;
1430
1431 driver_data->packet = NULL;
1432 packet->ack = RCODE_CANCELLED;
1433 packet->callback(packet, &ohci->card, packet->ack);
1434 retval = 0;
1435
1436 out:
1437 tasklet_enable(&ctx->tasklet);
1438
1439 return retval;
1440 }
1441
1442 static int
1443 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1444 {
1445 struct fw_ohci *ohci = fw_ohci(card);
1446 unsigned long flags;
1447 int n, retval = 0;
1448
1449 /*
1450 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1451 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1452 */
1453
1454 spin_lock_irqsave(&ohci->lock, flags);
1455
1456 if (ohci->generation != generation) {
1457 retval = -ESTALE;
1458 goto out;
1459 }
1460
1461 /*
1462 * Note, if the node ID contains a non-local bus ID, physical DMA is
1463 * enabled for _all_ nodes on remote buses.
1464 */
1465
1466 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1467 if (n < 32)
1468 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1469 else
1470 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1471
1472 flush_writes(ohci);
1473 out:
1474 spin_unlock_irqrestore(&ohci->lock, flags);
1475 return retval;
1476 }
1477
1478 static u64
1479 ohci_get_bus_time(struct fw_card *card)
1480 {
1481 struct fw_ohci *ohci = fw_ohci(card);
1482 u32 cycle_time;
1483 u64 bus_time;
1484
1485 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1486 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1487
1488 return bus_time;
1489 }
1490
1491 static int handle_ir_dualbuffer_packet(struct context *context,
1492 struct descriptor *d,
1493 struct descriptor *last)
1494 {
1495 struct iso_context *ctx =
1496 container_of(context, struct iso_context, context);
1497 struct db_descriptor *db = (struct db_descriptor *) d;
1498 __le32 *ir_header;
1499 size_t header_length;
1500 void *p, *end;
1501 int i;
1502
1503 if (db->first_res_count != 0 && db->second_res_count != 0) {
1504 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1505 /* This descriptor isn't done yet, stop iteration. */
1506 return 0;
1507 }
1508 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1509 }
1510
1511 header_length = le16_to_cpu(db->first_req_count) -
1512 le16_to_cpu(db->first_res_count);
1513
1514 i = ctx->header_length;
1515 p = db + 1;
1516 end = p + header_length;
1517 while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1518 /*
1519 * The iso header is byteswapped to little endian by
1520 * the controller, but the remaining header quadlets
1521 * are big endian. We want to present all the headers
1522 * as big endian, so we have to swap the first
1523 * quadlet.
1524 */
1525 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1526 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1527 i += ctx->base.header_size;
1528 ctx->excess_bytes +=
1529 (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1530 p += ctx->base.header_size + 4;
1531 }
1532 ctx->header_length = i;
1533
1534 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1535 le16_to_cpu(db->second_res_count);
1536
1537 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1538 ir_header = (__le32 *) (db + 1);
1539 ctx->base.callback(&ctx->base,
1540 le32_to_cpu(ir_header[0]) & 0xffff,
1541 ctx->header_length, ctx->header,
1542 ctx->base.callback_data);
1543 ctx->header_length = 0;
1544 }
1545
1546 return 1;
1547 }
1548
1549 static int handle_ir_packet_per_buffer(struct context *context,
1550 struct descriptor *d,
1551 struct descriptor *last)
1552 {
1553 struct iso_context *ctx =
1554 container_of(context, struct iso_context, context);
1555 struct descriptor *pd;
1556 __le32 *ir_header;
1557 void *p;
1558 int i;
1559
1560 for (pd = d; pd <= last; pd++) {
1561 if (pd->transfer_status)
1562 break;
1563 }
1564 if (pd > last)
1565 /* Descriptor(s) not done yet, stop iteration */
1566 return 0;
1567
1568 i = ctx->header_length;
1569 p = last + 1;
1570
1571 if (ctx->base.header_size > 0 &&
1572 i + ctx->base.header_size <= PAGE_SIZE) {
1573 /*
1574 * The iso header is byteswapped to little endian by
1575 * the controller, but the remaining header quadlets
1576 * are big endian. We want to present all the headers
1577 * as big endian, so we have to swap the first quadlet.
1578 */
1579 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1580 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1581 ctx->header_length += ctx->base.header_size;
1582 }
1583
1584 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1585 ir_header = (__le32 *) p;
1586 ctx->base.callback(&ctx->base,
1587 le32_to_cpu(ir_header[0]) & 0xffff,
1588 ctx->header_length, ctx->header,
1589 ctx->base.callback_data);
1590 ctx->header_length = 0;
1591 }
1592
1593 return 1;
1594 }
1595
1596 static int handle_it_packet(struct context *context,
1597 struct descriptor *d,
1598 struct descriptor *last)
1599 {
1600 struct iso_context *ctx =
1601 container_of(context, struct iso_context, context);
1602
1603 if (last->transfer_status == 0)
1604 /* This descriptor isn't done yet, stop iteration. */
1605 return 0;
1606
1607 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1608 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1609 0, NULL, ctx->base.callback_data);
1610
1611 return 1;
1612 }
1613
1614 static struct fw_iso_context *
1615 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1616 {
1617 struct fw_ohci *ohci = fw_ohci(card);
1618 struct iso_context *ctx, *list;
1619 descriptor_callback_t callback;
1620 u32 *mask, regs;
1621 unsigned long flags;
1622 int index, retval = -ENOMEM;
1623
1624 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1625 mask = &ohci->it_context_mask;
1626 list = ohci->it_context_list;
1627 callback = handle_it_packet;
1628 } else {
1629 mask = &ohci->ir_context_mask;
1630 list = ohci->ir_context_list;
1631 if (ohci->version >= OHCI_VERSION_1_1)
1632 callback = handle_ir_dualbuffer_packet;
1633 else
1634 callback = handle_ir_packet_per_buffer;
1635 }
1636
1637 spin_lock_irqsave(&ohci->lock, flags);
1638 index = ffs(*mask) - 1;
1639 if (index >= 0)
1640 *mask &= ~(1 << index);
1641 spin_unlock_irqrestore(&ohci->lock, flags);
1642
1643 if (index < 0)
1644 return ERR_PTR(-EBUSY);
1645
1646 if (type == FW_ISO_CONTEXT_TRANSMIT)
1647 regs = OHCI1394_IsoXmitContextBase(index);
1648 else
1649 regs = OHCI1394_IsoRcvContextBase(index);
1650
1651 ctx = &list[index];
1652 memset(ctx, 0, sizeof(*ctx));
1653 ctx->header_length = 0;
1654 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1655 if (ctx->header == NULL)
1656 goto out;
1657
1658 retval = context_init(&ctx->context, ohci, regs, callback);
1659 if (retval < 0)
1660 goto out_with_header;
1661
1662 return &ctx->base;
1663
1664 out_with_header:
1665 free_page((unsigned long)ctx->header);
1666 out:
1667 spin_lock_irqsave(&ohci->lock, flags);
1668 *mask |= 1 << index;
1669 spin_unlock_irqrestore(&ohci->lock, flags);
1670
1671 return ERR_PTR(retval);
1672 }
1673
1674 static int ohci_start_iso(struct fw_iso_context *base,
1675 s32 cycle, u32 sync, u32 tags)
1676 {
1677 struct iso_context *ctx = container_of(base, struct iso_context, base);
1678 struct fw_ohci *ohci = ctx->context.ohci;
1679 u32 control, match;
1680 int index;
1681
1682 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1683 index = ctx - ohci->it_context_list;
1684 match = 0;
1685 if (cycle >= 0)
1686 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1687 (cycle & 0x7fff) << 16;
1688
1689 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1690 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1691 context_run(&ctx->context, match);
1692 } else {
1693 index = ctx - ohci->ir_context_list;
1694 control = IR_CONTEXT_ISOCH_HEADER;
1695 if (ohci->version >= OHCI_VERSION_1_1)
1696 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1697 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1698 if (cycle >= 0) {
1699 match |= (cycle & 0x07fff) << 12;
1700 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1701 }
1702
1703 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1704 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1705 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1706 context_run(&ctx->context, control);
1707 }
1708
1709 return 0;
1710 }
1711
1712 static int ohci_stop_iso(struct fw_iso_context *base)
1713 {
1714 struct fw_ohci *ohci = fw_ohci(base->card);
1715 struct iso_context *ctx = container_of(base, struct iso_context, base);
1716 int index;
1717
1718 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1719 index = ctx - ohci->it_context_list;
1720 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1721 } else {
1722 index = ctx - ohci->ir_context_list;
1723 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1724 }
1725 flush_writes(ohci);
1726 context_stop(&ctx->context);
1727
1728 return 0;
1729 }
1730
1731 static void ohci_free_iso_context(struct fw_iso_context *base)
1732 {
1733 struct fw_ohci *ohci = fw_ohci(base->card);
1734 struct iso_context *ctx = container_of(base, struct iso_context, base);
1735 unsigned long flags;
1736 int index;
1737
1738 ohci_stop_iso(base);
1739 context_release(&ctx->context);
1740 free_page((unsigned long)ctx->header);
1741
1742 spin_lock_irqsave(&ohci->lock, flags);
1743
1744 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1745 index = ctx - ohci->it_context_list;
1746 ohci->it_context_mask |= 1 << index;
1747 } else {
1748 index = ctx - ohci->ir_context_list;
1749 ohci->ir_context_mask |= 1 << index;
1750 }
1751
1752 spin_unlock_irqrestore(&ohci->lock, flags);
1753 }
1754
1755 static int
1756 ohci_queue_iso_transmit(struct fw_iso_context *base,
1757 struct fw_iso_packet *packet,
1758 struct fw_iso_buffer *buffer,
1759 unsigned long payload)
1760 {
1761 struct iso_context *ctx = container_of(base, struct iso_context, base);
1762 struct descriptor *d, *last, *pd;
1763 struct fw_iso_packet *p;
1764 __le32 *header;
1765 dma_addr_t d_bus, page_bus;
1766 u32 z, header_z, payload_z, irq;
1767 u32 payload_index, payload_end_index, next_page_index;
1768 int page, end_page, i, length, offset;
1769
1770 /*
1771 * FIXME: Cycle lost behavior should be configurable: lose
1772 * packet, retransmit or terminate..
1773 */
1774
1775 p = packet;
1776 payload_index = payload;
1777
1778 if (p->skip)
1779 z = 1;
1780 else
1781 z = 2;
1782 if (p->header_length > 0)
1783 z++;
1784
1785 /* Determine the first page the payload isn't contained in. */
1786 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1787 if (p->payload_length > 0)
1788 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1789 else
1790 payload_z = 0;
1791
1792 z += payload_z;
1793
1794 /* Get header size in number of descriptors. */
1795 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1796
1797 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1798 if (d == NULL)
1799 return -ENOMEM;
1800
1801 if (!p->skip) {
1802 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1803 d[0].req_count = cpu_to_le16(8);
1804
1805 header = (__le32 *) &d[1];
1806 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1807 IT_HEADER_TAG(p->tag) |
1808 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1809 IT_HEADER_CHANNEL(ctx->base.channel) |
1810 IT_HEADER_SPEED(ctx->base.speed));
1811 header[1] =
1812 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1813 p->payload_length));
1814 }
1815
1816 if (p->header_length > 0) {
1817 d[2].req_count = cpu_to_le16(p->header_length);
1818 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1819 memcpy(&d[z], p->header, p->header_length);
1820 }
1821
1822 pd = d + z - payload_z;
1823 payload_end_index = payload_index + p->payload_length;
1824 for (i = 0; i < payload_z; i++) {
1825 page = payload_index >> PAGE_SHIFT;
1826 offset = payload_index & ~PAGE_MASK;
1827 next_page_index = (page + 1) << PAGE_SHIFT;
1828 length =
1829 min(next_page_index, payload_end_index) - payload_index;
1830 pd[i].req_count = cpu_to_le16(length);
1831
1832 page_bus = page_private(buffer->pages[page]);
1833 pd[i].data_address = cpu_to_le32(page_bus + offset);
1834
1835 payload_index += length;
1836 }
1837
1838 if (p->interrupt)
1839 irq = DESCRIPTOR_IRQ_ALWAYS;
1840 else
1841 irq = DESCRIPTOR_NO_IRQ;
1842
1843 last = z == 2 ? d : d + z - 1;
1844 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1845 DESCRIPTOR_STATUS |
1846 DESCRIPTOR_BRANCH_ALWAYS |
1847 irq);
1848
1849 context_append(&ctx->context, d, z, header_z);
1850
1851 return 0;
1852 }
1853
1854 static int
1855 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1856 struct fw_iso_packet *packet,
1857 struct fw_iso_buffer *buffer,
1858 unsigned long payload)
1859 {
1860 struct iso_context *ctx = container_of(base, struct iso_context, base);
1861 struct db_descriptor *db = NULL;
1862 struct descriptor *d;
1863 struct fw_iso_packet *p;
1864 dma_addr_t d_bus, page_bus;
1865 u32 z, header_z, length, rest;
1866 int page, offset, packet_count, header_size;
1867
1868 /*
1869 * FIXME: Cycle lost behavior should be configurable: lose
1870 * packet, retransmit or terminate..
1871 */
1872
1873 p = packet;
1874 z = 2;
1875
1876 /*
1877 * The OHCI controller puts the status word in the header
1878 * buffer too, so we need 4 extra bytes per packet.
1879 */
1880 packet_count = p->header_length / ctx->base.header_size;
1881 header_size = packet_count * (ctx->base.header_size + 4);
1882
1883 /* Get header size in number of descriptors. */
1884 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1885 page = payload >> PAGE_SHIFT;
1886 offset = payload & ~PAGE_MASK;
1887 rest = p->payload_length;
1888
1889 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1890 while (rest > 0) {
1891 d = context_get_descriptors(&ctx->context,
1892 z + header_z, &d_bus);
1893 if (d == NULL)
1894 return -ENOMEM;
1895
1896 db = (struct db_descriptor *) d;
1897 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1898 DESCRIPTOR_BRANCH_ALWAYS);
1899 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1900 if (p->skip && rest == p->payload_length) {
1901 db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1902 db->first_req_count = db->first_size;
1903 } else {
1904 db->first_req_count = cpu_to_le16(header_size);
1905 }
1906 db->first_res_count = db->first_req_count;
1907 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1908
1909 if (p->skip && rest == p->payload_length)
1910 length = 4;
1911 else if (offset + rest < PAGE_SIZE)
1912 length = rest;
1913 else
1914 length = PAGE_SIZE - offset;
1915
1916 db->second_req_count = cpu_to_le16(length);
1917 db->second_res_count = db->second_req_count;
1918 page_bus = page_private(buffer->pages[page]);
1919 db->second_buffer = cpu_to_le32(page_bus + offset);
1920
1921 if (p->interrupt && length == rest)
1922 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1923
1924 context_append(&ctx->context, d, z, header_z);
1925 offset = (offset + length) & ~PAGE_MASK;
1926 rest -= length;
1927 if (offset == 0)
1928 page++;
1929 }
1930
1931 return 0;
1932 }
1933
1934 static int
1935 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
1936 struct fw_iso_packet *packet,
1937 struct fw_iso_buffer *buffer,
1938 unsigned long payload)
1939 {
1940 struct iso_context *ctx = container_of(base, struct iso_context, base);
1941 struct descriptor *d = NULL, *pd = NULL;
1942 struct fw_iso_packet *p = packet;
1943 dma_addr_t d_bus, page_bus;
1944 u32 z, header_z, rest;
1945 int i, j, length;
1946 int page, offset, packet_count, header_size, payload_per_buffer;
1947
1948 /*
1949 * The OHCI controller puts the status word in the
1950 * buffer too, so we need 4 extra bytes per packet.
1951 */
1952 packet_count = p->header_length / ctx->base.header_size;
1953 header_size = ctx->base.header_size + 4;
1954
1955 /* Get header size in number of descriptors. */
1956 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1957 page = payload >> PAGE_SHIFT;
1958 offset = payload & ~PAGE_MASK;
1959 payload_per_buffer = p->payload_length / packet_count;
1960
1961 for (i = 0; i < packet_count; i++) {
1962 /* d points to the header descriptor */
1963 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
1964 d = context_get_descriptors(&ctx->context,
1965 z + header_z, &d_bus);
1966 if (d == NULL)
1967 return -ENOMEM;
1968
1969 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
1970 DESCRIPTOR_INPUT_MORE);
1971 if (p->skip && i == 0)
1972 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1973 d->req_count = cpu_to_le16(header_size);
1974 d->res_count = d->req_count;
1975 d->transfer_status = 0;
1976 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
1977
1978 rest = payload_per_buffer;
1979 for (j = 1; j < z; j++) {
1980 pd = d + j;
1981 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
1982 DESCRIPTOR_INPUT_MORE);
1983
1984 if (offset + rest < PAGE_SIZE)
1985 length = rest;
1986 else
1987 length = PAGE_SIZE - offset;
1988 pd->req_count = cpu_to_le16(length);
1989 pd->res_count = pd->req_count;
1990 pd->transfer_status = 0;
1991
1992 page_bus = page_private(buffer->pages[page]);
1993 pd->data_address = cpu_to_le32(page_bus + offset);
1994
1995 offset = (offset + length) & ~PAGE_MASK;
1996 rest -= length;
1997 if (offset == 0)
1998 page++;
1999 }
2000 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2001 DESCRIPTOR_INPUT_LAST |
2002 DESCRIPTOR_BRANCH_ALWAYS);
2003 if (p->interrupt && i == packet_count - 1)
2004 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2005
2006 context_append(&ctx->context, d, z, header_z);
2007 }
2008
2009 return 0;
2010 }
2011
2012 static int
2013 ohci_queue_iso(struct fw_iso_context *base,
2014 struct fw_iso_packet *packet,
2015 struct fw_iso_buffer *buffer,
2016 unsigned long payload)
2017 {
2018 struct iso_context *ctx = container_of(base, struct iso_context, base);
2019 unsigned long flags;
2020 int retval;
2021
2022 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2023 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2024 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2025 else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2026 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2027 buffer, payload);
2028 else
2029 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2030 buffer,
2031 payload);
2032 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2033
2034 return retval;
2035 }
2036
2037 static const struct fw_card_driver ohci_driver = {
2038 .name = ohci_driver_name,
2039 .enable = ohci_enable,
2040 .update_phy_reg = ohci_update_phy_reg,
2041 .set_config_rom = ohci_set_config_rom,
2042 .send_request = ohci_send_request,
2043 .send_response = ohci_send_response,
2044 .cancel_packet = ohci_cancel_packet,
2045 .enable_phys_dma = ohci_enable_phys_dma,
2046 .get_bus_time = ohci_get_bus_time,
2047
2048 .allocate_iso_context = ohci_allocate_iso_context,
2049 .free_iso_context = ohci_free_iso_context,
2050 .queue_iso = ohci_queue_iso,
2051 .start_iso = ohci_start_iso,
2052 .stop_iso = ohci_stop_iso,
2053 };
2054
2055 static int __devinit
2056 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2057 {
2058 struct fw_ohci *ohci;
2059 u32 bus_options, max_receive, link_speed;
2060 u64 guid;
2061 int err;
2062 size_t size;
2063
2064 #ifdef CONFIG_PPC_PMAC
2065 /* Necessary on some machines if fw-ohci was loaded/ unloaded before */
2066 if (machine_is(powermac)) {
2067 struct device_node *ofn = pci_device_to_OF_node(dev);
2068
2069 if (ofn) {
2070 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2071 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2072 }
2073 }
2074 #endif /* CONFIG_PPC_PMAC */
2075
2076 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2077 if (ohci == NULL) {
2078 fw_error("Could not malloc fw_ohci data.\n");
2079 return -ENOMEM;
2080 }
2081
2082 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2083
2084 err = pci_enable_device(dev);
2085 if (err) {
2086 fw_error("Failed to enable OHCI hardware.\n");
2087 goto fail_put_card;
2088 }
2089
2090 pci_set_master(dev);
2091 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2092 pci_set_drvdata(dev, ohci);
2093
2094 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2095 ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2096 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2097 #endif
2098 spin_lock_init(&ohci->lock);
2099
2100 tasklet_init(&ohci->bus_reset_tasklet,
2101 bus_reset_tasklet, (unsigned long)ohci);
2102
2103 err = pci_request_region(dev, 0, ohci_driver_name);
2104 if (err) {
2105 fw_error("MMIO resource unavailable\n");
2106 goto fail_disable;
2107 }
2108
2109 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2110 if (ohci->registers == NULL) {
2111 fw_error("Failed to remap registers\n");
2112 err = -ENXIO;
2113 goto fail_iomem;
2114 }
2115
2116 ar_context_init(&ohci->ar_request_ctx, ohci,
2117 OHCI1394_AsReqRcvContextControlSet);
2118
2119 ar_context_init(&ohci->ar_response_ctx, ohci,
2120 OHCI1394_AsRspRcvContextControlSet);
2121
2122 context_init(&ohci->at_request_ctx, ohci,
2123 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2124
2125 context_init(&ohci->at_response_ctx, ohci,
2126 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2127
2128 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2129 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2130 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2131 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2132 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2133
2134 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2135 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2136 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2137 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2138 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2139
2140 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2141 fw_error("Out of memory for it/ir contexts.\n");
2142 err = -ENOMEM;
2143 goto fail_registers;
2144 }
2145
2146 /* self-id dma buffer allocation */
2147 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2148 SELF_ID_BUF_SIZE,
2149 &ohci->self_id_bus,
2150 GFP_KERNEL);
2151 if (ohci->self_id_cpu == NULL) {
2152 fw_error("Out of memory for self ID buffer.\n");
2153 err = -ENOMEM;
2154 goto fail_registers;
2155 }
2156
2157 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2158 max_receive = (bus_options >> 12) & 0xf;
2159 link_speed = bus_options & 0x7;
2160 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2161 reg_read(ohci, OHCI1394_GUIDLo);
2162
2163 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2164 if (err < 0)
2165 goto fail_self_id;
2166
2167 ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2168 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2169 dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2170 return 0;
2171
2172 fail_self_id:
2173 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2174 ohci->self_id_cpu, ohci->self_id_bus);
2175 fail_registers:
2176 kfree(ohci->it_context_list);
2177 kfree(ohci->ir_context_list);
2178 pci_iounmap(dev, ohci->registers);
2179 fail_iomem:
2180 pci_release_region(dev, 0);
2181 fail_disable:
2182 pci_disable_device(dev);
2183 fail_put_card:
2184 fw_card_put(&ohci->card);
2185
2186 return err;
2187 }
2188
2189 static void pci_remove(struct pci_dev *dev)
2190 {
2191 struct fw_ohci *ohci;
2192
2193 ohci = pci_get_drvdata(dev);
2194 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2195 flush_writes(ohci);
2196 fw_core_remove_card(&ohci->card);
2197
2198 /*
2199 * FIXME: Fail all pending packets here, now that the upper
2200 * layers can't queue any more.
2201 */
2202
2203 software_reset(ohci);
2204 free_irq(dev->irq, ohci);
2205 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2206 ohci->self_id_cpu, ohci->self_id_bus);
2207 kfree(ohci->it_context_list);
2208 kfree(ohci->ir_context_list);
2209 pci_iounmap(dev, ohci->registers);
2210 pci_release_region(dev, 0);
2211 pci_disable_device(dev);
2212 fw_card_put(&ohci->card);
2213
2214 #ifdef CONFIG_PPC_PMAC
2215 /* On UniNorth, power down the cable and turn off the chip clock
2216 * to save power on laptops */
2217 if (machine_is(powermac)) {
2218 struct device_node *ofn = pci_device_to_OF_node(dev);
2219
2220 if (ofn) {
2221 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2222 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2223 }
2224 }
2225 #endif /* CONFIG_PPC_PMAC */
2226
2227 fw_notify("Removed fw-ohci device.\n");
2228 }
2229
2230 #ifdef CONFIG_PM
2231 static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
2232 {
2233 struct fw_ohci *ohci = pci_get_drvdata(pdev);
2234 int err;
2235
2236 software_reset(ohci);
2237 free_irq(pdev->irq, ohci);
2238 err = pci_save_state(pdev);
2239 if (err) {
2240 fw_error("pci_save_state failed\n");
2241 return err;
2242 }
2243 err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
2244 if (err)
2245 fw_error("pci_set_power_state failed with %d\n", err);
2246
2247 /* PowerMac suspend code comes last */
2248 #ifdef CONFIG_PPC_PMAC
2249 if (machine_is(powermac)) {
2250 struct device_node *ofn = pci_device_to_OF_node(pdev);
2251
2252 if (ofn)
2253 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2254 }
2255 #endif /* CONFIG_PPC_PMAC */
2256
2257 return 0;
2258 }
2259
2260 static int pci_resume(struct pci_dev *pdev)
2261 {
2262 struct fw_ohci *ohci = pci_get_drvdata(pdev);
2263 int err;
2264
2265 /* PowerMac resume code comes first */
2266 #ifdef CONFIG_PPC_PMAC
2267 if (machine_is(powermac)) {
2268 struct device_node *ofn = pci_device_to_OF_node(pdev);
2269
2270 if (ofn)
2271 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2272 }
2273 #endif /* CONFIG_PPC_PMAC */
2274
2275 pci_set_power_state(pdev, PCI_D0);
2276 pci_restore_state(pdev);
2277 err = pci_enable_device(pdev);
2278 if (err) {
2279 fw_error("pci_enable_device failed\n");
2280 return err;
2281 }
2282
2283 return ohci_enable(&ohci->card, NULL, 0);
2284 }
2285 #endif
2286
2287 static struct pci_device_id pci_table[] = {
2288 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2289 { }
2290 };
2291
2292 MODULE_DEVICE_TABLE(pci, pci_table);
2293
2294 static struct pci_driver fw_ohci_pci_driver = {
2295 .name = ohci_driver_name,
2296 .id_table = pci_table,
2297 .probe = pci_probe,
2298 .remove = pci_remove,
2299 #ifdef CONFIG_PM
2300 .resume = pci_resume,
2301 .suspend = pci_suspend,
2302 #endif
2303 };
2304
2305 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2306 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2307 MODULE_LICENSE("GPL");
2308
2309 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2310 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2311 MODULE_ALIAS("ohci1394");
2312 #endif
2313
2314 static int __init fw_ohci_init(void)
2315 {
2316 return pci_register_driver(&fw_ohci_pci_driver);
2317 }
2318
2319 static void __exit fw_ohci_cleanup(void)
2320 {
2321 pci_unregister_driver(&fw_ohci_pci_driver);
2322 }
2323
2324 module_init(fw_ohci_init);
2325 module_exit(fw_ohci_cleanup);
This page took 0.117318 seconds and 5 git commands to generate.