Merge master.kernel.org:/pub/scm/linux/kernel/git/bart/ide-2.6
[deliverable/linux.git] / drivers / firewire / fw-ohci.c
1 /*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/mm.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/semaphore.h>
33
34 #include "fw-transaction.h"
35 #include "fw-ohci.h"
36
37 #define DESCRIPTOR_OUTPUT_MORE 0
38 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
39 #define DESCRIPTOR_INPUT_MORE (2 << 12)
40 #define DESCRIPTOR_INPUT_LAST (3 << 12)
41 #define DESCRIPTOR_STATUS (1 << 11)
42 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
43 #define DESCRIPTOR_PING (1 << 7)
44 #define DESCRIPTOR_YY (1 << 6)
45 #define DESCRIPTOR_NO_IRQ (0 << 4)
46 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
47 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
48 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
49 #define DESCRIPTOR_WAIT (3 << 0)
50
51 struct descriptor {
52 __le16 req_count;
53 __le16 control;
54 __le32 data_address;
55 __le32 branch_address;
56 __le16 res_count;
57 __le16 transfer_status;
58 } __attribute__((aligned(16)));
59
60 struct db_descriptor {
61 __le16 first_size;
62 __le16 control;
63 __le16 second_req_count;
64 __le16 first_req_count;
65 __le32 branch_address;
66 __le16 second_res_count;
67 __le16 first_res_count;
68 __le32 reserved0;
69 __le32 first_buffer;
70 __le32 second_buffer;
71 __le32 reserved1;
72 } __attribute__((aligned(16)));
73
74 #define CONTROL_SET(regs) (regs)
75 #define CONTROL_CLEAR(regs) ((regs) + 4)
76 #define COMMAND_PTR(regs) ((regs) + 12)
77 #define CONTEXT_MATCH(regs) ((regs) + 16)
78
79 struct ar_buffer {
80 struct descriptor descriptor;
81 struct ar_buffer *next;
82 __le32 data[0];
83 };
84
85 struct ar_context {
86 struct fw_ohci *ohci;
87 struct ar_buffer *current_buffer;
88 struct ar_buffer *last_buffer;
89 void *pointer;
90 u32 regs;
91 struct tasklet_struct tasklet;
92 };
93
94 struct context;
95
96 typedef int (*descriptor_callback_t)(struct context *ctx,
97 struct descriptor *d,
98 struct descriptor *last);
99 struct context {
100 struct fw_ohci *ohci;
101 u32 regs;
102
103 struct descriptor *buffer;
104 dma_addr_t buffer_bus;
105 size_t buffer_size;
106 struct descriptor *head_descriptor;
107 struct descriptor *tail_descriptor;
108 struct descriptor *tail_descriptor_last;
109 struct descriptor *prev_descriptor;
110
111 descriptor_callback_t callback;
112
113 struct tasklet_struct tasklet;
114 };
115
116 #define IT_HEADER_SY(v) ((v) << 0)
117 #define IT_HEADER_TCODE(v) ((v) << 4)
118 #define IT_HEADER_CHANNEL(v) ((v) << 8)
119 #define IT_HEADER_TAG(v) ((v) << 14)
120 #define IT_HEADER_SPEED(v) ((v) << 16)
121 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
122
123 struct iso_context {
124 struct fw_iso_context base;
125 struct context context;
126 void *header;
127 size_t header_length;
128 };
129
130 #define CONFIG_ROM_SIZE 1024
131
132 struct fw_ohci {
133 struct fw_card card;
134
135 u32 version;
136 __iomem char *registers;
137 dma_addr_t self_id_bus;
138 __le32 *self_id_cpu;
139 struct tasklet_struct bus_reset_tasklet;
140 int node_id;
141 int generation;
142 int request_generation;
143 u32 bus_seconds;
144
145 /*
146 * Spinlock for accessing fw_ohci data. Never call out of
147 * this driver with this lock held.
148 */
149 spinlock_t lock;
150 u32 self_id_buffer[512];
151
152 /* Config rom buffers */
153 __be32 *config_rom;
154 dma_addr_t config_rom_bus;
155 __be32 *next_config_rom;
156 dma_addr_t next_config_rom_bus;
157 u32 next_header;
158
159 struct ar_context ar_request_ctx;
160 struct ar_context ar_response_ctx;
161 struct context at_request_ctx;
162 struct context at_response_ctx;
163
164 u32 it_context_mask;
165 struct iso_context *it_context_list;
166 u32 ir_context_mask;
167 struct iso_context *ir_context_list;
168 };
169
170 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
171 {
172 return container_of(card, struct fw_ohci, card);
173 }
174
175 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
176 #define IR_CONTEXT_BUFFER_FILL 0x80000000
177 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
178 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
179 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
180 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
181
182 #define CONTEXT_RUN 0x8000
183 #define CONTEXT_WAKE 0x1000
184 #define CONTEXT_DEAD 0x0800
185 #define CONTEXT_ACTIVE 0x0400
186
187 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
188 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
189 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
190
191 #define FW_OHCI_MAJOR 240
192 #define OHCI1394_REGISTER_SIZE 0x800
193 #define OHCI_LOOP_COUNT 500
194 #define OHCI1394_PCI_HCI_Control 0x40
195 #define SELF_ID_BUF_SIZE 0x800
196 #define OHCI_TCODE_PHY_PACKET 0x0e
197 #define OHCI_VERSION_1_1 0x010010
198 #define ISO_BUFFER_SIZE (64 * 1024)
199 #define AT_BUFFER_SIZE 4096
200
201 static char ohci_driver_name[] = KBUILD_MODNAME;
202
203 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
204 {
205 writel(data, ohci->registers + offset);
206 }
207
208 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
209 {
210 return readl(ohci->registers + offset);
211 }
212
213 static inline void flush_writes(const struct fw_ohci *ohci)
214 {
215 /* Do a dummy read to flush writes. */
216 reg_read(ohci, OHCI1394_Version);
217 }
218
219 static int
220 ohci_update_phy_reg(struct fw_card *card, int addr,
221 int clear_bits, int set_bits)
222 {
223 struct fw_ohci *ohci = fw_ohci(card);
224 u32 val, old;
225
226 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
227 msleep(2);
228 val = reg_read(ohci, OHCI1394_PhyControl);
229 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
230 fw_error("failed to set phy reg bits.\n");
231 return -EBUSY;
232 }
233
234 old = OHCI1394_PhyControl_ReadData(val);
235 old = (old & ~clear_bits) | set_bits;
236 reg_write(ohci, OHCI1394_PhyControl,
237 OHCI1394_PhyControl_Write(addr, old));
238
239 return 0;
240 }
241
242 static int ar_context_add_page(struct ar_context *ctx)
243 {
244 struct device *dev = ctx->ohci->card.device;
245 struct ar_buffer *ab;
246 dma_addr_t ab_bus;
247 size_t offset;
248
249 ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
250 if (ab == NULL)
251 return -ENOMEM;
252
253 ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
254 if (dma_mapping_error(ab_bus)) {
255 free_page((unsigned long) ab);
256 return -ENOMEM;
257 }
258
259 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
260 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
261 DESCRIPTOR_STATUS |
262 DESCRIPTOR_BRANCH_ALWAYS);
263 offset = offsetof(struct ar_buffer, data);
264 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
265 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
266 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
267 ab->descriptor.branch_address = 0;
268
269 dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
270
271 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
272 ctx->last_buffer->next = ab;
273 ctx->last_buffer = ab;
274
275 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
276 flush_writes(ctx->ohci);
277
278 return 0;
279 }
280
281 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
282 {
283 struct fw_ohci *ohci = ctx->ohci;
284 struct fw_packet p;
285 u32 status, length, tcode;
286
287 p.header[0] = le32_to_cpu(buffer[0]);
288 p.header[1] = le32_to_cpu(buffer[1]);
289 p.header[2] = le32_to_cpu(buffer[2]);
290
291 tcode = (p.header[0] >> 4) & 0x0f;
292 switch (tcode) {
293 case TCODE_WRITE_QUADLET_REQUEST:
294 case TCODE_READ_QUADLET_RESPONSE:
295 p.header[3] = (__force __u32) buffer[3];
296 p.header_length = 16;
297 p.payload_length = 0;
298 break;
299
300 case TCODE_READ_BLOCK_REQUEST :
301 p.header[3] = le32_to_cpu(buffer[3]);
302 p.header_length = 16;
303 p.payload_length = 0;
304 break;
305
306 case TCODE_WRITE_BLOCK_REQUEST:
307 case TCODE_READ_BLOCK_RESPONSE:
308 case TCODE_LOCK_REQUEST:
309 case TCODE_LOCK_RESPONSE:
310 p.header[3] = le32_to_cpu(buffer[3]);
311 p.header_length = 16;
312 p.payload_length = p.header[3] >> 16;
313 break;
314
315 case TCODE_WRITE_RESPONSE:
316 case TCODE_READ_QUADLET_REQUEST:
317 case OHCI_TCODE_PHY_PACKET:
318 p.header_length = 12;
319 p.payload_length = 0;
320 break;
321 }
322
323 p.payload = (void *) buffer + p.header_length;
324
325 /* FIXME: What to do about evt_* errors? */
326 length = (p.header_length + p.payload_length + 3) / 4;
327 status = le32_to_cpu(buffer[length]);
328
329 p.ack = ((status >> 16) & 0x1f) - 16;
330 p.speed = (status >> 21) & 0x7;
331 p.timestamp = status & 0xffff;
332 p.generation = ohci->request_generation;
333
334 /*
335 * The OHCI bus reset handler synthesizes a phy packet with
336 * the new generation number when a bus reset happens (see
337 * section 8.4.2.3). This helps us determine when a request
338 * was received and make sure we send the response in the same
339 * generation. We only need this for requests; for responses
340 * we use the unique tlabel for finding the matching
341 * request.
342 */
343
344 if (p.ack + 16 == 0x09)
345 ohci->request_generation = (buffer[2] >> 16) & 0xff;
346 else if (ctx == &ohci->ar_request_ctx)
347 fw_core_handle_request(&ohci->card, &p);
348 else
349 fw_core_handle_response(&ohci->card, &p);
350
351 return buffer + length + 1;
352 }
353
354 static void ar_context_tasklet(unsigned long data)
355 {
356 struct ar_context *ctx = (struct ar_context *)data;
357 struct fw_ohci *ohci = ctx->ohci;
358 struct ar_buffer *ab;
359 struct descriptor *d;
360 void *buffer, *end;
361
362 ab = ctx->current_buffer;
363 d = &ab->descriptor;
364
365 if (d->res_count == 0) {
366 size_t size, rest, offset;
367
368 /*
369 * This descriptor is finished and we may have a
370 * packet split across this and the next buffer. We
371 * reuse the page for reassembling the split packet.
372 */
373
374 offset = offsetof(struct ar_buffer, data);
375 dma_unmap_single(ohci->card.device,
376 ab->descriptor.data_address - offset,
377 PAGE_SIZE, DMA_BIDIRECTIONAL);
378
379 buffer = ab;
380 ab = ab->next;
381 d = &ab->descriptor;
382 size = buffer + PAGE_SIZE - ctx->pointer;
383 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
384 memmove(buffer, ctx->pointer, size);
385 memcpy(buffer + size, ab->data, rest);
386 ctx->current_buffer = ab;
387 ctx->pointer = (void *) ab->data + rest;
388 end = buffer + size + rest;
389
390 while (buffer < end)
391 buffer = handle_ar_packet(ctx, buffer);
392
393 free_page((unsigned long)buffer);
394 ar_context_add_page(ctx);
395 } else {
396 buffer = ctx->pointer;
397 ctx->pointer = end =
398 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
399
400 while (buffer < end)
401 buffer = handle_ar_packet(ctx, buffer);
402 }
403 }
404
405 static int
406 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
407 {
408 struct ar_buffer ab;
409
410 ctx->regs = regs;
411 ctx->ohci = ohci;
412 ctx->last_buffer = &ab;
413 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
414
415 ar_context_add_page(ctx);
416 ar_context_add_page(ctx);
417 ctx->current_buffer = ab.next;
418 ctx->pointer = ctx->current_buffer->data;
419
420 return 0;
421 }
422
423 static void ar_context_run(struct ar_context *ctx)
424 {
425 struct ar_buffer *ab = ctx->current_buffer;
426 dma_addr_t ab_bus;
427 size_t offset;
428
429 offset = offsetof(struct ar_buffer, data);
430 ab_bus = ab->descriptor.data_address - offset;
431
432 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
433 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
434 flush_writes(ctx->ohci);
435 }
436
437 static void context_tasklet(unsigned long data)
438 {
439 struct context *ctx = (struct context *) data;
440 struct fw_ohci *ohci = ctx->ohci;
441 struct descriptor *d, *last;
442 u32 address;
443 int z;
444
445 dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
446 ctx->buffer_size, DMA_TO_DEVICE);
447
448 d = ctx->tail_descriptor;
449 last = ctx->tail_descriptor_last;
450
451 while (last->branch_address != 0) {
452 address = le32_to_cpu(last->branch_address);
453 z = address & 0xf;
454 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
455 last = (z == 2) ? d : d + z - 1;
456
457 if (!ctx->callback(ctx, d, last))
458 break;
459
460 ctx->tail_descriptor = d;
461 ctx->tail_descriptor_last = last;
462 }
463 }
464
465 static int
466 context_init(struct context *ctx, struct fw_ohci *ohci,
467 size_t buffer_size, u32 regs,
468 descriptor_callback_t callback)
469 {
470 ctx->ohci = ohci;
471 ctx->regs = regs;
472 ctx->buffer_size = buffer_size;
473 ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
474 if (ctx->buffer == NULL)
475 return -ENOMEM;
476
477 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
478 ctx->callback = callback;
479
480 ctx->buffer_bus =
481 dma_map_single(ohci->card.device, ctx->buffer,
482 buffer_size, DMA_TO_DEVICE);
483 if (dma_mapping_error(ctx->buffer_bus)) {
484 kfree(ctx->buffer);
485 return -ENOMEM;
486 }
487
488 ctx->head_descriptor = ctx->buffer;
489 ctx->prev_descriptor = ctx->buffer;
490 ctx->tail_descriptor = ctx->buffer;
491 ctx->tail_descriptor_last = ctx->buffer;
492
493 /*
494 * We put a dummy descriptor in the buffer that has a NULL
495 * branch address and looks like it's been sent. That way we
496 * have a descriptor to append DMA programs to. Also, the
497 * ring buffer invariant is that it always has at least one
498 * element so that head == tail means buffer full.
499 */
500
501 memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
502 ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
503 ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
504 ctx->head_descriptor++;
505
506 return 0;
507 }
508
509 static void
510 context_release(struct context *ctx)
511 {
512 struct fw_card *card = &ctx->ohci->card;
513
514 dma_unmap_single(card->device, ctx->buffer_bus,
515 ctx->buffer_size, DMA_TO_DEVICE);
516 kfree(ctx->buffer);
517 }
518
519 static struct descriptor *
520 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
521 {
522 struct descriptor *d, *tail, *end;
523
524 d = ctx->head_descriptor;
525 tail = ctx->tail_descriptor;
526 end = ctx->buffer + ctx->buffer_size / sizeof(*d);
527
528 if (d + z <= tail) {
529 goto has_space;
530 } else if (d > tail && d + z <= end) {
531 goto has_space;
532 } else if (d > tail && ctx->buffer + z <= tail) {
533 d = ctx->buffer;
534 goto has_space;
535 }
536
537 return NULL;
538
539 has_space:
540 memset(d, 0, z * sizeof(*d));
541 *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
542
543 return d;
544 }
545
546 static void context_run(struct context *ctx, u32 extra)
547 {
548 struct fw_ohci *ohci = ctx->ohci;
549
550 reg_write(ohci, COMMAND_PTR(ctx->regs),
551 le32_to_cpu(ctx->tail_descriptor_last->branch_address));
552 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
553 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
554 flush_writes(ohci);
555 }
556
557 static void context_append(struct context *ctx,
558 struct descriptor *d, int z, int extra)
559 {
560 dma_addr_t d_bus;
561
562 d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
563
564 ctx->head_descriptor = d + z + extra;
565 ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
566 ctx->prev_descriptor = z == 2 ? d : d + z - 1;
567
568 dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
569 ctx->buffer_size, DMA_TO_DEVICE);
570
571 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
572 flush_writes(ctx->ohci);
573 }
574
575 static void context_stop(struct context *ctx)
576 {
577 u32 reg;
578 int i;
579
580 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
581 flush_writes(ctx->ohci);
582
583 for (i = 0; i < 10; i++) {
584 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
585 if ((reg & CONTEXT_ACTIVE) == 0)
586 break;
587
588 fw_notify("context_stop: still active (0x%08x)\n", reg);
589 msleep(1);
590 }
591 }
592
593 struct driver_data {
594 struct fw_packet *packet;
595 };
596
597 /*
598 * This function apppends a packet to the DMA queue for transmission.
599 * Must always be called with the ochi->lock held to ensure proper
600 * generation handling and locking around packet queue manipulation.
601 */
602 static int
603 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
604 {
605 struct fw_ohci *ohci = ctx->ohci;
606 dma_addr_t d_bus, payload_bus;
607 struct driver_data *driver_data;
608 struct descriptor *d, *last;
609 __le32 *header;
610 int z, tcode;
611 u32 reg;
612
613 d = context_get_descriptors(ctx, 4, &d_bus);
614 if (d == NULL) {
615 packet->ack = RCODE_SEND_ERROR;
616 return -1;
617 }
618
619 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
620 d[0].res_count = cpu_to_le16(packet->timestamp);
621
622 /*
623 * The DMA format for asyncronous link packets is different
624 * from the IEEE1394 layout, so shift the fields around
625 * accordingly. If header_length is 8, it's a PHY packet, to
626 * which we need to prepend an extra quadlet.
627 */
628
629 header = (__le32 *) &d[1];
630 if (packet->header_length > 8) {
631 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
632 (packet->speed << 16));
633 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
634 (packet->header[0] & 0xffff0000));
635 header[2] = cpu_to_le32(packet->header[2]);
636
637 tcode = (packet->header[0] >> 4) & 0x0f;
638 if (TCODE_IS_BLOCK_PACKET(tcode))
639 header[3] = cpu_to_le32(packet->header[3]);
640 else
641 header[3] = (__force __le32) packet->header[3];
642
643 d[0].req_count = cpu_to_le16(packet->header_length);
644 } else {
645 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
646 (packet->speed << 16));
647 header[1] = cpu_to_le32(packet->header[0]);
648 header[2] = cpu_to_le32(packet->header[1]);
649 d[0].req_count = cpu_to_le16(12);
650 }
651
652 driver_data = (struct driver_data *) &d[3];
653 driver_data->packet = packet;
654 packet->driver_data = driver_data;
655
656 if (packet->payload_length > 0) {
657 payload_bus =
658 dma_map_single(ohci->card.device, packet->payload,
659 packet->payload_length, DMA_TO_DEVICE);
660 if (dma_mapping_error(payload_bus)) {
661 packet->ack = RCODE_SEND_ERROR;
662 return -1;
663 }
664
665 d[2].req_count = cpu_to_le16(packet->payload_length);
666 d[2].data_address = cpu_to_le32(payload_bus);
667 last = &d[2];
668 z = 3;
669 } else {
670 last = &d[0];
671 z = 2;
672 }
673
674 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
675 DESCRIPTOR_IRQ_ALWAYS |
676 DESCRIPTOR_BRANCH_ALWAYS);
677
678 /* FIXME: Document how the locking works. */
679 if (ohci->generation != packet->generation) {
680 packet->ack = RCODE_GENERATION;
681 return -1;
682 }
683
684 context_append(ctx, d, z, 4 - z);
685
686 /* If the context isn't already running, start it up. */
687 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
688 if ((reg & CONTEXT_RUN) == 0)
689 context_run(ctx, 0);
690
691 return 0;
692 }
693
694 static int handle_at_packet(struct context *context,
695 struct descriptor *d,
696 struct descriptor *last)
697 {
698 struct driver_data *driver_data;
699 struct fw_packet *packet;
700 struct fw_ohci *ohci = context->ohci;
701 dma_addr_t payload_bus;
702 int evt;
703
704 if (last->transfer_status == 0)
705 /* This descriptor isn't done yet, stop iteration. */
706 return 0;
707
708 driver_data = (struct driver_data *) &d[3];
709 packet = driver_data->packet;
710 if (packet == NULL)
711 /* This packet was cancelled, just continue. */
712 return 1;
713
714 payload_bus = le32_to_cpu(last->data_address);
715 if (payload_bus != 0)
716 dma_unmap_single(ohci->card.device, payload_bus,
717 packet->payload_length, DMA_TO_DEVICE);
718
719 evt = le16_to_cpu(last->transfer_status) & 0x1f;
720 packet->timestamp = le16_to_cpu(last->res_count);
721
722 switch (evt) {
723 case OHCI1394_evt_timeout:
724 /* Async response transmit timed out. */
725 packet->ack = RCODE_CANCELLED;
726 break;
727
728 case OHCI1394_evt_flushed:
729 /*
730 * The packet was flushed should give same error as
731 * when we try to use a stale generation count.
732 */
733 packet->ack = RCODE_GENERATION;
734 break;
735
736 case OHCI1394_evt_missing_ack:
737 /*
738 * Using a valid (current) generation count, but the
739 * node is not on the bus or not sending acks.
740 */
741 packet->ack = RCODE_NO_ACK;
742 break;
743
744 case ACK_COMPLETE + 0x10:
745 case ACK_PENDING + 0x10:
746 case ACK_BUSY_X + 0x10:
747 case ACK_BUSY_A + 0x10:
748 case ACK_BUSY_B + 0x10:
749 case ACK_DATA_ERROR + 0x10:
750 case ACK_TYPE_ERROR + 0x10:
751 packet->ack = evt - 0x10;
752 break;
753
754 default:
755 packet->ack = RCODE_SEND_ERROR;
756 break;
757 }
758
759 packet->callback(packet, &ohci->card, packet->ack);
760
761 return 1;
762 }
763
764 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
765 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
766 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
767 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
768 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
769
770 static void
771 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
772 {
773 struct fw_packet response;
774 int tcode, length, i;
775
776 tcode = HEADER_GET_TCODE(packet->header[0]);
777 if (TCODE_IS_BLOCK_PACKET(tcode))
778 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
779 else
780 length = 4;
781
782 i = csr - CSR_CONFIG_ROM;
783 if (i + length > CONFIG_ROM_SIZE) {
784 fw_fill_response(&response, packet->header,
785 RCODE_ADDRESS_ERROR, NULL, 0);
786 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
787 fw_fill_response(&response, packet->header,
788 RCODE_TYPE_ERROR, NULL, 0);
789 } else {
790 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
791 (void *) ohci->config_rom + i, length);
792 }
793
794 fw_core_handle_response(&ohci->card, &response);
795 }
796
797 static void
798 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
799 {
800 struct fw_packet response;
801 int tcode, length, ext_tcode, sel;
802 __be32 *payload, lock_old;
803 u32 lock_arg, lock_data;
804
805 tcode = HEADER_GET_TCODE(packet->header[0]);
806 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
807 payload = packet->payload;
808 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
809
810 if (tcode == TCODE_LOCK_REQUEST &&
811 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
812 lock_arg = be32_to_cpu(payload[0]);
813 lock_data = be32_to_cpu(payload[1]);
814 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
815 lock_arg = 0;
816 lock_data = 0;
817 } else {
818 fw_fill_response(&response, packet->header,
819 RCODE_TYPE_ERROR, NULL, 0);
820 goto out;
821 }
822
823 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
824 reg_write(ohci, OHCI1394_CSRData, lock_data);
825 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
826 reg_write(ohci, OHCI1394_CSRControl, sel);
827
828 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
829 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
830 else
831 fw_notify("swap not done yet\n");
832
833 fw_fill_response(&response, packet->header,
834 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
835 out:
836 fw_core_handle_response(&ohci->card, &response);
837 }
838
839 static void
840 handle_local_request(struct context *ctx, struct fw_packet *packet)
841 {
842 u64 offset;
843 u32 csr;
844
845 if (ctx == &ctx->ohci->at_request_ctx) {
846 packet->ack = ACK_PENDING;
847 packet->callback(packet, &ctx->ohci->card, packet->ack);
848 }
849
850 offset =
851 ((unsigned long long)
852 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
853 packet->header[2];
854 csr = offset - CSR_REGISTER_BASE;
855
856 /* Handle config rom reads. */
857 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
858 handle_local_rom(ctx->ohci, packet, csr);
859 else switch (csr) {
860 case CSR_BUS_MANAGER_ID:
861 case CSR_BANDWIDTH_AVAILABLE:
862 case CSR_CHANNELS_AVAILABLE_HI:
863 case CSR_CHANNELS_AVAILABLE_LO:
864 handle_local_lock(ctx->ohci, packet, csr);
865 break;
866 default:
867 if (ctx == &ctx->ohci->at_request_ctx)
868 fw_core_handle_request(&ctx->ohci->card, packet);
869 else
870 fw_core_handle_response(&ctx->ohci->card, packet);
871 break;
872 }
873
874 if (ctx == &ctx->ohci->at_response_ctx) {
875 packet->ack = ACK_COMPLETE;
876 packet->callback(packet, &ctx->ohci->card, packet->ack);
877 }
878 }
879
880 static void
881 at_context_transmit(struct context *ctx, struct fw_packet *packet)
882 {
883 unsigned long flags;
884 int retval;
885
886 spin_lock_irqsave(&ctx->ohci->lock, flags);
887
888 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
889 ctx->ohci->generation == packet->generation) {
890 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
891 handle_local_request(ctx, packet);
892 return;
893 }
894
895 retval = at_context_queue_packet(ctx, packet);
896 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
897
898 if (retval < 0)
899 packet->callback(packet, &ctx->ohci->card, packet->ack);
900
901 }
902
903 static void bus_reset_tasklet(unsigned long data)
904 {
905 struct fw_ohci *ohci = (struct fw_ohci *)data;
906 int self_id_count, i, j, reg;
907 int generation, new_generation;
908 unsigned long flags;
909
910 reg = reg_read(ohci, OHCI1394_NodeID);
911 if (!(reg & OHCI1394_NodeID_idValid)) {
912 fw_error("node ID not valid, new bus reset in progress\n");
913 return;
914 }
915 ohci->node_id = reg & 0xffff;
916
917 /*
918 * The count in the SelfIDCount register is the number of
919 * bytes in the self ID receive buffer. Since we also receive
920 * the inverted quadlets and a header quadlet, we shift one
921 * bit extra to get the actual number of self IDs.
922 */
923
924 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
925 generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
926
927 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
928 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
929 fw_error("inconsistent self IDs\n");
930 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
931 }
932
933 /*
934 * Check the consistency of the self IDs we just read. The
935 * problem we face is that a new bus reset can start while we
936 * read out the self IDs from the DMA buffer. If this happens,
937 * the DMA buffer will be overwritten with new self IDs and we
938 * will read out inconsistent data. The OHCI specification
939 * (section 11.2) recommends a technique similar to
940 * linux/seqlock.h, where we remember the generation of the
941 * self IDs in the buffer before reading them out and compare
942 * it to the current generation after reading them out. If
943 * the two generations match we know we have a consistent set
944 * of self IDs.
945 */
946
947 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
948 if (new_generation != generation) {
949 fw_notify("recursive bus reset detected, "
950 "discarding self ids\n");
951 return;
952 }
953
954 /* FIXME: Document how the locking works. */
955 spin_lock_irqsave(&ohci->lock, flags);
956
957 ohci->generation = generation;
958 context_stop(&ohci->at_request_ctx);
959 context_stop(&ohci->at_response_ctx);
960 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
961
962 /*
963 * This next bit is unrelated to the AT context stuff but we
964 * have to do it under the spinlock also. If a new config rom
965 * was set up before this reset, the old one is now no longer
966 * in use and we can free it. Update the config rom pointers
967 * to point to the current config rom and clear the
968 * next_config_rom pointer so a new udpate can take place.
969 */
970
971 if (ohci->next_config_rom != NULL) {
972 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
973 ohci->config_rom, ohci->config_rom_bus);
974 ohci->config_rom = ohci->next_config_rom;
975 ohci->config_rom_bus = ohci->next_config_rom_bus;
976 ohci->next_config_rom = NULL;
977
978 /*
979 * Restore config_rom image and manually update
980 * config_rom registers. Writing the header quadlet
981 * will indicate that the config rom is ready, so we
982 * do that last.
983 */
984 reg_write(ohci, OHCI1394_BusOptions,
985 be32_to_cpu(ohci->config_rom[2]));
986 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
987 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
988 }
989
990 spin_unlock_irqrestore(&ohci->lock, flags);
991
992 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
993 self_id_count, ohci->self_id_buffer);
994 }
995
996 static irqreturn_t irq_handler(int irq, void *data)
997 {
998 struct fw_ohci *ohci = data;
999 u32 event, iso_event, cycle_time;
1000 int i;
1001
1002 event = reg_read(ohci, OHCI1394_IntEventClear);
1003
1004 if (!event)
1005 return IRQ_NONE;
1006
1007 reg_write(ohci, OHCI1394_IntEventClear, event);
1008
1009 if (event & OHCI1394_selfIDComplete)
1010 tasklet_schedule(&ohci->bus_reset_tasklet);
1011
1012 if (event & OHCI1394_RQPkt)
1013 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1014
1015 if (event & OHCI1394_RSPkt)
1016 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1017
1018 if (event & OHCI1394_reqTxComplete)
1019 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1020
1021 if (event & OHCI1394_respTxComplete)
1022 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1023
1024 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1025 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1026
1027 while (iso_event) {
1028 i = ffs(iso_event) - 1;
1029 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1030 iso_event &= ~(1 << i);
1031 }
1032
1033 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1034 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1035
1036 while (iso_event) {
1037 i = ffs(iso_event) - 1;
1038 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1039 iso_event &= ~(1 << i);
1040 }
1041
1042 if (event & OHCI1394_cycle64Seconds) {
1043 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1044 if ((cycle_time & 0x80000000) == 0)
1045 ohci->bus_seconds++;
1046 }
1047
1048 return IRQ_HANDLED;
1049 }
1050
1051 static int software_reset(struct fw_ohci *ohci)
1052 {
1053 int i;
1054
1055 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1056
1057 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1058 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1059 OHCI1394_HCControl_softReset) == 0)
1060 return 0;
1061 msleep(1);
1062 }
1063
1064 return -EBUSY;
1065 }
1066
1067 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1068 {
1069 struct fw_ohci *ohci = fw_ohci(card);
1070 struct pci_dev *dev = to_pci_dev(card->device);
1071
1072 if (software_reset(ohci)) {
1073 fw_error("Failed to reset ohci card.\n");
1074 return -EBUSY;
1075 }
1076
1077 /*
1078 * Now enable LPS, which we need in order to start accessing
1079 * most of the registers. In fact, on some cards (ALI M5251),
1080 * accessing registers in the SClk domain without LPS enabled
1081 * will lock up the machine. Wait 50msec to make sure we have
1082 * full link enabled.
1083 */
1084 reg_write(ohci, OHCI1394_HCControlSet,
1085 OHCI1394_HCControl_LPS |
1086 OHCI1394_HCControl_postedWriteEnable);
1087 flush_writes(ohci);
1088 msleep(50);
1089
1090 reg_write(ohci, OHCI1394_HCControlClear,
1091 OHCI1394_HCControl_noByteSwapData);
1092
1093 reg_write(ohci, OHCI1394_LinkControlSet,
1094 OHCI1394_LinkControl_rcvSelfID |
1095 OHCI1394_LinkControl_cycleTimerEnable |
1096 OHCI1394_LinkControl_cycleMaster);
1097
1098 reg_write(ohci, OHCI1394_ATRetries,
1099 OHCI1394_MAX_AT_REQ_RETRIES |
1100 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1101 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1102
1103 ar_context_run(&ohci->ar_request_ctx);
1104 ar_context_run(&ohci->ar_response_ctx);
1105
1106 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1107 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1108 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1109 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1110 reg_write(ohci, OHCI1394_IntMaskSet,
1111 OHCI1394_selfIDComplete |
1112 OHCI1394_RQPkt | OHCI1394_RSPkt |
1113 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1114 OHCI1394_isochRx | OHCI1394_isochTx |
1115 OHCI1394_masterIntEnable |
1116 OHCI1394_cycle64Seconds);
1117
1118 /* Activate link_on bit and contender bit in our self ID packets.*/
1119 if (ohci_update_phy_reg(card, 4, 0,
1120 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1121 return -EIO;
1122
1123 /*
1124 * When the link is not yet enabled, the atomic config rom
1125 * update mechanism described below in ohci_set_config_rom()
1126 * is not active. We have to update ConfigRomHeader and
1127 * BusOptions manually, and the write to ConfigROMmap takes
1128 * effect immediately. We tie this to the enabling of the
1129 * link, so we have a valid config rom before enabling - the
1130 * OHCI requires that ConfigROMhdr and BusOptions have valid
1131 * values before enabling.
1132 *
1133 * However, when the ConfigROMmap is written, some controllers
1134 * always read back quadlets 0 and 2 from the config rom to
1135 * the ConfigRomHeader and BusOptions registers on bus reset.
1136 * They shouldn't do that in this initial case where the link
1137 * isn't enabled. This means we have to use the same
1138 * workaround here, setting the bus header to 0 and then write
1139 * the right values in the bus reset tasklet.
1140 */
1141
1142 ohci->next_config_rom =
1143 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1144 &ohci->next_config_rom_bus, GFP_KERNEL);
1145 if (ohci->next_config_rom == NULL)
1146 return -ENOMEM;
1147
1148 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1149 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1150
1151 ohci->next_header = config_rom[0];
1152 ohci->next_config_rom[0] = 0;
1153 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1154 reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
1155 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1156
1157 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1158
1159 if (request_irq(dev->irq, irq_handler,
1160 IRQF_SHARED, ohci_driver_name, ohci)) {
1161 fw_error("Failed to allocate shared interrupt %d.\n",
1162 dev->irq);
1163 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1164 ohci->config_rom, ohci->config_rom_bus);
1165 return -EIO;
1166 }
1167
1168 reg_write(ohci, OHCI1394_HCControlSet,
1169 OHCI1394_HCControl_linkEnable |
1170 OHCI1394_HCControl_BIBimageValid);
1171 flush_writes(ohci);
1172
1173 /*
1174 * We are ready to go, initiate bus reset to finish the
1175 * initialization.
1176 */
1177
1178 fw_core_initiate_bus_reset(&ohci->card, 1);
1179
1180 return 0;
1181 }
1182
1183 static int
1184 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1185 {
1186 struct fw_ohci *ohci;
1187 unsigned long flags;
1188 int retval = 0;
1189 __be32 *next_config_rom;
1190 dma_addr_t next_config_rom_bus;
1191
1192 ohci = fw_ohci(card);
1193
1194 /*
1195 * When the OHCI controller is enabled, the config rom update
1196 * mechanism is a bit tricky, but easy enough to use. See
1197 * section 5.5.6 in the OHCI specification.
1198 *
1199 * The OHCI controller caches the new config rom address in a
1200 * shadow register (ConfigROMmapNext) and needs a bus reset
1201 * for the changes to take place. When the bus reset is
1202 * detected, the controller loads the new values for the
1203 * ConfigRomHeader and BusOptions registers from the specified
1204 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1205 * shadow register. All automatically and atomically.
1206 *
1207 * Now, there's a twist to this story. The automatic load of
1208 * ConfigRomHeader and BusOptions doesn't honor the
1209 * noByteSwapData bit, so with a be32 config rom, the
1210 * controller will load be32 values in to these registers
1211 * during the atomic update, even on litte endian
1212 * architectures. The workaround we use is to put a 0 in the
1213 * header quadlet; 0 is endian agnostic and means that the
1214 * config rom isn't ready yet. In the bus reset tasklet we
1215 * then set up the real values for the two registers.
1216 *
1217 * We use ohci->lock to avoid racing with the code that sets
1218 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1219 */
1220
1221 next_config_rom =
1222 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1223 &next_config_rom_bus, GFP_KERNEL);
1224 if (next_config_rom == NULL)
1225 return -ENOMEM;
1226
1227 spin_lock_irqsave(&ohci->lock, flags);
1228
1229 if (ohci->next_config_rom == NULL) {
1230 ohci->next_config_rom = next_config_rom;
1231 ohci->next_config_rom_bus = next_config_rom_bus;
1232
1233 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1234 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1235 length * 4);
1236
1237 ohci->next_header = config_rom[0];
1238 ohci->next_config_rom[0] = 0;
1239
1240 reg_write(ohci, OHCI1394_ConfigROMmap,
1241 ohci->next_config_rom_bus);
1242 } else {
1243 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1244 next_config_rom, next_config_rom_bus);
1245 retval = -EBUSY;
1246 }
1247
1248 spin_unlock_irqrestore(&ohci->lock, flags);
1249
1250 /*
1251 * Now initiate a bus reset to have the changes take
1252 * effect. We clean up the old config rom memory and DMA
1253 * mappings in the bus reset tasklet, since the OHCI
1254 * controller could need to access it before the bus reset
1255 * takes effect.
1256 */
1257 if (retval == 0)
1258 fw_core_initiate_bus_reset(&ohci->card, 1);
1259
1260 return retval;
1261 }
1262
1263 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1264 {
1265 struct fw_ohci *ohci = fw_ohci(card);
1266
1267 at_context_transmit(&ohci->at_request_ctx, packet);
1268 }
1269
1270 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1271 {
1272 struct fw_ohci *ohci = fw_ohci(card);
1273
1274 at_context_transmit(&ohci->at_response_ctx, packet);
1275 }
1276
1277 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1278 {
1279 struct fw_ohci *ohci = fw_ohci(card);
1280 struct context *ctx = &ohci->at_request_ctx;
1281 struct driver_data *driver_data = packet->driver_data;
1282 int retval = -ENOENT;
1283
1284 tasklet_disable(&ctx->tasklet);
1285
1286 if (packet->ack != 0)
1287 goto out;
1288
1289 driver_data->packet = NULL;
1290 packet->ack = RCODE_CANCELLED;
1291 packet->callback(packet, &ohci->card, packet->ack);
1292 retval = 0;
1293
1294 out:
1295 tasklet_enable(&ctx->tasklet);
1296
1297 return retval;
1298 }
1299
1300 static int
1301 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1302 {
1303 struct fw_ohci *ohci = fw_ohci(card);
1304 unsigned long flags;
1305 int n, retval = 0;
1306
1307 /*
1308 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1309 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1310 */
1311
1312 spin_lock_irqsave(&ohci->lock, flags);
1313
1314 if (ohci->generation != generation) {
1315 retval = -ESTALE;
1316 goto out;
1317 }
1318
1319 /*
1320 * Note, if the node ID contains a non-local bus ID, physical DMA is
1321 * enabled for _all_ nodes on remote buses.
1322 */
1323
1324 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1325 if (n < 32)
1326 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1327 else
1328 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1329
1330 flush_writes(ohci);
1331 out:
1332 spin_unlock_irqrestore(&ohci->lock, flags);
1333 return retval;
1334 }
1335
1336 static u64
1337 ohci_get_bus_time(struct fw_card *card)
1338 {
1339 struct fw_ohci *ohci = fw_ohci(card);
1340 u32 cycle_time;
1341 u64 bus_time;
1342
1343 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1344 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1345
1346 return bus_time;
1347 }
1348
1349 static int handle_ir_dualbuffer_packet(struct context *context,
1350 struct descriptor *d,
1351 struct descriptor *last)
1352 {
1353 struct iso_context *ctx =
1354 container_of(context, struct iso_context, context);
1355 struct db_descriptor *db = (struct db_descriptor *) d;
1356 __le32 *ir_header;
1357 size_t header_length;
1358 void *p, *end;
1359 int i;
1360
1361 if (db->first_res_count > 0 && db->second_res_count > 0)
1362 /* This descriptor isn't done yet, stop iteration. */
1363 return 0;
1364
1365 header_length = le16_to_cpu(db->first_req_count) -
1366 le16_to_cpu(db->first_res_count);
1367
1368 i = ctx->header_length;
1369 p = db + 1;
1370 end = p + header_length;
1371 while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1372 /*
1373 * The iso header is byteswapped to little endian by
1374 * the controller, but the remaining header quadlets
1375 * are big endian. We want to present all the headers
1376 * as big endian, so we have to swap the first
1377 * quadlet.
1378 */
1379 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1380 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1381 i += ctx->base.header_size;
1382 p += ctx->base.header_size + 4;
1383 }
1384
1385 ctx->header_length = i;
1386
1387 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1388 ir_header = (__le32 *) (db + 1);
1389 ctx->base.callback(&ctx->base,
1390 le32_to_cpu(ir_header[0]) & 0xffff,
1391 ctx->header_length, ctx->header,
1392 ctx->base.callback_data);
1393 ctx->header_length = 0;
1394 }
1395
1396 return 1;
1397 }
1398
1399 static int handle_it_packet(struct context *context,
1400 struct descriptor *d,
1401 struct descriptor *last)
1402 {
1403 struct iso_context *ctx =
1404 container_of(context, struct iso_context, context);
1405
1406 if (last->transfer_status == 0)
1407 /* This descriptor isn't done yet, stop iteration. */
1408 return 0;
1409
1410 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1411 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1412 0, NULL, ctx->base.callback_data);
1413
1414 return 1;
1415 }
1416
1417 static struct fw_iso_context *
1418 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1419 {
1420 struct fw_ohci *ohci = fw_ohci(card);
1421 struct iso_context *ctx, *list;
1422 descriptor_callback_t callback;
1423 u32 *mask, regs;
1424 unsigned long flags;
1425 int index, retval = -ENOMEM;
1426
1427 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1428 mask = &ohci->it_context_mask;
1429 list = ohci->it_context_list;
1430 callback = handle_it_packet;
1431 } else {
1432 mask = &ohci->ir_context_mask;
1433 list = ohci->ir_context_list;
1434 callback = handle_ir_dualbuffer_packet;
1435 }
1436
1437 /* FIXME: We need a fallback for pre 1.1 OHCI. */
1438 if (callback == handle_ir_dualbuffer_packet &&
1439 ohci->version < OHCI_VERSION_1_1)
1440 return ERR_PTR(-EINVAL);
1441
1442 spin_lock_irqsave(&ohci->lock, flags);
1443 index = ffs(*mask) - 1;
1444 if (index >= 0)
1445 *mask &= ~(1 << index);
1446 spin_unlock_irqrestore(&ohci->lock, flags);
1447
1448 if (index < 0)
1449 return ERR_PTR(-EBUSY);
1450
1451 if (type == FW_ISO_CONTEXT_TRANSMIT)
1452 regs = OHCI1394_IsoXmitContextBase(index);
1453 else
1454 regs = OHCI1394_IsoRcvContextBase(index);
1455
1456 ctx = &list[index];
1457 memset(ctx, 0, sizeof(*ctx));
1458 ctx->header_length = 0;
1459 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1460 if (ctx->header == NULL)
1461 goto out;
1462
1463 retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1464 regs, callback);
1465 if (retval < 0)
1466 goto out_with_header;
1467
1468 return &ctx->base;
1469
1470 out_with_header:
1471 free_page((unsigned long)ctx->header);
1472 out:
1473 spin_lock_irqsave(&ohci->lock, flags);
1474 *mask |= 1 << index;
1475 spin_unlock_irqrestore(&ohci->lock, flags);
1476
1477 return ERR_PTR(retval);
1478 }
1479
1480 static int ohci_start_iso(struct fw_iso_context *base,
1481 s32 cycle, u32 sync, u32 tags)
1482 {
1483 struct iso_context *ctx = container_of(base, struct iso_context, base);
1484 struct fw_ohci *ohci = ctx->context.ohci;
1485 u32 control, match;
1486 int index;
1487
1488 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1489 index = ctx - ohci->it_context_list;
1490 match = 0;
1491 if (cycle >= 0)
1492 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1493 (cycle & 0x7fff) << 16;
1494
1495 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1496 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1497 context_run(&ctx->context, match);
1498 } else {
1499 index = ctx - ohci->ir_context_list;
1500 control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
1501 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1502 if (cycle >= 0) {
1503 match |= (cycle & 0x07fff) << 12;
1504 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1505 }
1506
1507 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1508 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1509 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1510 context_run(&ctx->context, control);
1511 }
1512
1513 return 0;
1514 }
1515
1516 static int ohci_stop_iso(struct fw_iso_context *base)
1517 {
1518 struct fw_ohci *ohci = fw_ohci(base->card);
1519 struct iso_context *ctx = container_of(base, struct iso_context, base);
1520 int index;
1521
1522 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1523 index = ctx - ohci->it_context_list;
1524 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1525 } else {
1526 index = ctx - ohci->ir_context_list;
1527 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1528 }
1529 flush_writes(ohci);
1530 context_stop(&ctx->context);
1531
1532 return 0;
1533 }
1534
1535 static void ohci_free_iso_context(struct fw_iso_context *base)
1536 {
1537 struct fw_ohci *ohci = fw_ohci(base->card);
1538 struct iso_context *ctx = container_of(base, struct iso_context, base);
1539 unsigned long flags;
1540 int index;
1541
1542 ohci_stop_iso(base);
1543 context_release(&ctx->context);
1544 free_page((unsigned long)ctx->header);
1545
1546 spin_lock_irqsave(&ohci->lock, flags);
1547
1548 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1549 index = ctx - ohci->it_context_list;
1550 ohci->it_context_mask |= 1 << index;
1551 } else {
1552 index = ctx - ohci->ir_context_list;
1553 ohci->ir_context_mask |= 1 << index;
1554 }
1555
1556 spin_unlock_irqrestore(&ohci->lock, flags);
1557 }
1558
1559 static int
1560 ohci_queue_iso_transmit(struct fw_iso_context *base,
1561 struct fw_iso_packet *packet,
1562 struct fw_iso_buffer *buffer,
1563 unsigned long payload)
1564 {
1565 struct iso_context *ctx = container_of(base, struct iso_context, base);
1566 struct descriptor *d, *last, *pd;
1567 struct fw_iso_packet *p;
1568 __le32 *header;
1569 dma_addr_t d_bus, page_bus;
1570 u32 z, header_z, payload_z, irq;
1571 u32 payload_index, payload_end_index, next_page_index;
1572 int page, end_page, i, length, offset;
1573
1574 /*
1575 * FIXME: Cycle lost behavior should be configurable: lose
1576 * packet, retransmit or terminate..
1577 */
1578
1579 p = packet;
1580 payload_index = payload;
1581
1582 if (p->skip)
1583 z = 1;
1584 else
1585 z = 2;
1586 if (p->header_length > 0)
1587 z++;
1588
1589 /* Determine the first page the payload isn't contained in. */
1590 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1591 if (p->payload_length > 0)
1592 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1593 else
1594 payload_z = 0;
1595
1596 z += payload_z;
1597
1598 /* Get header size in number of descriptors. */
1599 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1600
1601 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1602 if (d == NULL)
1603 return -ENOMEM;
1604
1605 if (!p->skip) {
1606 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1607 d[0].req_count = cpu_to_le16(8);
1608
1609 header = (__le32 *) &d[1];
1610 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1611 IT_HEADER_TAG(p->tag) |
1612 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1613 IT_HEADER_CHANNEL(ctx->base.channel) |
1614 IT_HEADER_SPEED(ctx->base.speed));
1615 header[1] =
1616 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1617 p->payload_length));
1618 }
1619
1620 if (p->header_length > 0) {
1621 d[2].req_count = cpu_to_le16(p->header_length);
1622 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1623 memcpy(&d[z], p->header, p->header_length);
1624 }
1625
1626 pd = d + z - payload_z;
1627 payload_end_index = payload_index + p->payload_length;
1628 for (i = 0; i < payload_z; i++) {
1629 page = payload_index >> PAGE_SHIFT;
1630 offset = payload_index & ~PAGE_MASK;
1631 next_page_index = (page + 1) << PAGE_SHIFT;
1632 length =
1633 min(next_page_index, payload_end_index) - payload_index;
1634 pd[i].req_count = cpu_to_le16(length);
1635
1636 page_bus = page_private(buffer->pages[page]);
1637 pd[i].data_address = cpu_to_le32(page_bus + offset);
1638
1639 payload_index += length;
1640 }
1641
1642 if (p->interrupt)
1643 irq = DESCRIPTOR_IRQ_ALWAYS;
1644 else
1645 irq = DESCRIPTOR_NO_IRQ;
1646
1647 last = z == 2 ? d : d + z - 1;
1648 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1649 DESCRIPTOR_STATUS |
1650 DESCRIPTOR_BRANCH_ALWAYS |
1651 irq);
1652
1653 context_append(&ctx->context, d, z, header_z);
1654
1655 return 0;
1656 }
1657
1658 static int
1659 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1660 struct fw_iso_packet *packet,
1661 struct fw_iso_buffer *buffer,
1662 unsigned long payload)
1663 {
1664 struct iso_context *ctx = container_of(base, struct iso_context, base);
1665 struct db_descriptor *db = NULL;
1666 struct descriptor *d;
1667 struct fw_iso_packet *p;
1668 dma_addr_t d_bus, page_bus;
1669 u32 z, header_z, length, rest;
1670 int page, offset, packet_count, header_size;
1671
1672 /*
1673 * FIXME: Cycle lost behavior should be configurable: lose
1674 * packet, retransmit or terminate..
1675 */
1676
1677 if (packet->skip) {
1678 d = context_get_descriptors(&ctx->context, 2, &d_bus);
1679 if (d == NULL)
1680 return -ENOMEM;
1681
1682 db = (struct db_descriptor *) d;
1683 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1684 DESCRIPTOR_BRANCH_ALWAYS |
1685 DESCRIPTOR_WAIT);
1686 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1687 context_append(&ctx->context, d, 2, 0);
1688 }
1689
1690 p = packet;
1691 z = 2;
1692
1693 /*
1694 * The OHCI controller puts the status word in the header
1695 * buffer too, so we need 4 extra bytes per packet.
1696 */
1697 packet_count = p->header_length / ctx->base.header_size;
1698 header_size = packet_count * (ctx->base.header_size + 4);
1699
1700 /* Get header size in number of descriptors. */
1701 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1702 page = payload >> PAGE_SHIFT;
1703 offset = payload & ~PAGE_MASK;
1704 rest = p->payload_length;
1705
1706 /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1707 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1708 while (rest > 0) {
1709 d = context_get_descriptors(&ctx->context,
1710 z + header_z, &d_bus);
1711 if (d == NULL)
1712 return -ENOMEM;
1713
1714 db = (struct db_descriptor *) d;
1715 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1716 DESCRIPTOR_BRANCH_ALWAYS);
1717 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1718 db->first_req_count = cpu_to_le16(header_size);
1719 db->first_res_count = db->first_req_count;
1720 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1721
1722 if (offset + rest < PAGE_SIZE)
1723 length = rest;
1724 else
1725 length = PAGE_SIZE - offset;
1726
1727 db->second_req_count = cpu_to_le16(length);
1728 db->second_res_count = db->second_req_count;
1729 page_bus = page_private(buffer->pages[page]);
1730 db->second_buffer = cpu_to_le32(page_bus + offset);
1731
1732 if (p->interrupt && length == rest)
1733 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1734
1735 context_append(&ctx->context, d, z, header_z);
1736 offset = (offset + length) & ~PAGE_MASK;
1737 rest -= length;
1738 page++;
1739 }
1740
1741 return 0;
1742 }
1743
1744 static int
1745 ohci_queue_iso(struct fw_iso_context *base,
1746 struct fw_iso_packet *packet,
1747 struct fw_iso_buffer *buffer,
1748 unsigned long payload)
1749 {
1750 struct iso_context *ctx = container_of(base, struct iso_context, base);
1751
1752 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1753 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1754 else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1755 return ohci_queue_iso_receive_dualbuffer(base, packet,
1756 buffer, payload);
1757 else
1758 /* FIXME: Implement fallback for OHCI 1.0 controllers. */
1759 return -EINVAL;
1760 }
1761
1762 static const struct fw_card_driver ohci_driver = {
1763 .name = ohci_driver_name,
1764 .enable = ohci_enable,
1765 .update_phy_reg = ohci_update_phy_reg,
1766 .set_config_rom = ohci_set_config_rom,
1767 .send_request = ohci_send_request,
1768 .send_response = ohci_send_response,
1769 .cancel_packet = ohci_cancel_packet,
1770 .enable_phys_dma = ohci_enable_phys_dma,
1771 .get_bus_time = ohci_get_bus_time,
1772
1773 .allocate_iso_context = ohci_allocate_iso_context,
1774 .free_iso_context = ohci_free_iso_context,
1775 .queue_iso = ohci_queue_iso,
1776 .start_iso = ohci_start_iso,
1777 .stop_iso = ohci_stop_iso,
1778 };
1779
1780 static int __devinit
1781 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1782 {
1783 struct fw_ohci *ohci;
1784 u32 bus_options, max_receive, link_speed;
1785 u64 guid;
1786 int err;
1787 size_t size;
1788
1789 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1790 if (ohci == NULL) {
1791 fw_error("Could not malloc fw_ohci data.\n");
1792 return -ENOMEM;
1793 }
1794
1795 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1796
1797 err = pci_enable_device(dev);
1798 if (err) {
1799 fw_error("Failed to enable OHCI hardware.\n");
1800 goto fail_put_card;
1801 }
1802
1803 pci_set_master(dev);
1804 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1805 pci_set_drvdata(dev, ohci);
1806
1807 spin_lock_init(&ohci->lock);
1808
1809 tasklet_init(&ohci->bus_reset_tasklet,
1810 bus_reset_tasklet, (unsigned long)ohci);
1811
1812 err = pci_request_region(dev, 0, ohci_driver_name);
1813 if (err) {
1814 fw_error("MMIO resource unavailable\n");
1815 goto fail_disable;
1816 }
1817
1818 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1819 if (ohci->registers == NULL) {
1820 fw_error("Failed to remap registers\n");
1821 err = -ENXIO;
1822 goto fail_iomem;
1823 }
1824
1825 ar_context_init(&ohci->ar_request_ctx, ohci,
1826 OHCI1394_AsReqRcvContextControlSet);
1827
1828 ar_context_init(&ohci->ar_response_ctx, ohci,
1829 OHCI1394_AsRspRcvContextControlSet);
1830
1831 context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
1832 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
1833
1834 context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
1835 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
1836
1837 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1838 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1839 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1840 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1841 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1842
1843 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1844 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1845 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1846 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1847 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1848
1849 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1850 fw_error("Out of memory for it/ir contexts.\n");
1851 err = -ENOMEM;
1852 goto fail_registers;
1853 }
1854
1855 /* self-id dma buffer allocation */
1856 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1857 SELF_ID_BUF_SIZE,
1858 &ohci->self_id_bus,
1859 GFP_KERNEL);
1860 if (ohci->self_id_cpu == NULL) {
1861 fw_error("Out of memory for self ID buffer.\n");
1862 err = -ENOMEM;
1863 goto fail_registers;
1864 }
1865
1866 bus_options = reg_read(ohci, OHCI1394_BusOptions);
1867 max_receive = (bus_options >> 12) & 0xf;
1868 link_speed = bus_options & 0x7;
1869 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1870 reg_read(ohci, OHCI1394_GUIDLo);
1871
1872 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1873 if (err < 0)
1874 goto fail_self_id;
1875
1876 ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1877 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1878 dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1879
1880 return 0;
1881
1882 fail_self_id:
1883 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1884 ohci->self_id_cpu, ohci->self_id_bus);
1885 fail_registers:
1886 kfree(ohci->it_context_list);
1887 kfree(ohci->ir_context_list);
1888 pci_iounmap(dev, ohci->registers);
1889 fail_iomem:
1890 pci_release_region(dev, 0);
1891 fail_disable:
1892 pci_disable_device(dev);
1893 fail_put_card:
1894 fw_card_put(&ohci->card);
1895
1896 return err;
1897 }
1898
1899 static void pci_remove(struct pci_dev *dev)
1900 {
1901 struct fw_ohci *ohci;
1902
1903 ohci = pci_get_drvdata(dev);
1904 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1905 flush_writes(ohci);
1906 fw_core_remove_card(&ohci->card);
1907
1908 /*
1909 * FIXME: Fail all pending packets here, now that the upper
1910 * layers can't queue any more.
1911 */
1912
1913 software_reset(ohci);
1914 free_irq(dev->irq, ohci);
1915 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1916 ohci->self_id_cpu, ohci->self_id_bus);
1917 kfree(ohci->it_context_list);
1918 kfree(ohci->ir_context_list);
1919 pci_iounmap(dev, ohci->registers);
1920 pci_release_region(dev, 0);
1921 pci_disable_device(dev);
1922 fw_card_put(&ohci->card);
1923
1924 fw_notify("Removed fw-ohci device.\n");
1925 }
1926
1927 #ifdef CONFIG_PM
1928 static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
1929 {
1930 struct fw_ohci *ohci = pci_get_drvdata(pdev);
1931 int err;
1932
1933 software_reset(ohci);
1934 free_irq(pdev->irq, ohci);
1935 err = pci_save_state(pdev);
1936 if (err) {
1937 fw_error("pci_save_state failed with %d", err);
1938 return err;
1939 }
1940 err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
1941 if (err) {
1942 fw_error("pci_set_power_state failed with %d", err);
1943 return err;
1944 }
1945
1946 return 0;
1947 }
1948
1949 static int pci_resume(struct pci_dev *pdev)
1950 {
1951 struct fw_ohci *ohci = pci_get_drvdata(pdev);
1952 int err;
1953
1954 pci_set_power_state(pdev, PCI_D0);
1955 pci_restore_state(pdev);
1956 err = pci_enable_device(pdev);
1957 if (err) {
1958 fw_error("pci_enable_device failed with %d", err);
1959 return err;
1960 }
1961
1962 return ohci_enable(&ohci->card, ohci->config_rom, CONFIG_ROM_SIZE);
1963 }
1964 #endif
1965
1966 static struct pci_device_id pci_table[] = {
1967 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1968 { }
1969 };
1970
1971 MODULE_DEVICE_TABLE(pci, pci_table);
1972
1973 static struct pci_driver fw_ohci_pci_driver = {
1974 .name = ohci_driver_name,
1975 .id_table = pci_table,
1976 .probe = pci_probe,
1977 .remove = pci_remove,
1978 #ifdef CONFIG_PM
1979 .resume = pci_resume,
1980 .suspend = pci_suspend,
1981 #endif
1982 };
1983
1984 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1985 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1986 MODULE_LICENSE("GPL");
1987
1988 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1989 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
1990 MODULE_ALIAS("ohci1394");
1991 #endif
1992
1993 static int __init fw_ohci_init(void)
1994 {
1995 return pci_register_driver(&fw_ohci_pci_driver);
1996 }
1997
1998 static void __exit fw_ohci_cleanup(void)
1999 {
2000 pci_unregister_driver(&fw_ohci_pci_driver);
2001 }
2002
2003 module_init(fw_ohci_init);
2004 module_exit(fw_ohci_cleanup);
This page took 0.069775 seconds and 6 git commands to generate.