firewire: ohci: access bus_seconds atomically
[deliverable/linux.git] / drivers / firewire / fw-ohci.c
1 /*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33
34 #include <asm/atomic.h>
35 #include <asm/page.h>
36 #include <asm/system.h>
37
38 #ifdef CONFIG_PPC_PMAC
39 #include <asm/pmac_feature.h>
40 #endif
41
42 #include "fw-ohci.h"
43 #include "fw-transaction.h"
44
45 #define DESCRIPTOR_OUTPUT_MORE 0
46 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
47 #define DESCRIPTOR_INPUT_MORE (2 << 12)
48 #define DESCRIPTOR_INPUT_LAST (3 << 12)
49 #define DESCRIPTOR_STATUS (1 << 11)
50 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
51 #define DESCRIPTOR_PING (1 << 7)
52 #define DESCRIPTOR_YY (1 << 6)
53 #define DESCRIPTOR_NO_IRQ (0 << 4)
54 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
55 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
56 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
57 #define DESCRIPTOR_WAIT (3 << 0)
58
59 struct descriptor {
60 __le16 req_count;
61 __le16 control;
62 __le32 data_address;
63 __le32 branch_address;
64 __le16 res_count;
65 __le16 transfer_status;
66 } __attribute__((aligned(16)));
67
68 struct db_descriptor {
69 __le16 first_size;
70 __le16 control;
71 __le16 second_req_count;
72 __le16 first_req_count;
73 __le32 branch_address;
74 __le16 second_res_count;
75 __le16 first_res_count;
76 __le32 reserved0;
77 __le32 first_buffer;
78 __le32 second_buffer;
79 __le32 reserved1;
80 } __attribute__((aligned(16)));
81
82 #define CONTROL_SET(regs) (regs)
83 #define CONTROL_CLEAR(regs) ((regs) + 4)
84 #define COMMAND_PTR(regs) ((regs) + 12)
85 #define CONTEXT_MATCH(regs) ((regs) + 16)
86
87 struct ar_buffer {
88 struct descriptor descriptor;
89 struct ar_buffer *next;
90 __le32 data[0];
91 };
92
93 struct ar_context {
94 struct fw_ohci *ohci;
95 struct ar_buffer *current_buffer;
96 struct ar_buffer *last_buffer;
97 void *pointer;
98 u32 regs;
99 struct tasklet_struct tasklet;
100 };
101
102 struct context;
103
104 typedef int (*descriptor_callback_t)(struct context *ctx,
105 struct descriptor *d,
106 struct descriptor *last);
107
108 /*
109 * A buffer that contains a block of DMA-able coherent memory used for
110 * storing a portion of a DMA descriptor program.
111 */
112 struct descriptor_buffer {
113 struct list_head list;
114 dma_addr_t buffer_bus;
115 size_t buffer_size;
116 size_t used;
117 struct descriptor buffer[0];
118 };
119
120 struct context {
121 struct fw_ohci *ohci;
122 u32 regs;
123 int total_allocation;
124
125 /*
126 * List of page-sized buffers for storing DMA descriptors.
127 * Head of list contains buffers in use and tail of list contains
128 * free buffers.
129 */
130 struct list_head buffer_list;
131
132 /*
133 * Pointer to a buffer inside buffer_list that contains the tail
134 * end of the current DMA program.
135 */
136 struct descriptor_buffer *buffer_tail;
137
138 /*
139 * The descriptor containing the branch address of the first
140 * descriptor that has not yet been filled by the device.
141 */
142 struct descriptor *last;
143
144 /*
145 * The last descriptor in the DMA program. It contains the branch
146 * address that must be updated upon appending a new descriptor.
147 */
148 struct descriptor *prev;
149
150 descriptor_callback_t callback;
151
152 struct tasklet_struct tasklet;
153 };
154
155 #define IT_HEADER_SY(v) ((v) << 0)
156 #define IT_HEADER_TCODE(v) ((v) << 4)
157 #define IT_HEADER_CHANNEL(v) ((v) << 8)
158 #define IT_HEADER_TAG(v) ((v) << 14)
159 #define IT_HEADER_SPEED(v) ((v) << 16)
160 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
161
162 struct iso_context {
163 struct fw_iso_context base;
164 struct context context;
165 int excess_bytes;
166 void *header;
167 size_t header_length;
168 };
169
170 #define CONFIG_ROM_SIZE 1024
171
172 struct fw_ohci {
173 struct fw_card card;
174
175 __iomem char *registers;
176 dma_addr_t self_id_bus;
177 __le32 *self_id_cpu;
178 struct tasklet_struct bus_reset_tasklet;
179 int node_id;
180 int generation;
181 int request_generation; /* for timestamping incoming requests */
182 atomic_t bus_seconds;
183
184 bool use_dualbuffer;
185 bool old_uninorth;
186 bool bus_reset_packet_quirk;
187
188 /*
189 * Spinlock for accessing fw_ohci data. Never call out of
190 * this driver with this lock held.
191 */
192 spinlock_t lock;
193 u32 self_id_buffer[512];
194
195 /* Config rom buffers */
196 __be32 *config_rom;
197 dma_addr_t config_rom_bus;
198 __be32 *next_config_rom;
199 dma_addr_t next_config_rom_bus;
200 u32 next_header;
201
202 struct ar_context ar_request_ctx;
203 struct ar_context ar_response_ctx;
204 struct context at_request_ctx;
205 struct context at_response_ctx;
206
207 u32 it_context_mask;
208 struct iso_context *it_context_list;
209 u64 ir_context_channels;
210 u32 ir_context_mask;
211 struct iso_context *ir_context_list;
212 };
213
214 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
215 {
216 return container_of(card, struct fw_ohci, card);
217 }
218
219 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
220 #define IR_CONTEXT_BUFFER_FILL 0x80000000
221 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
222 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
223 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
224 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
225
226 #define CONTEXT_RUN 0x8000
227 #define CONTEXT_WAKE 0x1000
228 #define CONTEXT_DEAD 0x0800
229 #define CONTEXT_ACTIVE 0x0400
230
231 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
232 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
233 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
234
235 #define FW_OHCI_MAJOR 240
236 #define OHCI1394_REGISTER_SIZE 0x800
237 #define OHCI_LOOP_COUNT 500
238 #define OHCI1394_PCI_HCI_Control 0x40
239 #define SELF_ID_BUF_SIZE 0x800
240 #define OHCI_TCODE_PHY_PACKET 0x0e
241 #define OHCI_VERSION_1_1 0x010010
242
243 static char ohci_driver_name[] = KBUILD_MODNAME;
244
245 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
246
247 #define OHCI_PARAM_DEBUG_AT_AR 1
248 #define OHCI_PARAM_DEBUG_SELFIDS 2
249 #define OHCI_PARAM_DEBUG_IRQS 4
250 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
251
252 static int param_debug;
253 module_param_named(debug, param_debug, int, 0644);
254 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
255 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
256 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
257 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
258 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
259 ", or a combination, or all = -1)");
260
261 static void log_irqs(u32 evt)
262 {
263 if (likely(!(param_debug &
264 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
265 return;
266
267 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
268 !(evt & OHCI1394_busReset))
269 return;
270
271 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
272 evt & OHCI1394_selfIDComplete ? " selfID" : "",
273 evt & OHCI1394_RQPkt ? " AR_req" : "",
274 evt & OHCI1394_RSPkt ? " AR_resp" : "",
275 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
276 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
277 evt & OHCI1394_isochRx ? " IR" : "",
278 evt & OHCI1394_isochTx ? " IT" : "",
279 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
280 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
281 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
282 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
283 evt & OHCI1394_busReset ? " busReset" : "",
284 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
285 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
286 OHCI1394_respTxComplete | OHCI1394_isochRx |
287 OHCI1394_isochTx | OHCI1394_postedWriteErr |
288 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
289 OHCI1394_regAccessFail | OHCI1394_busReset)
290 ? " ?" : "");
291 }
292
293 static const char *speed[] = {
294 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
295 };
296 static const char *power[] = {
297 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
298 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
299 };
300 static const char port[] = { '.', '-', 'p', 'c', };
301
302 static char _p(u32 *s, int shift)
303 {
304 return port[*s >> shift & 3];
305 }
306
307 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
308 {
309 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
310 return;
311
312 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
313 self_id_count, generation, node_id);
314
315 for (; self_id_count--; ++s)
316 if ((*s & 1 << 23) == 0)
317 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
318 "%s gc=%d %s %s%s%s\n",
319 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
320 speed[*s >> 14 & 3], *s >> 16 & 63,
321 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
322 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
323 else
324 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
325 *s, *s >> 24 & 63,
326 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
327 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
328 }
329
330 static const char *evts[] = {
331 [0x00] = "evt_no_status", [0x01] = "-reserved-",
332 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
333 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
334 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
335 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
336 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
337 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
338 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
339 [0x10] = "-reserved-", [0x11] = "ack_complete",
340 [0x12] = "ack_pending ", [0x13] = "-reserved-",
341 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
342 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
343 [0x18] = "-reserved-", [0x19] = "-reserved-",
344 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
345 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
346 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
347 [0x20] = "pending/cancelled",
348 };
349 static const char *tcodes[] = {
350 [0x0] = "QW req", [0x1] = "BW req",
351 [0x2] = "W resp", [0x3] = "-reserved-",
352 [0x4] = "QR req", [0x5] = "BR req",
353 [0x6] = "QR resp", [0x7] = "BR resp",
354 [0x8] = "cycle start", [0x9] = "Lk req",
355 [0xa] = "async stream packet", [0xb] = "Lk resp",
356 [0xc] = "-reserved-", [0xd] = "-reserved-",
357 [0xe] = "link internal", [0xf] = "-reserved-",
358 };
359 static const char *phys[] = {
360 [0x0] = "phy config packet", [0x1] = "link-on packet",
361 [0x2] = "self-id packet", [0x3] = "-reserved-",
362 };
363
364 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
365 {
366 int tcode = header[0] >> 4 & 0xf;
367 char specific[12];
368
369 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
370 return;
371
372 if (unlikely(evt >= ARRAY_SIZE(evts)))
373 evt = 0x1f;
374
375 if (evt == OHCI1394_evt_bus_reset) {
376 fw_notify("A%c evt_bus_reset, generation %d\n",
377 dir, (header[2] >> 16) & 0xff);
378 return;
379 }
380
381 if (header[0] == ~header[1]) {
382 fw_notify("A%c %s, %s, %08x\n",
383 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
384 return;
385 }
386
387 switch (tcode) {
388 case 0x0: case 0x6: case 0x8:
389 snprintf(specific, sizeof(specific), " = %08x",
390 be32_to_cpu((__force __be32)header[3]));
391 break;
392 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
393 snprintf(specific, sizeof(specific), " %x,%x",
394 header[3] >> 16, header[3] & 0xffff);
395 break;
396 default:
397 specific[0] = '\0';
398 }
399
400 switch (tcode) {
401 case 0xe: case 0xa:
402 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
403 break;
404 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
405 fw_notify("A%c spd %x tl %02x, "
406 "%04x -> %04x, %s, "
407 "%s, %04x%08x%s\n",
408 dir, speed, header[0] >> 10 & 0x3f,
409 header[1] >> 16, header[0] >> 16, evts[evt],
410 tcodes[tcode], header[1] & 0xffff, header[2], specific);
411 break;
412 default:
413 fw_notify("A%c spd %x tl %02x, "
414 "%04x -> %04x, %s, "
415 "%s%s\n",
416 dir, speed, header[0] >> 10 & 0x3f,
417 header[1] >> 16, header[0] >> 16, evts[evt],
418 tcodes[tcode], specific);
419 }
420 }
421
422 #else
423
424 #define log_irqs(evt)
425 #define log_selfids(node_id, generation, self_id_count, sid)
426 #define log_ar_at_event(dir, speed, header, evt)
427
428 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
429
430 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
431 {
432 writel(data, ohci->registers + offset);
433 }
434
435 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
436 {
437 return readl(ohci->registers + offset);
438 }
439
440 static inline void flush_writes(const struct fw_ohci *ohci)
441 {
442 /* Do a dummy read to flush writes. */
443 reg_read(ohci, OHCI1394_Version);
444 }
445
446 static int ohci_update_phy_reg(struct fw_card *card, int addr,
447 int clear_bits, int set_bits)
448 {
449 struct fw_ohci *ohci = fw_ohci(card);
450 u32 val, old;
451
452 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
453 flush_writes(ohci);
454 msleep(2);
455 val = reg_read(ohci, OHCI1394_PhyControl);
456 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
457 fw_error("failed to set phy reg bits.\n");
458 return -EBUSY;
459 }
460
461 old = OHCI1394_PhyControl_ReadData(val);
462 old = (old & ~clear_bits) | set_bits;
463 reg_write(ohci, OHCI1394_PhyControl,
464 OHCI1394_PhyControl_Write(addr, old));
465
466 return 0;
467 }
468
469 static int ar_context_add_page(struct ar_context *ctx)
470 {
471 struct device *dev = ctx->ohci->card.device;
472 struct ar_buffer *ab;
473 dma_addr_t uninitialized_var(ab_bus);
474 size_t offset;
475
476 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
477 if (ab == NULL)
478 return -ENOMEM;
479
480 ab->next = NULL;
481 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
482 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
483 DESCRIPTOR_STATUS |
484 DESCRIPTOR_BRANCH_ALWAYS);
485 offset = offsetof(struct ar_buffer, data);
486 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
487 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
488 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
489 ab->descriptor.branch_address = 0;
490
491 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
492 ctx->last_buffer->next = ab;
493 ctx->last_buffer = ab;
494
495 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
496 flush_writes(ctx->ohci);
497
498 return 0;
499 }
500
501 static void ar_context_release(struct ar_context *ctx)
502 {
503 struct ar_buffer *ab, *ab_next;
504 size_t offset;
505 dma_addr_t ab_bus;
506
507 for (ab = ctx->current_buffer; ab; ab = ab_next) {
508 ab_next = ab->next;
509 offset = offsetof(struct ar_buffer, data);
510 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
511 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
512 ab, ab_bus);
513 }
514 }
515
516 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
517 #define cond_le32_to_cpu(v) \
518 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
519 #else
520 #define cond_le32_to_cpu(v) le32_to_cpu(v)
521 #endif
522
523 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
524 {
525 struct fw_ohci *ohci = ctx->ohci;
526 struct fw_packet p;
527 u32 status, length, tcode;
528 int evt;
529
530 p.header[0] = cond_le32_to_cpu(buffer[0]);
531 p.header[1] = cond_le32_to_cpu(buffer[1]);
532 p.header[2] = cond_le32_to_cpu(buffer[2]);
533
534 tcode = (p.header[0] >> 4) & 0x0f;
535 switch (tcode) {
536 case TCODE_WRITE_QUADLET_REQUEST:
537 case TCODE_READ_QUADLET_RESPONSE:
538 p.header[3] = (__force __u32) buffer[3];
539 p.header_length = 16;
540 p.payload_length = 0;
541 break;
542
543 case TCODE_READ_BLOCK_REQUEST :
544 p.header[3] = cond_le32_to_cpu(buffer[3]);
545 p.header_length = 16;
546 p.payload_length = 0;
547 break;
548
549 case TCODE_WRITE_BLOCK_REQUEST:
550 case TCODE_READ_BLOCK_RESPONSE:
551 case TCODE_LOCK_REQUEST:
552 case TCODE_LOCK_RESPONSE:
553 p.header[3] = cond_le32_to_cpu(buffer[3]);
554 p.header_length = 16;
555 p.payload_length = p.header[3] >> 16;
556 break;
557
558 case TCODE_WRITE_RESPONSE:
559 case TCODE_READ_QUADLET_REQUEST:
560 case OHCI_TCODE_PHY_PACKET:
561 p.header_length = 12;
562 p.payload_length = 0;
563 break;
564
565 default:
566 /* FIXME: Stop context, discard everything, and restart? */
567 p.header_length = 0;
568 p.payload_length = 0;
569 }
570
571 p.payload = (void *) buffer + p.header_length;
572
573 /* FIXME: What to do about evt_* errors? */
574 length = (p.header_length + p.payload_length + 3) / 4;
575 status = cond_le32_to_cpu(buffer[length]);
576 evt = (status >> 16) & 0x1f;
577
578 p.ack = evt - 16;
579 p.speed = (status >> 21) & 0x7;
580 p.timestamp = status & 0xffff;
581 p.generation = ohci->request_generation;
582
583 log_ar_at_event('R', p.speed, p.header, evt);
584
585 /*
586 * The OHCI bus reset handler synthesizes a phy packet with
587 * the new generation number when a bus reset happens (see
588 * section 8.4.2.3). This helps us determine when a request
589 * was received and make sure we send the response in the same
590 * generation. We only need this for requests; for responses
591 * we use the unique tlabel for finding the matching
592 * request.
593 *
594 * Alas some chips sometimes emit bus reset packets with a
595 * wrong generation. We set the correct generation for these
596 * at a slightly incorrect time (in bus_reset_tasklet).
597 */
598 if (evt == OHCI1394_evt_bus_reset) {
599 if (!ohci->bus_reset_packet_quirk)
600 ohci->request_generation = (p.header[2] >> 16) & 0xff;
601 } else if (ctx == &ohci->ar_request_ctx) {
602 fw_core_handle_request(&ohci->card, &p);
603 } else {
604 fw_core_handle_response(&ohci->card, &p);
605 }
606
607 return buffer + length + 1;
608 }
609
610 static void ar_context_tasklet(unsigned long data)
611 {
612 struct ar_context *ctx = (struct ar_context *)data;
613 struct fw_ohci *ohci = ctx->ohci;
614 struct ar_buffer *ab;
615 struct descriptor *d;
616 void *buffer, *end;
617
618 ab = ctx->current_buffer;
619 d = &ab->descriptor;
620
621 if (d->res_count == 0) {
622 size_t size, rest, offset;
623 dma_addr_t start_bus;
624 void *start;
625
626 /*
627 * This descriptor is finished and we may have a
628 * packet split across this and the next buffer. We
629 * reuse the page for reassembling the split packet.
630 */
631
632 offset = offsetof(struct ar_buffer, data);
633 start = buffer = ab;
634 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
635
636 ab = ab->next;
637 d = &ab->descriptor;
638 size = buffer + PAGE_SIZE - ctx->pointer;
639 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
640 memmove(buffer, ctx->pointer, size);
641 memcpy(buffer + size, ab->data, rest);
642 ctx->current_buffer = ab;
643 ctx->pointer = (void *) ab->data + rest;
644 end = buffer + size + rest;
645
646 while (buffer < end)
647 buffer = handle_ar_packet(ctx, buffer);
648
649 dma_free_coherent(ohci->card.device, PAGE_SIZE,
650 start, start_bus);
651 ar_context_add_page(ctx);
652 } else {
653 buffer = ctx->pointer;
654 ctx->pointer = end =
655 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
656
657 while (buffer < end)
658 buffer = handle_ar_packet(ctx, buffer);
659 }
660 }
661
662 static int ar_context_init(struct ar_context *ctx,
663 struct fw_ohci *ohci, u32 regs)
664 {
665 struct ar_buffer ab;
666
667 ctx->regs = regs;
668 ctx->ohci = ohci;
669 ctx->last_buffer = &ab;
670 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
671
672 ar_context_add_page(ctx);
673 ar_context_add_page(ctx);
674 ctx->current_buffer = ab.next;
675 ctx->pointer = ctx->current_buffer->data;
676
677 return 0;
678 }
679
680 static void ar_context_run(struct ar_context *ctx)
681 {
682 struct ar_buffer *ab = ctx->current_buffer;
683 dma_addr_t ab_bus;
684 size_t offset;
685
686 offset = offsetof(struct ar_buffer, data);
687 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
688
689 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
690 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
691 flush_writes(ctx->ohci);
692 }
693
694 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
695 {
696 int b, key;
697
698 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
699 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
700
701 /* figure out which descriptor the branch address goes in */
702 if (z == 2 && (b == 3 || key == 2))
703 return d;
704 else
705 return d + z - 1;
706 }
707
708 static void context_tasklet(unsigned long data)
709 {
710 struct context *ctx = (struct context *) data;
711 struct descriptor *d, *last;
712 u32 address;
713 int z;
714 struct descriptor_buffer *desc;
715
716 desc = list_entry(ctx->buffer_list.next,
717 struct descriptor_buffer, list);
718 last = ctx->last;
719 while (last->branch_address != 0) {
720 struct descriptor_buffer *old_desc = desc;
721 address = le32_to_cpu(last->branch_address);
722 z = address & 0xf;
723 address &= ~0xf;
724
725 /* If the branch address points to a buffer outside of the
726 * current buffer, advance to the next buffer. */
727 if (address < desc->buffer_bus ||
728 address >= desc->buffer_bus + desc->used)
729 desc = list_entry(desc->list.next,
730 struct descriptor_buffer, list);
731 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
732 last = find_branch_descriptor(d, z);
733
734 if (!ctx->callback(ctx, d, last))
735 break;
736
737 if (old_desc != desc) {
738 /* If we've advanced to the next buffer, move the
739 * previous buffer to the free list. */
740 unsigned long flags;
741 old_desc->used = 0;
742 spin_lock_irqsave(&ctx->ohci->lock, flags);
743 list_move_tail(&old_desc->list, &ctx->buffer_list);
744 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
745 }
746 ctx->last = last;
747 }
748 }
749
750 /*
751 * Allocate a new buffer and add it to the list of free buffers for this
752 * context. Must be called with ohci->lock held.
753 */
754 static int context_add_buffer(struct context *ctx)
755 {
756 struct descriptor_buffer *desc;
757 dma_addr_t uninitialized_var(bus_addr);
758 int offset;
759
760 /*
761 * 16MB of descriptors should be far more than enough for any DMA
762 * program. This will catch run-away userspace or DoS attacks.
763 */
764 if (ctx->total_allocation >= 16*1024*1024)
765 return -ENOMEM;
766
767 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
768 &bus_addr, GFP_ATOMIC);
769 if (!desc)
770 return -ENOMEM;
771
772 offset = (void *)&desc->buffer - (void *)desc;
773 desc->buffer_size = PAGE_SIZE - offset;
774 desc->buffer_bus = bus_addr + offset;
775 desc->used = 0;
776
777 list_add_tail(&desc->list, &ctx->buffer_list);
778 ctx->total_allocation += PAGE_SIZE;
779
780 return 0;
781 }
782
783 static int context_init(struct context *ctx, struct fw_ohci *ohci,
784 u32 regs, descriptor_callback_t callback)
785 {
786 ctx->ohci = ohci;
787 ctx->regs = regs;
788 ctx->total_allocation = 0;
789
790 INIT_LIST_HEAD(&ctx->buffer_list);
791 if (context_add_buffer(ctx) < 0)
792 return -ENOMEM;
793
794 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
795 struct descriptor_buffer, list);
796
797 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
798 ctx->callback = callback;
799
800 /*
801 * We put a dummy descriptor in the buffer that has a NULL
802 * branch address and looks like it's been sent. That way we
803 * have a descriptor to append DMA programs to.
804 */
805 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
806 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
807 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
808 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
809 ctx->last = ctx->buffer_tail->buffer;
810 ctx->prev = ctx->buffer_tail->buffer;
811
812 return 0;
813 }
814
815 static void context_release(struct context *ctx)
816 {
817 struct fw_card *card = &ctx->ohci->card;
818 struct descriptor_buffer *desc, *tmp;
819
820 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
821 dma_free_coherent(card->device, PAGE_SIZE, desc,
822 desc->buffer_bus -
823 ((void *)&desc->buffer - (void *)desc));
824 }
825
826 /* Must be called with ohci->lock held */
827 static struct descriptor *context_get_descriptors(struct context *ctx,
828 int z, dma_addr_t *d_bus)
829 {
830 struct descriptor *d = NULL;
831 struct descriptor_buffer *desc = ctx->buffer_tail;
832
833 if (z * sizeof(*d) > desc->buffer_size)
834 return NULL;
835
836 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
837 /* No room for the descriptor in this buffer, so advance to the
838 * next one. */
839
840 if (desc->list.next == &ctx->buffer_list) {
841 /* If there is no free buffer next in the list,
842 * allocate one. */
843 if (context_add_buffer(ctx) < 0)
844 return NULL;
845 }
846 desc = list_entry(desc->list.next,
847 struct descriptor_buffer, list);
848 ctx->buffer_tail = desc;
849 }
850
851 d = desc->buffer + desc->used / sizeof(*d);
852 memset(d, 0, z * sizeof(*d));
853 *d_bus = desc->buffer_bus + desc->used;
854
855 return d;
856 }
857
858 static void context_run(struct context *ctx, u32 extra)
859 {
860 struct fw_ohci *ohci = ctx->ohci;
861
862 reg_write(ohci, COMMAND_PTR(ctx->regs),
863 le32_to_cpu(ctx->last->branch_address));
864 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
865 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
866 flush_writes(ohci);
867 }
868
869 static void context_append(struct context *ctx,
870 struct descriptor *d, int z, int extra)
871 {
872 dma_addr_t d_bus;
873 struct descriptor_buffer *desc = ctx->buffer_tail;
874
875 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
876
877 desc->used += (z + extra) * sizeof(*d);
878 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
879 ctx->prev = find_branch_descriptor(d, z);
880
881 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
882 flush_writes(ctx->ohci);
883 }
884
885 static void context_stop(struct context *ctx)
886 {
887 u32 reg;
888 int i;
889
890 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
891 flush_writes(ctx->ohci);
892
893 for (i = 0; i < 10; i++) {
894 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
895 if ((reg & CONTEXT_ACTIVE) == 0)
896 return;
897
898 mdelay(1);
899 }
900 fw_error("Error: DMA context still active (0x%08x)\n", reg);
901 }
902
903 struct driver_data {
904 struct fw_packet *packet;
905 };
906
907 /*
908 * This function apppends a packet to the DMA queue for transmission.
909 * Must always be called with the ochi->lock held to ensure proper
910 * generation handling and locking around packet queue manipulation.
911 */
912 static int at_context_queue_packet(struct context *ctx,
913 struct fw_packet *packet)
914 {
915 struct fw_ohci *ohci = ctx->ohci;
916 dma_addr_t d_bus, uninitialized_var(payload_bus);
917 struct driver_data *driver_data;
918 struct descriptor *d, *last;
919 __le32 *header;
920 int z, tcode;
921 u32 reg;
922
923 d = context_get_descriptors(ctx, 4, &d_bus);
924 if (d == NULL) {
925 packet->ack = RCODE_SEND_ERROR;
926 return -1;
927 }
928
929 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
930 d[0].res_count = cpu_to_le16(packet->timestamp);
931
932 /*
933 * The DMA format for asyncronous link packets is different
934 * from the IEEE1394 layout, so shift the fields around
935 * accordingly. If header_length is 8, it's a PHY packet, to
936 * which we need to prepend an extra quadlet.
937 */
938
939 header = (__le32 *) &d[1];
940 switch (packet->header_length) {
941 case 16:
942 case 12:
943 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
944 (packet->speed << 16));
945 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
946 (packet->header[0] & 0xffff0000));
947 header[2] = cpu_to_le32(packet->header[2]);
948
949 tcode = (packet->header[0] >> 4) & 0x0f;
950 if (TCODE_IS_BLOCK_PACKET(tcode))
951 header[3] = cpu_to_le32(packet->header[3]);
952 else
953 header[3] = (__force __le32) packet->header[3];
954
955 d[0].req_count = cpu_to_le16(packet->header_length);
956 break;
957
958 case 8:
959 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
960 (packet->speed << 16));
961 header[1] = cpu_to_le32(packet->header[0]);
962 header[2] = cpu_to_le32(packet->header[1]);
963 d[0].req_count = cpu_to_le16(12);
964 break;
965
966 case 4:
967 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
968 (packet->speed << 16));
969 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
970 d[0].req_count = cpu_to_le16(8);
971 break;
972
973 default:
974 /* BUG(); */
975 packet->ack = RCODE_SEND_ERROR;
976 return -1;
977 }
978
979 driver_data = (struct driver_data *) &d[3];
980 driver_data->packet = packet;
981 packet->driver_data = driver_data;
982
983 if (packet->payload_length > 0) {
984 payload_bus =
985 dma_map_single(ohci->card.device, packet->payload,
986 packet->payload_length, DMA_TO_DEVICE);
987 if (dma_mapping_error(ohci->card.device, payload_bus)) {
988 packet->ack = RCODE_SEND_ERROR;
989 return -1;
990 }
991 packet->payload_bus = payload_bus;
992
993 d[2].req_count = cpu_to_le16(packet->payload_length);
994 d[2].data_address = cpu_to_le32(payload_bus);
995 last = &d[2];
996 z = 3;
997 } else {
998 last = &d[0];
999 z = 2;
1000 }
1001
1002 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1003 DESCRIPTOR_IRQ_ALWAYS |
1004 DESCRIPTOR_BRANCH_ALWAYS);
1005
1006 /*
1007 * If the controller and packet generations don't match, we need to
1008 * bail out and try again. If IntEvent.busReset is set, the AT context
1009 * is halted, so appending to the context and trying to run it is
1010 * futile. Most controllers do the right thing and just flush the AT
1011 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1012 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1013 * up stalling out. So we just bail out in software and try again
1014 * later, and everyone is happy.
1015 * FIXME: Document how the locking works.
1016 */
1017 if (ohci->generation != packet->generation ||
1018 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1019 if (packet->payload_length > 0)
1020 dma_unmap_single(ohci->card.device, payload_bus,
1021 packet->payload_length, DMA_TO_DEVICE);
1022 packet->ack = RCODE_GENERATION;
1023 return -1;
1024 }
1025
1026 context_append(ctx, d, z, 4 - z);
1027
1028 /* If the context isn't already running, start it up. */
1029 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1030 if ((reg & CONTEXT_RUN) == 0)
1031 context_run(ctx, 0);
1032
1033 return 0;
1034 }
1035
1036 static int handle_at_packet(struct context *context,
1037 struct descriptor *d,
1038 struct descriptor *last)
1039 {
1040 struct driver_data *driver_data;
1041 struct fw_packet *packet;
1042 struct fw_ohci *ohci = context->ohci;
1043 int evt;
1044
1045 if (last->transfer_status == 0)
1046 /* This descriptor isn't done yet, stop iteration. */
1047 return 0;
1048
1049 driver_data = (struct driver_data *) &d[3];
1050 packet = driver_data->packet;
1051 if (packet == NULL)
1052 /* This packet was cancelled, just continue. */
1053 return 1;
1054
1055 if (packet->payload_bus)
1056 dma_unmap_single(ohci->card.device, packet->payload_bus,
1057 packet->payload_length, DMA_TO_DEVICE);
1058
1059 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1060 packet->timestamp = le16_to_cpu(last->res_count);
1061
1062 log_ar_at_event('T', packet->speed, packet->header, evt);
1063
1064 switch (evt) {
1065 case OHCI1394_evt_timeout:
1066 /* Async response transmit timed out. */
1067 packet->ack = RCODE_CANCELLED;
1068 break;
1069
1070 case OHCI1394_evt_flushed:
1071 /*
1072 * The packet was flushed should give same error as
1073 * when we try to use a stale generation count.
1074 */
1075 packet->ack = RCODE_GENERATION;
1076 break;
1077
1078 case OHCI1394_evt_missing_ack:
1079 /*
1080 * Using a valid (current) generation count, but the
1081 * node is not on the bus or not sending acks.
1082 */
1083 packet->ack = RCODE_NO_ACK;
1084 break;
1085
1086 case ACK_COMPLETE + 0x10:
1087 case ACK_PENDING + 0x10:
1088 case ACK_BUSY_X + 0x10:
1089 case ACK_BUSY_A + 0x10:
1090 case ACK_BUSY_B + 0x10:
1091 case ACK_DATA_ERROR + 0x10:
1092 case ACK_TYPE_ERROR + 0x10:
1093 packet->ack = evt - 0x10;
1094 break;
1095
1096 default:
1097 packet->ack = RCODE_SEND_ERROR;
1098 break;
1099 }
1100
1101 packet->callback(packet, &ohci->card, packet->ack);
1102
1103 return 1;
1104 }
1105
1106 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1107 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1108 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1109 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1110 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1111
1112 static void handle_local_rom(struct fw_ohci *ohci,
1113 struct fw_packet *packet, u32 csr)
1114 {
1115 struct fw_packet response;
1116 int tcode, length, i;
1117
1118 tcode = HEADER_GET_TCODE(packet->header[0]);
1119 if (TCODE_IS_BLOCK_PACKET(tcode))
1120 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1121 else
1122 length = 4;
1123
1124 i = csr - CSR_CONFIG_ROM;
1125 if (i + length > CONFIG_ROM_SIZE) {
1126 fw_fill_response(&response, packet->header,
1127 RCODE_ADDRESS_ERROR, NULL, 0);
1128 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1129 fw_fill_response(&response, packet->header,
1130 RCODE_TYPE_ERROR, NULL, 0);
1131 } else {
1132 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1133 (void *) ohci->config_rom + i, length);
1134 }
1135
1136 fw_core_handle_response(&ohci->card, &response);
1137 }
1138
1139 static void handle_local_lock(struct fw_ohci *ohci,
1140 struct fw_packet *packet, u32 csr)
1141 {
1142 struct fw_packet response;
1143 int tcode, length, ext_tcode, sel;
1144 __be32 *payload, lock_old;
1145 u32 lock_arg, lock_data;
1146
1147 tcode = HEADER_GET_TCODE(packet->header[0]);
1148 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1149 payload = packet->payload;
1150 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1151
1152 if (tcode == TCODE_LOCK_REQUEST &&
1153 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1154 lock_arg = be32_to_cpu(payload[0]);
1155 lock_data = be32_to_cpu(payload[1]);
1156 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1157 lock_arg = 0;
1158 lock_data = 0;
1159 } else {
1160 fw_fill_response(&response, packet->header,
1161 RCODE_TYPE_ERROR, NULL, 0);
1162 goto out;
1163 }
1164
1165 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1166 reg_write(ohci, OHCI1394_CSRData, lock_data);
1167 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1168 reg_write(ohci, OHCI1394_CSRControl, sel);
1169
1170 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1171 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1172 else
1173 fw_notify("swap not done yet\n");
1174
1175 fw_fill_response(&response, packet->header,
1176 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1177 out:
1178 fw_core_handle_response(&ohci->card, &response);
1179 }
1180
1181 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1182 {
1183 u64 offset;
1184 u32 csr;
1185
1186 if (ctx == &ctx->ohci->at_request_ctx) {
1187 packet->ack = ACK_PENDING;
1188 packet->callback(packet, &ctx->ohci->card, packet->ack);
1189 }
1190
1191 offset =
1192 ((unsigned long long)
1193 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1194 packet->header[2];
1195 csr = offset - CSR_REGISTER_BASE;
1196
1197 /* Handle config rom reads. */
1198 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1199 handle_local_rom(ctx->ohci, packet, csr);
1200 else switch (csr) {
1201 case CSR_BUS_MANAGER_ID:
1202 case CSR_BANDWIDTH_AVAILABLE:
1203 case CSR_CHANNELS_AVAILABLE_HI:
1204 case CSR_CHANNELS_AVAILABLE_LO:
1205 handle_local_lock(ctx->ohci, packet, csr);
1206 break;
1207 default:
1208 if (ctx == &ctx->ohci->at_request_ctx)
1209 fw_core_handle_request(&ctx->ohci->card, packet);
1210 else
1211 fw_core_handle_response(&ctx->ohci->card, packet);
1212 break;
1213 }
1214
1215 if (ctx == &ctx->ohci->at_response_ctx) {
1216 packet->ack = ACK_COMPLETE;
1217 packet->callback(packet, &ctx->ohci->card, packet->ack);
1218 }
1219 }
1220
1221 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1222 {
1223 unsigned long flags;
1224 int ret;
1225
1226 spin_lock_irqsave(&ctx->ohci->lock, flags);
1227
1228 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1229 ctx->ohci->generation == packet->generation) {
1230 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1231 handle_local_request(ctx, packet);
1232 return;
1233 }
1234
1235 ret = at_context_queue_packet(ctx, packet);
1236 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1237
1238 if (ret < 0)
1239 packet->callback(packet, &ctx->ohci->card, packet->ack);
1240
1241 }
1242
1243 static void bus_reset_tasklet(unsigned long data)
1244 {
1245 struct fw_ohci *ohci = (struct fw_ohci *)data;
1246 int self_id_count, i, j, reg;
1247 int generation, new_generation;
1248 unsigned long flags;
1249 void *free_rom = NULL;
1250 dma_addr_t free_rom_bus = 0;
1251
1252 reg = reg_read(ohci, OHCI1394_NodeID);
1253 if (!(reg & OHCI1394_NodeID_idValid)) {
1254 fw_notify("node ID not valid, new bus reset in progress\n");
1255 return;
1256 }
1257 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1258 fw_notify("malconfigured bus\n");
1259 return;
1260 }
1261 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1262 OHCI1394_NodeID_nodeNumber);
1263
1264 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1265 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1266 fw_notify("inconsistent self IDs\n");
1267 return;
1268 }
1269 /*
1270 * The count in the SelfIDCount register is the number of
1271 * bytes in the self ID receive buffer. Since we also receive
1272 * the inverted quadlets and a header quadlet, we shift one
1273 * bit extra to get the actual number of self IDs.
1274 */
1275 self_id_count = (reg >> 3) & 0x3ff;
1276 if (self_id_count == 0) {
1277 fw_notify("inconsistent self IDs\n");
1278 return;
1279 }
1280 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1281 rmb();
1282
1283 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1284 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1285 fw_notify("inconsistent self IDs\n");
1286 return;
1287 }
1288 ohci->self_id_buffer[j] =
1289 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1290 }
1291 rmb();
1292
1293 /*
1294 * Check the consistency of the self IDs we just read. The
1295 * problem we face is that a new bus reset can start while we
1296 * read out the self IDs from the DMA buffer. If this happens,
1297 * the DMA buffer will be overwritten with new self IDs and we
1298 * will read out inconsistent data. The OHCI specification
1299 * (section 11.2) recommends a technique similar to
1300 * linux/seqlock.h, where we remember the generation of the
1301 * self IDs in the buffer before reading them out and compare
1302 * it to the current generation after reading them out. If
1303 * the two generations match we know we have a consistent set
1304 * of self IDs.
1305 */
1306
1307 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1308 if (new_generation != generation) {
1309 fw_notify("recursive bus reset detected, "
1310 "discarding self ids\n");
1311 return;
1312 }
1313
1314 /* FIXME: Document how the locking works. */
1315 spin_lock_irqsave(&ohci->lock, flags);
1316
1317 ohci->generation = generation;
1318 context_stop(&ohci->at_request_ctx);
1319 context_stop(&ohci->at_response_ctx);
1320 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1321
1322 if (ohci->bus_reset_packet_quirk)
1323 ohci->request_generation = generation;
1324
1325 /*
1326 * This next bit is unrelated to the AT context stuff but we
1327 * have to do it under the spinlock also. If a new config rom
1328 * was set up before this reset, the old one is now no longer
1329 * in use and we can free it. Update the config rom pointers
1330 * to point to the current config rom and clear the
1331 * next_config_rom pointer so a new udpate can take place.
1332 */
1333
1334 if (ohci->next_config_rom != NULL) {
1335 if (ohci->next_config_rom != ohci->config_rom) {
1336 free_rom = ohci->config_rom;
1337 free_rom_bus = ohci->config_rom_bus;
1338 }
1339 ohci->config_rom = ohci->next_config_rom;
1340 ohci->config_rom_bus = ohci->next_config_rom_bus;
1341 ohci->next_config_rom = NULL;
1342
1343 /*
1344 * Restore config_rom image and manually update
1345 * config_rom registers. Writing the header quadlet
1346 * will indicate that the config rom is ready, so we
1347 * do that last.
1348 */
1349 reg_write(ohci, OHCI1394_BusOptions,
1350 be32_to_cpu(ohci->config_rom[2]));
1351 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1352 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1353 }
1354
1355 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1356 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1357 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1358 #endif
1359
1360 spin_unlock_irqrestore(&ohci->lock, flags);
1361
1362 if (free_rom)
1363 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1364 free_rom, free_rom_bus);
1365
1366 log_selfids(ohci->node_id, generation,
1367 self_id_count, ohci->self_id_buffer);
1368
1369 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1370 self_id_count, ohci->self_id_buffer);
1371 }
1372
1373 static irqreturn_t irq_handler(int irq, void *data)
1374 {
1375 struct fw_ohci *ohci = data;
1376 u32 event, iso_event, cycle_time;
1377 int i;
1378
1379 event = reg_read(ohci, OHCI1394_IntEventClear);
1380
1381 if (!event || !~event)
1382 return IRQ_NONE;
1383
1384 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1385 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1386 log_irqs(event);
1387
1388 if (event & OHCI1394_selfIDComplete)
1389 tasklet_schedule(&ohci->bus_reset_tasklet);
1390
1391 if (event & OHCI1394_RQPkt)
1392 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1393
1394 if (event & OHCI1394_RSPkt)
1395 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1396
1397 if (event & OHCI1394_reqTxComplete)
1398 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1399
1400 if (event & OHCI1394_respTxComplete)
1401 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1402
1403 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1404 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1405
1406 while (iso_event) {
1407 i = ffs(iso_event) - 1;
1408 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1409 iso_event &= ~(1 << i);
1410 }
1411
1412 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1413 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1414
1415 while (iso_event) {
1416 i = ffs(iso_event) - 1;
1417 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1418 iso_event &= ~(1 << i);
1419 }
1420
1421 if (unlikely(event & OHCI1394_regAccessFail))
1422 fw_error("Register access failure - "
1423 "please notify linux1394-devel@lists.sf.net\n");
1424
1425 if (unlikely(event & OHCI1394_postedWriteErr))
1426 fw_error("PCI posted write error\n");
1427
1428 if (unlikely(event & OHCI1394_cycleTooLong)) {
1429 if (printk_ratelimit())
1430 fw_notify("isochronous cycle too long\n");
1431 reg_write(ohci, OHCI1394_LinkControlSet,
1432 OHCI1394_LinkControl_cycleMaster);
1433 }
1434
1435 if (event & OHCI1394_cycle64Seconds) {
1436 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1437 if ((cycle_time & 0x80000000) == 0)
1438 atomic_inc(&ohci->bus_seconds);
1439 }
1440
1441 return IRQ_HANDLED;
1442 }
1443
1444 static int software_reset(struct fw_ohci *ohci)
1445 {
1446 int i;
1447
1448 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1449
1450 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1451 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1452 OHCI1394_HCControl_softReset) == 0)
1453 return 0;
1454 msleep(1);
1455 }
1456
1457 return -EBUSY;
1458 }
1459
1460 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1461 {
1462 struct fw_ohci *ohci = fw_ohci(card);
1463 struct pci_dev *dev = to_pci_dev(card->device);
1464 u32 lps;
1465 int i;
1466
1467 if (software_reset(ohci)) {
1468 fw_error("Failed to reset ohci card.\n");
1469 return -EBUSY;
1470 }
1471
1472 /*
1473 * Now enable LPS, which we need in order to start accessing
1474 * most of the registers. In fact, on some cards (ALI M5251),
1475 * accessing registers in the SClk domain without LPS enabled
1476 * will lock up the machine. Wait 50msec to make sure we have
1477 * full link enabled. However, with some cards (well, at least
1478 * a JMicron PCIe card), we have to try again sometimes.
1479 */
1480 reg_write(ohci, OHCI1394_HCControlSet,
1481 OHCI1394_HCControl_LPS |
1482 OHCI1394_HCControl_postedWriteEnable);
1483 flush_writes(ohci);
1484
1485 for (lps = 0, i = 0; !lps && i < 3; i++) {
1486 msleep(50);
1487 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1488 OHCI1394_HCControl_LPS;
1489 }
1490
1491 if (!lps) {
1492 fw_error("Failed to set Link Power Status\n");
1493 return -EIO;
1494 }
1495
1496 reg_write(ohci, OHCI1394_HCControlClear,
1497 OHCI1394_HCControl_noByteSwapData);
1498
1499 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1500 reg_write(ohci, OHCI1394_LinkControlClear,
1501 OHCI1394_LinkControl_rcvPhyPkt);
1502 reg_write(ohci, OHCI1394_LinkControlSet,
1503 OHCI1394_LinkControl_rcvSelfID |
1504 OHCI1394_LinkControl_cycleTimerEnable |
1505 OHCI1394_LinkControl_cycleMaster);
1506
1507 reg_write(ohci, OHCI1394_ATRetries,
1508 OHCI1394_MAX_AT_REQ_RETRIES |
1509 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1510 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1511
1512 ar_context_run(&ohci->ar_request_ctx);
1513 ar_context_run(&ohci->ar_response_ctx);
1514
1515 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1516 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1517 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1518 reg_write(ohci, OHCI1394_IntMaskSet,
1519 OHCI1394_selfIDComplete |
1520 OHCI1394_RQPkt | OHCI1394_RSPkt |
1521 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1522 OHCI1394_isochRx | OHCI1394_isochTx |
1523 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1524 OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1525 OHCI1394_masterIntEnable);
1526 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1527 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1528
1529 /* Activate link_on bit and contender bit in our self ID packets.*/
1530 if (ohci_update_phy_reg(card, 4, 0,
1531 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1532 return -EIO;
1533
1534 /*
1535 * When the link is not yet enabled, the atomic config rom
1536 * update mechanism described below in ohci_set_config_rom()
1537 * is not active. We have to update ConfigRomHeader and
1538 * BusOptions manually, and the write to ConfigROMmap takes
1539 * effect immediately. We tie this to the enabling of the
1540 * link, so we have a valid config rom before enabling - the
1541 * OHCI requires that ConfigROMhdr and BusOptions have valid
1542 * values before enabling.
1543 *
1544 * However, when the ConfigROMmap is written, some controllers
1545 * always read back quadlets 0 and 2 from the config rom to
1546 * the ConfigRomHeader and BusOptions registers on bus reset.
1547 * They shouldn't do that in this initial case where the link
1548 * isn't enabled. This means we have to use the same
1549 * workaround here, setting the bus header to 0 and then write
1550 * the right values in the bus reset tasklet.
1551 */
1552
1553 if (config_rom) {
1554 ohci->next_config_rom =
1555 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1556 &ohci->next_config_rom_bus,
1557 GFP_KERNEL);
1558 if (ohci->next_config_rom == NULL)
1559 return -ENOMEM;
1560
1561 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1562 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1563 } else {
1564 /*
1565 * In the suspend case, config_rom is NULL, which
1566 * means that we just reuse the old config rom.
1567 */
1568 ohci->next_config_rom = ohci->config_rom;
1569 ohci->next_config_rom_bus = ohci->config_rom_bus;
1570 }
1571
1572 ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1573 ohci->next_config_rom[0] = 0;
1574 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1575 reg_write(ohci, OHCI1394_BusOptions,
1576 be32_to_cpu(ohci->next_config_rom[2]));
1577 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1578
1579 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1580
1581 if (request_irq(dev->irq, irq_handler,
1582 IRQF_SHARED, ohci_driver_name, ohci)) {
1583 fw_error("Failed to allocate shared interrupt %d.\n",
1584 dev->irq);
1585 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1586 ohci->config_rom, ohci->config_rom_bus);
1587 return -EIO;
1588 }
1589
1590 reg_write(ohci, OHCI1394_HCControlSet,
1591 OHCI1394_HCControl_linkEnable |
1592 OHCI1394_HCControl_BIBimageValid);
1593 flush_writes(ohci);
1594
1595 /*
1596 * We are ready to go, initiate bus reset to finish the
1597 * initialization.
1598 */
1599
1600 fw_core_initiate_bus_reset(&ohci->card, 1);
1601
1602 return 0;
1603 }
1604
1605 static int ohci_set_config_rom(struct fw_card *card,
1606 u32 *config_rom, size_t length)
1607 {
1608 struct fw_ohci *ohci;
1609 unsigned long flags;
1610 int ret = -EBUSY;
1611 __be32 *next_config_rom;
1612 dma_addr_t uninitialized_var(next_config_rom_bus);
1613
1614 ohci = fw_ohci(card);
1615
1616 /*
1617 * When the OHCI controller is enabled, the config rom update
1618 * mechanism is a bit tricky, but easy enough to use. See
1619 * section 5.5.6 in the OHCI specification.
1620 *
1621 * The OHCI controller caches the new config rom address in a
1622 * shadow register (ConfigROMmapNext) and needs a bus reset
1623 * for the changes to take place. When the bus reset is
1624 * detected, the controller loads the new values for the
1625 * ConfigRomHeader and BusOptions registers from the specified
1626 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1627 * shadow register. All automatically and atomically.
1628 *
1629 * Now, there's a twist to this story. The automatic load of
1630 * ConfigRomHeader and BusOptions doesn't honor the
1631 * noByteSwapData bit, so with a be32 config rom, the
1632 * controller will load be32 values in to these registers
1633 * during the atomic update, even on litte endian
1634 * architectures. The workaround we use is to put a 0 in the
1635 * header quadlet; 0 is endian agnostic and means that the
1636 * config rom isn't ready yet. In the bus reset tasklet we
1637 * then set up the real values for the two registers.
1638 *
1639 * We use ohci->lock to avoid racing with the code that sets
1640 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1641 */
1642
1643 next_config_rom =
1644 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1645 &next_config_rom_bus, GFP_KERNEL);
1646 if (next_config_rom == NULL)
1647 return -ENOMEM;
1648
1649 spin_lock_irqsave(&ohci->lock, flags);
1650
1651 if (ohci->next_config_rom == NULL) {
1652 ohci->next_config_rom = next_config_rom;
1653 ohci->next_config_rom_bus = next_config_rom_bus;
1654
1655 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1656 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1657 length * 4);
1658
1659 ohci->next_header = config_rom[0];
1660 ohci->next_config_rom[0] = 0;
1661
1662 reg_write(ohci, OHCI1394_ConfigROMmap,
1663 ohci->next_config_rom_bus);
1664 ret = 0;
1665 }
1666
1667 spin_unlock_irqrestore(&ohci->lock, flags);
1668
1669 /*
1670 * Now initiate a bus reset to have the changes take
1671 * effect. We clean up the old config rom memory and DMA
1672 * mappings in the bus reset tasklet, since the OHCI
1673 * controller could need to access it before the bus reset
1674 * takes effect.
1675 */
1676 if (ret == 0)
1677 fw_core_initiate_bus_reset(&ohci->card, 1);
1678 else
1679 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1680 next_config_rom, next_config_rom_bus);
1681
1682 return ret;
1683 }
1684
1685 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1686 {
1687 struct fw_ohci *ohci = fw_ohci(card);
1688
1689 at_context_transmit(&ohci->at_request_ctx, packet);
1690 }
1691
1692 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1693 {
1694 struct fw_ohci *ohci = fw_ohci(card);
1695
1696 at_context_transmit(&ohci->at_response_ctx, packet);
1697 }
1698
1699 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1700 {
1701 struct fw_ohci *ohci = fw_ohci(card);
1702 struct context *ctx = &ohci->at_request_ctx;
1703 struct driver_data *driver_data = packet->driver_data;
1704 int ret = -ENOENT;
1705
1706 tasklet_disable(&ctx->tasklet);
1707
1708 if (packet->ack != 0)
1709 goto out;
1710
1711 if (packet->payload_bus)
1712 dma_unmap_single(ohci->card.device, packet->payload_bus,
1713 packet->payload_length, DMA_TO_DEVICE);
1714
1715 log_ar_at_event('T', packet->speed, packet->header, 0x20);
1716 driver_data->packet = NULL;
1717 packet->ack = RCODE_CANCELLED;
1718 packet->callback(packet, &ohci->card, packet->ack);
1719 ret = 0;
1720 out:
1721 tasklet_enable(&ctx->tasklet);
1722
1723 return ret;
1724 }
1725
1726 static int ohci_enable_phys_dma(struct fw_card *card,
1727 int node_id, int generation)
1728 {
1729 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1730 return 0;
1731 #else
1732 struct fw_ohci *ohci = fw_ohci(card);
1733 unsigned long flags;
1734 int n, ret = 0;
1735
1736 /*
1737 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1738 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1739 */
1740
1741 spin_lock_irqsave(&ohci->lock, flags);
1742
1743 if (ohci->generation != generation) {
1744 ret = -ESTALE;
1745 goto out;
1746 }
1747
1748 /*
1749 * Note, if the node ID contains a non-local bus ID, physical DMA is
1750 * enabled for _all_ nodes on remote buses.
1751 */
1752
1753 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1754 if (n < 32)
1755 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1756 else
1757 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1758
1759 flush_writes(ohci);
1760 out:
1761 spin_unlock_irqrestore(&ohci->lock, flags);
1762
1763 return ret;
1764 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1765 }
1766
1767 static u64 ohci_get_bus_time(struct fw_card *card)
1768 {
1769 struct fw_ohci *ohci = fw_ohci(card);
1770 u32 cycle_time;
1771 u64 bus_time;
1772
1773 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1774 bus_time = ((u64)atomic_read(&ohci->bus_seconds) << 32) | cycle_time;
1775
1776 return bus_time;
1777 }
1778
1779 static void copy_iso_headers(struct iso_context *ctx, void *p)
1780 {
1781 int i = ctx->header_length;
1782
1783 if (i + ctx->base.header_size > PAGE_SIZE)
1784 return;
1785
1786 /*
1787 * The iso header is byteswapped to little endian by
1788 * the controller, but the remaining header quadlets
1789 * are big endian. We want to present all the headers
1790 * as big endian, so we have to swap the first quadlet.
1791 */
1792 if (ctx->base.header_size > 0)
1793 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1794 if (ctx->base.header_size > 4)
1795 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1796 if (ctx->base.header_size > 8)
1797 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1798 ctx->header_length += ctx->base.header_size;
1799 }
1800
1801 static int handle_ir_dualbuffer_packet(struct context *context,
1802 struct descriptor *d,
1803 struct descriptor *last)
1804 {
1805 struct iso_context *ctx =
1806 container_of(context, struct iso_context, context);
1807 struct db_descriptor *db = (struct db_descriptor *) d;
1808 __le32 *ir_header;
1809 size_t header_length;
1810 void *p, *end;
1811
1812 if (db->first_res_count != 0 && db->second_res_count != 0) {
1813 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1814 /* This descriptor isn't done yet, stop iteration. */
1815 return 0;
1816 }
1817 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1818 }
1819
1820 header_length = le16_to_cpu(db->first_req_count) -
1821 le16_to_cpu(db->first_res_count);
1822
1823 p = db + 1;
1824 end = p + header_length;
1825 while (p < end) {
1826 copy_iso_headers(ctx, p);
1827 ctx->excess_bytes +=
1828 (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1829 p += max(ctx->base.header_size, (size_t)8);
1830 }
1831
1832 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1833 le16_to_cpu(db->second_res_count);
1834
1835 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1836 ir_header = (__le32 *) (db + 1);
1837 ctx->base.callback(&ctx->base,
1838 le32_to_cpu(ir_header[0]) & 0xffff,
1839 ctx->header_length, ctx->header,
1840 ctx->base.callback_data);
1841 ctx->header_length = 0;
1842 }
1843
1844 return 1;
1845 }
1846
1847 static int handle_ir_packet_per_buffer(struct context *context,
1848 struct descriptor *d,
1849 struct descriptor *last)
1850 {
1851 struct iso_context *ctx =
1852 container_of(context, struct iso_context, context);
1853 struct descriptor *pd;
1854 __le32 *ir_header;
1855 void *p;
1856
1857 for (pd = d; pd <= last; pd++) {
1858 if (pd->transfer_status)
1859 break;
1860 }
1861 if (pd > last)
1862 /* Descriptor(s) not done yet, stop iteration */
1863 return 0;
1864
1865 p = last + 1;
1866 copy_iso_headers(ctx, p);
1867
1868 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1869 ir_header = (__le32 *) p;
1870 ctx->base.callback(&ctx->base,
1871 le32_to_cpu(ir_header[0]) & 0xffff,
1872 ctx->header_length, ctx->header,
1873 ctx->base.callback_data);
1874 ctx->header_length = 0;
1875 }
1876
1877 return 1;
1878 }
1879
1880 static int handle_it_packet(struct context *context,
1881 struct descriptor *d,
1882 struct descriptor *last)
1883 {
1884 struct iso_context *ctx =
1885 container_of(context, struct iso_context, context);
1886
1887 if (last->transfer_status == 0)
1888 /* This descriptor isn't done yet, stop iteration. */
1889 return 0;
1890
1891 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1892 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1893 0, NULL, ctx->base.callback_data);
1894
1895 return 1;
1896 }
1897
1898 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1899 int type, int channel, size_t header_size)
1900 {
1901 struct fw_ohci *ohci = fw_ohci(card);
1902 struct iso_context *ctx, *list;
1903 descriptor_callback_t callback;
1904 u64 *channels, dont_care = ~0ULL;
1905 u32 *mask, regs;
1906 unsigned long flags;
1907 int index, ret = -ENOMEM;
1908
1909 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1910 channels = &dont_care;
1911 mask = &ohci->it_context_mask;
1912 list = ohci->it_context_list;
1913 callback = handle_it_packet;
1914 } else {
1915 channels = &ohci->ir_context_channels;
1916 mask = &ohci->ir_context_mask;
1917 list = ohci->ir_context_list;
1918 if (ohci->use_dualbuffer)
1919 callback = handle_ir_dualbuffer_packet;
1920 else
1921 callback = handle_ir_packet_per_buffer;
1922 }
1923
1924 spin_lock_irqsave(&ohci->lock, flags);
1925 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1926 if (index >= 0) {
1927 *channels &= ~(1ULL << channel);
1928 *mask &= ~(1 << index);
1929 }
1930 spin_unlock_irqrestore(&ohci->lock, flags);
1931
1932 if (index < 0)
1933 return ERR_PTR(-EBUSY);
1934
1935 if (type == FW_ISO_CONTEXT_TRANSMIT)
1936 regs = OHCI1394_IsoXmitContextBase(index);
1937 else
1938 regs = OHCI1394_IsoRcvContextBase(index);
1939
1940 ctx = &list[index];
1941 memset(ctx, 0, sizeof(*ctx));
1942 ctx->header_length = 0;
1943 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1944 if (ctx->header == NULL)
1945 goto out;
1946
1947 ret = context_init(&ctx->context, ohci, regs, callback);
1948 if (ret < 0)
1949 goto out_with_header;
1950
1951 return &ctx->base;
1952
1953 out_with_header:
1954 free_page((unsigned long)ctx->header);
1955 out:
1956 spin_lock_irqsave(&ohci->lock, flags);
1957 *mask |= 1 << index;
1958 spin_unlock_irqrestore(&ohci->lock, flags);
1959
1960 return ERR_PTR(ret);
1961 }
1962
1963 static int ohci_start_iso(struct fw_iso_context *base,
1964 s32 cycle, u32 sync, u32 tags)
1965 {
1966 struct iso_context *ctx = container_of(base, struct iso_context, base);
1967 struct fw_ohci *ohci = ctx->context.ohci;
1968 u32 control, match;
1969 int index;
1970
1971 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1972 index = ctx - ohci->it_context_list;
1973 match = 0;
1974 if (cycle >= 0)
1975 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1976 (cycle & 0x7fff) << 16;
1977
1978 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1979 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1980 context_run(&ctx->context, match);
1981 } else {
1982 index = ctx - ohci->ir_context_list;
1983 control = IR_CONTEXT_ISOCH_HEADER;
1984 if (ohci->use_dualbuffer)
1985 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1986 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1987 if (cycle >= 0) {
1988 match |= (cycle & 0x07fff) << 12;
1989 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1990 }
1991
1992 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1993 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1994 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1995 context_run(&ctx->context, control);
1996 }
1997
1998 return 0;
1999 }
2000
2001 static int ohci_stop_iso(struct fw_iso_context *base)
2002 {
2003 struct fw_ohci *ohci = fw_ohci(base->card);
2004 struct iso_context *ctx = container_of(base, struct iso_context, base);
2005 int index;
2006
2007 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2008 index = ctx - ohci->it_context_list;
2009 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2010 } else {
2011 index = ctx - ohci->ir_context_list;
2012 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2013 }
2014 flush_writes(ohci);
2015 context_stop(&ctx->context);
2016
2017 return 0;
2018 }
2019
2020 static void ohci_free_iso_context(struct fw_iso_context *base)
2021 {
2022 struct fw_ohci *ohci = fw_ohci(base->card);
2023 struct iso_context *ctx = container_of(base, struct iso_context, base);
2024 unsigned long flags;
2025 int index;
2026
2027 ohci_stop_iso(base);
2028 context_release(&ctx->context);
2029 free_page((unsigned long)ctx->header);
2030
2031 spin_lock_irqsave(&ohci->lock, flags);
2032
2033 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2034 index = ctx - ohci->it_context_list;
2035 ohci->it_context_mask |= 1 << index;
2036 } else {
2037 index = ctx - ohci->ir_context_list;
2038 ohci->ir_context_mask |= 1 << index;
2039 ohci->ir_context_channels |= 1ULL << base->channel;
2040 }
2041
2042 spin_unlock_irqrestore(&ohci->lock, flags);
2043 }
2044
2045 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2046 struct fw_iso_packet *packet,
2047 struct fw_iso_buffer *buffer,
2048 unsigned long payload)
2049 {
2050 struct iso_context *ctx = container_of(base, struct iso_context, base);
2051 struct descriptor *d, *last, *pd;
2052 struct fw_iso_packet *p;
2053 __le32 *header;
2054 dma_addr_t d_bus, page_bus;
2055 u32 z, header_z, payload_z, irq;
2056 u32 payload_index, payload_end_index, next_page_index;
2057 int page, end_page, i, length, offset;
2058
2059 /*
2060 * FIXME: Cycle lost behavior should be configurable: lose
2061 * packet, retransmit or terminate..
2062 */
2063
2064 p = packet;
2065 payload_index = payload;
2066
2067 if (p->skip)
2068 z = 1;
2069 else
2070 z = 2;
2071 if (p->header_length > 0)
2072 z++;
2073
2074 /* Determine the first page the payload isn't contained in. */
2075 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2076 if (p->payload_length > 0)
2077 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2078 else
2079 payload_z = 0;
2080
2081 z += payload_z;
2082
2083 /* Get header size in number of descriptors. */
2084 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2085
2086 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2087 if (d == NULL)
2088 return -ENOMEM;
2089
2090 if (!p->skip) {
2091 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2092 d[0].req_count = cpu_to_le16(8);
2093
2094 header = (__le32 *) &d[1];
2095 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2096 IT_HEADER_TAG(p->tag) |
2097 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2098 IT_HEADER_CHANNEL(ctx->base.channel) |
2099 IT_HEADER_SPEED(ctx->base.speed));
2100 header[1] =
2101 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2102 p->payload_length));
2103 }
2104
2105 if (p->header_length > 0) {
2106 d[2].req_count = cpu_to_le16(p->header_length);
2107 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2108 memcpy(&d[z], p->header, p->header_length);
2109 }
2110
2111 pd = d + z - payload_z;
2112 payload_end_index = payload_index + p->payload_length;
2113 for (i = 0; i < payload_z; i++) {
2114 page = payload_index >> PAGE_SHIFT;
2115 offset = payload_index & ~PAGE_MASK;
2116 next_page_index = (page + 1) << PAGE_SHIFT;
2117 length =
2118 min(next_page_index, payload_end_index) - payload_index;
2119 pd[i].req_count = cpu_to_le16(length);
2120
2121 page_bus = page_private(buffer->pages[page]);
2122 pd[i].data_address = cpu_to_le32(page_bus + offset);
2123
2124 payload_index += length;
2125 }
2126
2127 if (p->interrupt)
2128 irq = DESCRIPTOR_IRQ_ALWAYS;
2129 else
2130 irq = DESCRIPTOR_NO_IRQ;
2131
2132 last = z == 2 ? d : d + z - 1;
2133 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2134 DESCRIPTOR_STATUS |
2135 DESCRIPTOR_BRANCH_ALWAYS |
2136 irq);
2137
2138 context_append(&ctx->context, d, z, header_z);
2139
2140 return 0;
2141 }
2142
2143 static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2144 struct fw_iso_packet *packet,
2145 struct fw_iso_buffer *buffer,
2146 unsigned long payload)
2147 {
2148 struct iso_context *ctx = container_of(base, struct iso_context, base);
2149 struct db_descriptor *db = NULL;
2150 struct descriptor *d;
2151 struct fw_iso_packet *p;
2152 dma_addr_t d_bus, page_bus;
2153 u32 z, header_z, length, rest;
2154 int page, offset, packet_count, header_size;
2155
2156 /*
2157 * FIXME: Cycle lost behavior should be configurable: lose
2158 * packet, retransmit or terminate..
2159 */
2160
2161 p = packet;
2162 z = 2;
2163
2164 /*
2165 * The OHCI controller puts the isochronous header and trailer in the
2166 * buffer, so we need at least 8 bytes.
2167 */
2168 packet_count = p->header_length / ctx->base.header_size;
2169 header_size = packet_count * max(ctx->base.header_size, (size_t)8);
2170
2171 /* Get header size in number of descriptors. */
2172 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2173 page = payload >> PAGE_SHIFT;
2174 offset = payload & ~PAGE_MASK;
2175 rest = p->payload_length;
2176
2177 /* FIXME: make packet-per-buffer/dual-buffer a context option */
2178 while (rest > 0) {
2179 d = context_get_descriptors(&ctx->context,
2180 z + header_z, &d_bus);
2181 if (d == NULL)
2182 return -ENOMEM;
2183
2184 db = (struct db_descriptor *) d;
2185 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2186 DESCRIPTOR_BRANCH_ALWAYS);
2187 db->first_size =
2188 cpu_to_le16(max(ctx->base.header_size, (size_t)8));
2189 if (p->skip && rest == p->payload_length) {
2190 db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2191 db->first_req_count = db->first_size;
2192 } else {
2193 db->first_req_count = cpu_to_le16(header_size);
2194 }
2195 db->first_res_count = db->first_req_count;
2196 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2197
2198 if (p->skip && rest == p->payload_length)
2199 length = 4;
2200 else if (offset + rest < PAGE_SIZE)
2201 length = rest;
2202 else
2203 length = PAGE_SIZE - offset;
2204
2205 db->second_req_count = cpu_to_le16(length);
2206 db->second_res_count = db->second_req_count;
2207 page_bus = page_private(buffer->pages[page]);
2208 db->second_buffer = cpu_to_le32(page_bus + offset);
2209
2210 if (p->interrupt && length == rest)
2211 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2212
2213 context_append(&ctx->context, d, z, header_z);
2214 offset = (offset + length) & ~PAGE_MASK;
2215 rest -= length;
2216 if (offset == 0)
2217 page++;
2218 }
2219
2220 return 0;
2221 }
2222
2223 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2224 struct fw_iso_packet *packet,
2225 struct fw_iso_buffer *buffer,
2226 unsigned long payload)
2227 {
2228 struct iso_context *ctx = container_of(base, struct iso_context, base);
2229 struct descriptor *d = NULL, *pd = NULL;
2230 struct fw_iso_packet *p = packet;
2231 dma_addr_t d_bus, page_bus;
2232 u32 z, header_z, rest;
2233 int i, j, length;
2234 int page, offset, packet_count, header_size, payload_per_buffer;
2235
2236 /*
2237 * The OHCI controller puts the isochronous header and trailer in the
2238 * buffer, so we need at least 8 bytes.
2239 */
2240 packet_count = p->header_length / ctx->base.header_size;
2241 header_size = max(ctx->base.header_size, (size_t)8);
2242
2243 /* Get header size in number of descriptors. */
2244 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2245 page = payload >> PAGE_SHIFT;
2246 offset = payload & ~PAGE_MASK;
2247 payload_per_buffer = p->payload_length / packet_count;
2248
2249 for (i = 0; i < packet_count; i++) {
2250 /* d points to the header descriptor */
2251 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2252 d = context_get_descriptors(&ctx->context,
2253 z + header_z, &d_bus);
2254 if (d == NULL)
2255 return -ENOMEM;
2256
2257 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2258 DESCRIPTOR_INPUT_MORE);
2259 if (p->skip && i == 0)
2260 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2261 d->req_count = cpu_to_le16(header_size);
2262 d->res_count = d->req_count;
2263 d->transfer_status = 0;
2264 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2265
2266 rest = payload_per_buffer;
2267 for (j = 1; j < z; j++) {
2268 pd = d + j;
2269 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2270 DESCRIPTOR_INPUT_MORE);
2271
2272 if (offset + rest < PAGE_SIZE)
2273 length = rest;
2274 else
2275 length = PAGE_SIZE - offset;
2276 pd->req_count = cpu_to_le16(length);
2277 pd->res_count = pd->req_count;
2278 pd->transfer_status = 0;
2279
2280 page_bus = page_private(buffer->pages[page]);
2281 pd->data_address = cpu_to_le32(page_bus + offset);
2282
2283 offset = (offset + length) & ~PAGE_MASK;
2284 rest -= length;
2285 if (offset == 0)
2286 page++;
2287 }
2288 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2289 DESCRIPTOR_INPUT_LAST |
2290 DESCRIPTOR_BRANCH_ALWAYS);
2291 if (p->interrupt && i == packet_count - 1)
2292 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2293
2294 context_append(&ctx->context, d, z, header_z);
2295 }
2296
2297 return 0;
2298 }
2299
2300 static int ohci_queue_iso(struct fw_iso_context *base,
2301 struct fw_iso_packet *packet,
2302 struct fw_iso_buffer *buffer,
2303 unsigned long payload)
2304 {
2305 struct iso_context *ctx = container_of(base, struct iso_context, base);
2306 unsigned long flags;
2307 int ret;
2308
2309 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2310 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2311 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2312 else if (ctx->context.ohci->use_dualbuffer)
2313 ret = ohci_queue_iso_receive_dualbuffer(base, packet,
2314 buffer, payload);
2315 else
2316 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2317 buffer, payload);
2318 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2319
2320 return ret;
2321 }
2322
2323 static const struct fw_card_driver ohci_driver = {
2324 .enable = ohci_enable,
2325 .update_phy_reg = ohci_update_phy_reg,
2326 .set_config_rom = ohci_set_config_rom,
2327 .send_request = ohci_send_request,
2328 .send_response = ohci_send_response,
2329 .cancel_packet = ohci_cancel_packet,
2330 .enable_phys_dma = ohci_enable_phys_dma,
2331 .get_bus_time = ohci_get_bus_time,
2332
2333 .allocate_iso_context = ohci_allocate_iso_context,
2334 .free_iso_context = ohci_free_iso_context,
2335 .queue_iso = ohci_queue_iso,
2336 .start_iso = ohci_start_iso,
2337 .stop_iso = ohci_stop_iso,
2338 };
2339
2340 #ifdef CONFIG_PPC_PMAC
2341 static void ohci_pmac_on(struct pci_dev *dev)
2342 {
2343 if (machine_is(powermac)) {
2344 struct device_node *ofn = pci_device_to_OF_node(dev);
2345
2346 if (ofn) {
2347 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2348 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2349 }
2350 }
2351 }
2352
2353 static void ohci_pmac_off(struct pci_dev *dev)
2354 {
2355 if (machine_is(powermac)) {
2356 struct device_node *ofn = pci_device_to_OF_node(dev);
2357
2358 if (ofn) {
2359 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2360 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2361 }
2362 }
2363 }
2364 #else
2365 #define ohci_pmac_on(dev)
2366 #define ohci_pmac_off(dev)
2367 #endif /* CONFIG_PPC_PMAC */
2368
2369 static int __devinit pci_probe(struct pci_dev *dev,
2370 const struct pci_device_id *ent)
2371 {
2372 struct fw_ohci *ohci;
2373 u32 bus_options, max_receive, link_speed, version;
2374 u64 guid;
2375 int err;
2376 size_t size;
2377
2378 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2379 if (ohci == NULL) {
2380 err = -ENOMEM;
2381 goto fail;
2382 }
2383
2384 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2385
2386 ohci_pmac_on(dev);
2387
2388 err = pci_enable_device(dev);
2389 if (err) {
2390 fw_error("Failed to enable OHCI hardware\n");
2391 goto fail_free;
2392 }
2393
2394 pci_set_master(dev);
2395 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2396 pci_set_drvdata(dev, ohci);
2397
2398 spin_lock_init(&ohci->lock);
2399
2400 tasklet_init(&ohci->bus_reset_tasklet,
2401 bus_reset_tasklet, (unsigned long)ohci);
2402
2403 err = pci_request_region(dev, 0, ohci_driver_name);
2404 if (err) {
2405 fw_error("MMIO resource unavailable\n");
2406 goto fail_disable;
2407 }
2408
2409 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2410 if (ohci->registers == NULL) {
2411 fw_error("Failed to remap registers\n");
2412 err = -ENXIO;
2413 goto fail_iomem;
2414 }
2415
2416 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2417 ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2418
2419 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2420 #if !defined(CONFIG_X86_32)
2421 /* dual-buffer mode is broken with descriptor addresses above 2G */
2422 if (dev->vendor == PCI_VENDOR_ID_TI &&
2423 dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
2424 ohci->use_dualbuffer = false;
2425 #endif
2426
2427 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2428 ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2429 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2430 #endif
2431 ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2432
2433 ar_context_init(&ohci->ar_request_ctx, ohci,
2434 OHCI1394_AsReqRcvContextControlSet);
2435
2436 ar_context_init(&ohci->ar_response_ctx, ohci,
2437 OHCI1394_AsRspRcvContextControlSet);
2438
2439 context_init(&ohci->at_request_ctx, ohci,
2440 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2441
2442 context_init(&ohci->at_response_ctx, ohci,
2443 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2444
2445 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2446 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2447 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2448 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2449 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2450
2451 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2452 ohci->ir_context_channels = ~0ULL;
2453 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2454 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2455 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2456 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2457
2458 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2459 err = -ENOMEM;
2460 goto fail_contexts;
2461 }
2462
2463 /* self-id dma buffer allocation */
2464 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2465 SELF_ID_BUF_SIZE,
2466 &ohci->self_id_bus,
2467 GFP_KERNEL);
2468 if (ohci->self_id_cpu == NULL) {
2469 err = -ENOMEM;
2470 goto fail_contexts;
2471 }
2472
2473 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2474 max_receive = (bus_options >> 12) & 0xf;
2475 link_speed = bus_options & 0x7;
2476 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2477 reg_read(ohci, OHCI1394_GUIDLo);
2478
2479 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2480 if (err)
2481 goto fail_self_id;
2482
2483 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2484 dev_name(&dev->dev), version >> 16, version & 0xff);
2485
2486 return 0;
2487
2488 fail_self_id:
2489 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2490 ohci->self_id_cpu, ohci->self_id_bus);
2491 fail_contexts:
2492 kfree(ohci->ir_context_list);
2493 kfree(ohci->it_context_list);
2494 context_release(&ohci->at_response_ctx);
2495 context_release(&ohci->at_request_ctx);
2496 ar_context_release(&ohci->ar_response_ctx);
2497 ar_context_release(&ohci->ar_request_ctx);
2498 pci_iounmap(dev, ohci->registers);
2499 fail_iomem:
2500 pci_release_region(dev, 0);
2501 fail_disable:
2502 pci_disable_device(dev);
2503 fail_free:
2504 kfree(&ohci->card);
2505 ohci_pmac_off(dev);
2506 fail:
2507 if (err == -ENOMEM)
2508 fw_error("Out of memory\n");
2509
2510 return err;
2511 }
2512
2513 static void pci_remove(struct pci_dev *dev)
2514 {
2515 struct fw_ohci *ohci;
2516
2517 ohci = pci_get_drvdata(dev);
2518 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2519 flush_writes(ohci);
2520 fw_core_remove_card(&ohci->card);
2521
2522 /*
2523 * FIXME: Fail all pending packets here, now that the upper
2524 * layers can't queue any more.
2525 */
2526
2527 software_reset(ohci);
2528 free_irq(dev->irq, ohci);
2529
2530 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2531 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2532 ohci->next_config_rom, ohci->next_config_rom_bus);
2533 if (ohci->config_rom)
2534 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2535 ohci->config_rom, ohci->config_rom_bus);
2536 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2537 ohci->self_id_cpu, ohci->self_id_bus);
2538 ar_context_release(&ohci->ar_request_ctx);
2539 ar_context_release(&ohci->ar_response_ctx);
2540 context_release(&ohci->at_request_ctx);
2541 context_release(&ohci->at_response_ctx);
2542 kfree(ohci->it_context_list);
2543 kfree(ohci->ir_context_list);
2544 pci_iounmap(dev, ohci->registers);
2545 pci_release_region(dev, 0);
2546 pci_disable_device(dev);
2547 kfree(&ohci->card);
2548 ohci_pmac_off(dev);
2549
2550 fw_notify("Removed fw-ohci device.\n");
2551 }
2552
2553 #ifdef CONFIG_PM
2554 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2555 {
2556 struct fw_ohci *ohci = pci_get_drvdata(dev);
2557 int err;
2558
2559 software_reset(ohci);
2560 free_irq(dev->irq, ohci);
2561 err = pci_save_state(dev);
2562 if (err) {
2563 fw_error("pci_save_state failed\n");
2564 return err;
2565 }
2566 err = pci_set_power_state(dev, pci_choose_state(dev, state));
2567 if (err)
2568 fw_error("pci_set_power_state failed with %d\n", err);
2569 ohci_pmac_off(dev);
2570
2571 return 0;
2572 }
2573
2574 static int pci_resume(struct pci_dev *dev)
2575 {
2576 struct fw_ohci *ohci = pci_get_drvdata(dev);
2577 int err;
2578
2579 ohci_pmac_on(dev);
2580 pci_set_power_state(dev, PCI_D0);
2581 pci_restore_state(dev);
2582 err = pci_enable_device(dev);
2583 if (err) {
2584 fw_error("pci_enable_device failed\n");
2585 return err;
2586 }
2587
2588 return ohci_enable(&ohci->card, NULL, 0);
2589 }
2590 #endif
2591
2592 static struct pci_device_id pci_table[] = {
2593 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2594 { }
2595 };
2596
2597 MODULE_DEVICE_TABLE(pci, pci_table);
2598
2599 static struct pci_driver fw_ohci_pci_driver = {
2600 .name = ohci_driver_name,
2601 .id_table = pci_table,
2602 .probe = pci_probe,
2603 .remove = pci_remove,
2604 #ifdef CONFIG_PM
2605 .resume = pci_resume,
2606 .suspend = pci_suspend,
2607 #endif
2608 };
2609
2610 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2611 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2612 MODULE_LICENSE("GPL");
2613
2614 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2615 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2616 MODULE_ALIAS("ohci1394");
2617 #endif
2618
2619 static int __init fw_ohci_init(void)
2620 {
2621 return pci_register_driver(&fw_ohci_pci_driver);
2622 }
2623
2624 static void __exit fw_ohci_cleanup(void)
2625 {
2626 pci_unregister_driver(&fw_ohci_pci_driver);
2627 }
2628
2629 module_init(fw_ohci_init);
2630 module_exit(fw_ohci_cleanup);
This page took 0.14199 seconds and 6 git commands to generate.