Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / drivers / firewire / fw-sbp2.c
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
29 */
30
31 #include <linux/blkdev.h>
32 #include <linux/delay.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/kernel.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/scatterlist.h>
40 #include <linux/string.h>
41 #include <linux/stringify.h>
42 #include <linux/timer.h>
43 #include <linux/workqueue.h>
44 #include <asm/system.h>
45
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_host.h>
50
51 #include "fw-device.h"
52 #include "fw-topology.h"
53 #include "fw-transaction.h"
54
55 /*
56 * So far only bridges from Oxford Semiconductor are known to support
57 * concurrent logins. Depending on firmware, four or two concurrent logins
58 * are possible on OXFW911 and newer Oxsemi bridges.
59 *
60 * Concurrent logins are useful together with cluster filesystems.
61 */
62 static int sbp2_param_exclusive_login = 1;
63 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
64 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
65 "(default = Y, use N for concurrent initiators)");
66
67 /*
68 * Flags for firmware oddities
69 *
70 * - 128kB max transfer
71 * Limit transfer size. Necessary for some old bridges.
72 *
73 * - 36 byte inquiry
74 * When scsi_mod probes the device, let the inquiry command look like that
75 * from MS Windows.
76 *
77 * - skip mode page 8
78 * Suppress sending of mode_sense for mode page 8 if the device pretends to
79 * support the SCSI Primary Block commands instead of Reduced Block Commands.
80 *
81 * - fix capacity
82 * Tell sd_mod to correct the last sector number reported by read_capacity.
83 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
84 * Don't use this with devices which don't have this bug.
85 *
86 * - delay inquiry
87 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
88 *
89 * - override internal blacklist
90 * Instead of adding to the built-in blacklist, use only the workarounds
91 * specified in the module load parameter.
92 * Useful if a blacklist entry interfered with a non-broken device.
93 */
94 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
95 #define SBP2_WORKAROUND_INQUIRY_36 0x2
96 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
97 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
98 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
99 #define SBP2_INQUIRY_DELAY 12
100 #define SBP2_WORKAROUND_OVERRIDE 0x100
101
102 static int sbp2_param_workarounds;
103 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
104 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
105 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
106 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
107 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
108 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
111 ", or a combination)");
112
113 /* I don't know why the SCSI stack doesn't define something like this... */
114 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
115
116 static const char sbp2_driver_name[] = "sbp2";
117
118 /*
119 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
120 * and one struct scsi_device per sbp2_logical_unit.
121 */
122 struct sbp2_logical_unit {
123 struct sbp2_target *tgt;
124 struct list_head link;
125 struct fw_address_handler address_handler;
126 struct list_head orb_list;
127
128 u64 command_block_agent_address;
129 u16 lun;
130 int login_id;
131
132 /*
133 * The generation is updated once we've logged in or reconnected
134 * to the logical unit. Thus, I/O to the device will automatically
135 * fail and get retried if it happens in a window where the device
136 * is not ready, e.g. after a bus reset but before we reconnect.
137 */
138 int generation;
139 int retries;
140 struct delayed_work work;
141 bool has_sdev;
142 bool blocked;
143 };
144
145 /*
146 * We create one struct sbp2_target per IEEE 1212 Unit Directory
147 * and one struct Scsi_Host per sbp2_target.
148 */
149 struct sbp2_target {
150 struct kref kref;
151 struct fw_unit *unit;
152 const char *bus_id;
153 struct list_head lu_list;
154
155 u64 management_agent_address;
156 int directory_id;
157 int node_id;
158 int address_high;
159 unsigned int workarounds;
160 unsigned int mgt_orb_timeout;
161
162 int dont_block; /* counter for each logical unit */
163 int blocked; /* ditto */
164 };
165
166 /*
167 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
168 * provided in the config rom. Most devices do provide a value, which
169 * we'll use for login management orbs, but with some sane limits.
170 */
171 #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
172 #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
173 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
174 #define SBP2_ORB_NULL 0x80000000
175 #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
176
177 #define SBP2_DIRECTION_TO_MEDIA 0x0
178 #define SBP2_DIRECTION_FROM_MEDIA 0x1
179
180 /* Unit directory keys */
181 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
182 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
183 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
184 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
185
186 /* Management orb opcodes */
187 #define SBP2_LOGIN_REQUEST 0x0
188 #define SBP2_QUERY_LOGINS_REQUEST 0x1
189 #define SBP2_RECONNECT_REQUEST 0x3
190 #define SBP2_SET_PASSWORD_REQUEST 0x4
191 #define SBP2_LOGOUT_REQUEST 0x7
192 #define SBP2_ABORT_TASK_REQUEST 0xb
193 #define SBP2_ABORT_TASK_SET 0xc
194 #define SBP2_LOGICAL_UNIT_RESET 0xe
195 #define SBP2_TARGET_RESET_REQUEST 0xf
196
197 /* Offsets for command block agent registers */
198 #define SBP2_AGENT_STATE 0x00
199 #define SBP2_AGENT_RESET 0x04
200 #define SBP2_ORB_POINTER 0x08
201 #define SBP2_DOORBELL 0x10
202 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
203
204 /* Status write response codes */
205 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
206 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
207 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
208 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
209
210 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
211 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
212 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
213 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
214 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
215 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
216 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
217 #define STATUS_GET_DATA(v) ((v).data)
218
219 struct sbp2_status {
220 u32 status;
221 u32 orb_low;
222 u8 data[24];
223 };
224
225 struct sbp2_pointer {
226 u32 high;
227 u32 low;
228 };
229
230 struct sbp2_orb {
231 struct fw_transaction t;
232 struct kref kref;
233 dma_addr_t request_bus;
234 int rcode;
235 struct sbp2_pointer pointer;
236 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
237 struct list_head link;
238 };
239
240 #define MANAGEMENT_ORB_LUN(v) ((v))
241 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
242 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
243 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
244 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
245 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
246
247 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
248 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
249
250 struct sbp2_management_orb {
251 struct sbp2_orb base;
252 struct {
253 struct sbp2_pointer password;
254 struct sbp2_pointer response;
255 u32 misc;
256 u32 length;
257 struct sbp2_pointer status_fifo;
258 } request;
259 __be32 response[4];
260 dma_addr_t response_bus;
261 struct completion done;
262 struct sbp2_status status;
263 };
264
265 #define LOGIN_RESPONSE_GET_LOGIN_ID(v) ((v).misc & 0xffff)
266 #define LOGIN_RESPONSE_GET_LENGTH(v) (((v).misc >> 16) & 0xffff)
267
268 struct sbp2_login_response {
269 u32 misc;
270 struct sbp2_pointer command_block_agent;
271 u32 reconnect_hold;
272 };
273 #define COMMAND_ORB_DATA_SIZE(v) ((v))
274 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
275 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
276 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
277 #define COMMAND_ORB_SPEED(v) ((v) << 24)
278 #define COMMAND_ORB_DIRECTION(v) ((v) << 27)
279 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
280 #define COMMAND_ORB_NOTIFY ((1) << 31)
281
282 struct sbp2_command_orb {
283 struct sbp2_orb base;
284 struct {
285 struct sbp2_pointer next;
286 struct sbp2_pointer data_descriptor;
287 u32 misc;
288 u8 command_block[12];
289 } request;
290 struct scsi_cmnd *cmd;
291 scsi_done_fn_t done;
292 struct sbp2_logical_unit *lu;
293
294 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
295 dma_addr_t page_table_bus;
296 };
297
298 /*
299 * List of devices with known bugs.
300 *
301 * The firmware_revision field, masked with 0xffff00, is the best
302 * indicator for the type of bridge chip of a device. It yields a few
303 * false positives but this did not break correctly behaving devices
304 * so far. We use ~0 as a wildcard, since the 24 bit values we get
305 * from the config rom can never match that.
306 */
307 static const struct {
308 u32 firmware_revision;
309 u32 model;
310 unsigned int workarounds;
311 } sbp2_workarounds_table[] = {
312 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
313 .firmware_revision = 0x002800,
314 .model = 0x001010,
315 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
316 SBP2_WORKAROUND_MODE_SENSE_8,
317 },
318 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
319 .firmware_revision = 0x002800,
320 .model = 0x000000,
321 .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY,
322 },
323 /* Initio bridges, actually only needed for some older ones */ {
324 .firmware_revision = 0x000200,
325 .model = ~0,
326 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
327 },
328 /* Symbios bridge */ {
329 .firmware_revision = 0xa0b800,
330 .model = ~0,
331 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
332 },
333
334 /*
335 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
336 * these iPods do not feature the read_capacity bug according
337 * to one report. Read_capacity behaviour as well as model_id
338 * could change due to Apple-supplied firmware updates though.
339 */
340
341 /* iPod 4th generation. */ {
342 .firmware_revision = 0x0a2700,
343 .model = 0x000021,
344 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
345 },
346 /* iPod mini */ {
347 .firmware_revision = 0x0a2700,
348 .model = 0x000023,
349 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
350 },
351 /* iPod Photo */ {
352 .firmware_revision = 0x0a2700,
353 .model = 0x00007e,
354 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
355 }
356 };
357
358 static void
359 free_orb(struct kref *kref)
360 {
361 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
362
363 kfree(orb);
364 }
365
366 static void
367 sbp2_status_write(struct fw_card *card, struct fw_request *request,
368 int tcode, int destination, int source,
369 int generation, int speed,
370 unsigned long long offset,
371 void *payload, size_t length, void *callback_data)
372 {
373 struct sbp2_logical_unit *lu = callback_data;
374 struct sbp2_orb *orb;
375 struct sbp2_status status;
376 size_t header_size;
377 unsigned long flags;
378
379 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
380 length == 0 || length > sizeof(status)) {
381 fw_send_response(card, request, RCODE_TYPE_ERROR);
382 return;
383 }
384
385 header_size = min(length, 2 * sizeof(u32));
386 fw_memcpy_from_be32(&status, payload, header_size);
387 if (length > header_size)
388 memcpy(status.data, payload + 8, length - header_size);
389 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
390 fw_notify("non-orb related status write, not handled\n");
391 fw_send_response(card, request, RCODE_COMPLETE);
392 return;
393 }
394
395 /* Lookup the orb corresponding to this status write. */
396 spin_lock_irqsave(&card->lock, flags);
397 list_for_each_entry(orb, &lu->orb_list, link) {
398 if (STATUS_GET_ORB_HIGH(status) == 0 &&
399 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
400 orb->rcode = RCODE_COMPLETE;
401 list_del(&orb->link);
402 break;
403 }
404 }
405 spin_unlock_irqrestore(&card->lock, flags);
406
407 if (&orb->link != &lu->orb_list)
408 orb->callback(orb, &status);
409 else
410 fw_error("status write for unknown orb\n");
411
412 kref_put(&orb->kref, free_orb);
413
414 fw_send_response(card, request, RCODE_COMPLETE);
415 }
416
417 static void
418 complete_transaction(struct fw_card *card, int rcode,
419 void *payload, size_t length, void *data)
420 {
421 struct sbp2_orb *orb = data;
422 unsigned long flags;
423
424 /*
425 * This is a little tricky. We can get the status write for
426 * the orb before we get this callback. The status write
427 * handler above will assume the orb pointer transaction was
428 * successful and set the rcode to RCODE_COMPLETE for the orb.
429 * So this callback only sets the rcode if it hasn't already
430 * been set and only does the cleanup if the transaction
431 * failed and we didn't already get a status write.
432 */
433 spin_lock_irqsave(&card->lock, flags);
434
435 if (orb->rcode == -1)
436 orb->rcode = rcode;
437 if (orb->rcode != RCODE_COMPLETE) {
438 list_del(&orb->link);
439 spin_unlock_irqrestore(&card->lock, flags);
440 orb->callback(orb, NULL);
441 } else {
442 spin_unlock_irqrestore(&card->lock, flags);
443 }
444
445 kref_put(&orb->kref, free_orb);
446 }
447
448 static void
449 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
450 int node_id, int generation, u64 offset)
451 {
452 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
453 unsigned long flags;
454
455 orb->pointer.high = 0;
456 orb->pointer.low = orb->request_bus;
457 fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
458
459 spin_lock_irqsave(&device->card->lock, flags);
460 list_add_tail(&orb->link, &lu->orb_list);
461 spin_unlock_irqrestore(&device->card->lock, flags);
462
463 /* Take a ref for the orb list and for the transaction callback. */
464 kref_get(&orb->kref);
465 kref_get(&orb->kref);
466
467 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
468 node_id, generation, device->max_speed, offset,
469 &orb->pointer, sizeof(orb->pointer),
470 complete_transaction, orb);
471 }
472
473 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
474 {
475 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
476 struct sbp2_orb *orb, *next;
477 struct list_head list;
478 unsigned long flags;
479 int retval = -ENOENT;
480
481 INIT_LIST_HEAD(&list);
482 spin_lock_irqsave(&device->card->lock, flags);
483 list_splice_init(&lu->orb_list, &list);
484 spin_unlock_irqrestore(&device->card->lock, flags);
485
486 list_for_each_entry_safe(orb, next, &list, link) {
487 retval = 0;
488 if (fw_cancel_transaction(device->card, &orb->t) == 0)
489 continue;
490
491 orb->rcode = RCODE_CANCELLED;
492 orb->callback(orb, NULL);
493 }
494
495 return retval;
496 }
497
498 static void
499 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
500 {
501 struct sbp2_management_orb *orb =
502 container_of(base_orb, struct sbp2_management_orb, base);
503
504 if (status)
505 memcpy(&orb->status, status, sizeof(*status));
506 complete(&orb->done);
507 }
508
509 static int
510 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
511 int generation, int function, int lun_or_login_id,
512 void *response)
513 {
514 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
515 struct sbp2_management_orb *orb;
516 unsigned int timeout;
517 int retval = -ENOMEM;
518
519 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
520 return 0;
521
522 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
523 if (orb == NULL)
524 return -ENOMEM;
525
526 kref_init(&orb->base.kref);
527 orb->response_bus =
528 dma_map_single(device->card->device, &orb->response,
529 sizeof(orb->response), DMA_FROM_DEVICE);
530 if (dma_mapping_error(orb->response_bus))
531 goto fail_mapping_response;
532
533 orb->request.response.high = 0;
534 orb->request.response.low = orb->response_bus;
535
536 orb->request.misc =
537 MANAGEMENT_ORB_NOTIFY |
538 MANAGEMENT_ORB_FUNCTION(function) |
539 MANAGEMENT_ORB_LUN(lun_or_login_id);
540 orb->request.length =
541 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
542
543 orb->request.status_fifo.high = lu->address_handler.offset >> 32;
544 orb->request.status_fifo.low = lu->address_handler.offset;
545
546 if (function == SBP2_LOGIN_REQUEST) {
547 /* Ask for 2^2 == 4 seconds reconnect grace period */
548 orb->request.misc |=
549 MANAGEMENT_ORB_RECONNECT(2) |
550 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
551 timeout = lu->tgt->mgt_orb_timeout;
552 } else {
553 timeout = SBP2_ORB_TIMEOUT;
554 }
555
556 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
557
558 init_completion(&orb->done);
559 orb->base.callback = complete_management_orb;
560
561 orb->base.request_bus =
562 dma_map_single(device->card->device, &orb->request,
563 sizeof(orb->request), DMA_TO_DEVICE);
564 if (dma_mapping_error(orb->base.request_bus))
565 goto fail_mapping_request;
566
567 sbp2_send_orb(&orb->base, lu, node_id, generation,
568 lu->tgt->management_agent_address);
569
570 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
571
572 retval = -EIO;
573 if (sbp2_cancel_orbs(lu) == 0) {
574 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
575 lu->tgt->bus_id, orb->base.rcode);
576 goto out;
577 }
578
579 if (orb->base.rcode != RCODE_COMPLETE) {
580 fw_error("%s: management write failed, rcode 0x%02x\n",
581 lu->tgt->bus_id, orb->base.rcode);
582 goto out;
583 }
584
585 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
586 STATUS_GET_SBP_STATUS(orb->status) != 0) {
587 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
588 STATUS_GET_RESPONSE(orb->status),
589 STATUS_GET_SBP_STATUS(orb->status));
590 goto out;
591 }
592
593 retval = 0;
594 out:
595 dma_unmap_single(device->card->device, orb->base.request_bus,
596 sizeof(orb->request), DMA_TO_DEVICE);
597 fail_mapping_request:
598 dma_unmap_single(device->card->device, orb->response_bus,
599 sizeof(orb->response), DMA_FROM_DEVICE);
600 fail_mapping_response:
601 if (response)
602 fw_memcpy_from_be32(response,
603 orb->response, sizeof(orb->response));
604 kref_put(&orb->base.kref, free_orb);
605
606 return retval;
607 }
608
609 static void
610 complete_agent_reset_write(struct fw_card *card, int rcode,
611 void *payload, size_t length, void *done)
612 {
613 complete(done);
614 }
615
616 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
617 {
618 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
619 DECLARE_COMPLETION_ONSTACK(done);
620 struct fw_transaction t;
621 static u32 z;
622
623 fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
624 lu->tgt->node_id, lu->generation, device->max_speed,
625 lu->command_block_agent_address + SBP2_AGENT_RESET,
626 &z, sizeof(z), complete_agent_reset_write, &done);
627 wait_for_completion(&done);
628 }
629
630 static void
631 complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
632 void *payload, size_t length, void *data)
633 {
634 kfree(data);
635 }
636
637 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
638 {
639 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
640 struct fw_transaction *t;
641 static u32 z;
642
643 t = kmalloc(sizeof(*t), GFP_ATOMIC);
644 if (t == NULL)
645 return;
646
647 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
648 lu->tgt->node_id, lu->generation, device->max_speed,
649 lu->command_block_agent_address + SBP2_AGENT_RESET,
650 &z, sizeof(z), complete_agent_reset_write_no_wait, t);
651 }
652
653 static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation)
654 {
655 struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card;
656 unsigned long flags;
657
658 /* serialize with comparisons of lu->generation and card->generation */
659 spin_lock_irqsave(&card->lock, flags);
660 lu->generation = generation;
661 spin_unlock_irqrestore(&card->lock, flags);
662 }
663
664 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
665 {
666 /*
667 * We may access dont_block without taking card->lock here:
668 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
669 * are currently serialized against each other.
670 * And a wrong result in sbp2_conditionally_block()'s access of
671 * dont_block is rather harmless, it simply misses its first chance.
672 */
673 --lu->tgt->dont_block;
674 }
675
676 /*
677 * Blocks lu->tgt if all of the following conditions are met:
678 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
679 * logical units have been finished (indicated by dont_block == 0).
680 * - lu->generation is stale.
681 *
682 * Note, scsi_block_requests() must be called while holding card->lock,
683 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
684 * unblock the target.
685 */
686 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
687 {
688 struct sbp2_target *tgt = lu->tgt;
689 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
690 struct Scsi_Host *shost =
691 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
692 unsigned long flags;
693
694 spin_lock_irqsave(&card->lock, flags);
695 if (!tgt->dont_block && !lu->blocked &&
696 lu->generation != card->generation) {
697 lu->blocked = true;
698 if (++tgt->blocked == 1) {
699 scsi_block_requests(shost);
700 fw_notify("blocked %s\n", lu->tgt->bus_id);
701 }
702 }
703 spin_unlock_irqrestore(&card->lock, flags);
704 }
705
706 /*
707 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
708 * Note, it is harmless to run scsi_unblock_requests() outside the
709 * card->lock protected section. On the other hand, running it inside
710 * the section might clash with shost->host_lock.
711 */
712 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
713 {
714 struct sbp2_target *tgt = lu->tgt;
715 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
716 struct Scsi_Host *shost =
717 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
718 unsigned long flags;
719 bool unblock = false;
720
721 spin_lock_irqsave(&card->lock, flags);
722 if (lu->blocked && lu->generation == card->generation) {
723 lu->blocked = false;
724 unblock = --tgt->blocked == 0;
725 }
726 spin_unlock_irqrestore(&card->lock, flags);
727
728 if (unblock) {
729 scsi_unblock_requests(shost);
730 fw_notify("unblocked %s\n", lu->tgt->bus_id);
731 }
732 }
733
734 /*
735 * Prevents future blocking of tgt and unblocks it.
736 * Note, it is harmless to run scsi_unblock_requests() outside the
737 * card->lock protected section. On the other hand, running it inside
738 * the section might clash with shost->host_lock.
739 */
740 static void sbp2_unblock(struct sbp2_target *tgt)
741 {
742 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
743 struct Scsi_Host *shost =
744 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
745 unsigned long flags;
746
747 spin_lock_irqsave(&card->lock, flags);
748 ++tgt->dont_block;
749 spin_unlock_irqrestore(&card->lock, flags);
750
751 scsi_unblock_requests(shost);
752 }
753
754 static int sbp2_lun2int(u16 lun)
755 {
756 struct scsi_lun eight_bytes_lun;
757
758 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
759 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
760 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
761
762 return scsilun_to_int(&eight_bytes_lun);
763 }
764
765 static void sbp2_release_target(struct kref *kref)
766 {
767 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
768 struct sbp2_logical_unit *lu, *next;
769 struct Scsi_Host *shost =
770 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
771 struct scsi_device *sdev;
772 struct fw_device *device = fw_device(tgt->unit->device.parent);
773
774 /* prevent deadlocks */
775 sbp2_unblock(tgt);
776
777 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
778 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
779 if (sdev) {
780 scsi_remove_device(sdev);
781 scsi_device_put(sdev);
782 }
783 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
784 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
785
786 fw_core_remove_address_handler(&lu->address_handler);
787 list_del(&lu->link);
788 kfree(lu);
789 }
790 scsi_remove_host(shost);
791 fw_notify("released %s\n", tgt->bus_id);
792
793 put_device(&tgt->unit->device);
794 scsi_host_put(shost);
795 fw_device_put(device);
796 }
797
798 static struct workqueue_struct *sbp2_wq;
799
800 /*
801 * Always get the target's kref when scheduling work on one its units.
802 * Each workqueue job is responsible to call sbp2_target_put() upon return.
803 */
804 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
805 {
806 if (queue_delayed_work(sbp2_wq, &lu->work, delay))
807 kref_get(&lu->tgt->kref);
808 }
809
810 static void sbp2_target_put(struct sbp2_target *tgt)
811 {
812 kref_put(&tgt->kref, sbp2_release_target);
813 }
814
815 static void sbp2_reconnect(struct work_struct *work);
816
817 static void sbp2_login(struct work_struct *work)
818 {
819 struct sbp2_logical_unit *lu =
820 container_of(work, struct sbp2_logical_unit, work.work);
821 struct sbp2_target *tgt = lu->tgt;
822 struct fw_device *device = fw_device(tgt->unit->device.parent);
823 struct Scsi_Host *shost;
824 struct scsi_device *sdev;
825 struct sbp2_login_response response;
826 int generation, node_id, local_node_id;
827
828 if (fw_device_is_shutdown(device))
829 goto out;
830
831 generation = device->generation;
832 smp_rmb(); /* node_id must not be older than generation */
833 node_id = device->node_id;
834 local_node_id = device->card->node_id;
835
836 /* If this is a re-login attempt, log out, or we might be rejected. */
837 if (lu->has_sdev)
838 sbp2_send_management_orb(lu, device->node_id, generation,
839 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
840
841 if (sbp2_send_management_orb(lu, node_id, generation,
842 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
843 if (lu->retries++ < 5) {
844 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
845 } else {
846 fw_error("%s: failed to login to LUN %04x\n",
847 tgt->bus_id, lu->lun);
848 /* Let any waiting I/O fail from now on. */
849 sbp2_unblock(lu->tgt);
850 }
851 goto out;
852 }
853
854 tgt->node_id = node_id;
855 tgt->address_high = local_node_id << 16;
856 sbp2_set_generation(lu, generation);
857
858 /* Get command block agent offset and login id. */
859 lu->command_block_agent_address =
860 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
861 response.command_block_agent.low;
862 lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
863
864 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
865 tgt->bus_id, lu->lun, lu->retries);
866
867 #if 0
868 /* FIXME: The linux1394 sbp2 does this last step. */
869 sbp2_set_busy_timeout(scsi_id);
870 #endif
871
872 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
873 sbp2_agent_reset(lu);
874
875 /* This was a re-login. */
876 if (lu->has_sdev) {
877 sbp2_cancel_orbs(lu);
878 sbp2_conditionally_unblock(lu);
879 goto out;
880 }
881
882 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
883 ssleep(SBP2_INQUIRY_DELAY);
884
885 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
886 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
887 /*
888 * FIXME: We are unable to perform reconnects while in sbp2_login().
889 * Therefore __scsi_add_device() will get into trouble if a bus reset
890 * happens in parallel. It will either fail or leave us with an
891 * unusable sdev. As a workaround we check for this and retry the
892 * whole login and SCSI probing.
893 */
894
895 /* Reported error during __scsi_add_device() */
896 if (IS_ERR(sdev))
897 goto out_logout_login;
898
899 /* Unreported error during __scsi_add_device() */
900 smp_rmb(); /* get current card generation */
901 if (generation != device->card->generation) {
902 scsi_remove_device(sdev);
903 scsi_device_put(sdev);
904 goto out_logout_login;
905 }
906
907 /* No error during __scsi_add_device() */
908 lu->has_sdev = true;
909 scsi_device_put(sdev);
910 sbp2_allow_block(lu);
911 goto out;
912
913 out_logout_login:
914 smp_rmb(); /* generation may have changed */
915 generation = device->generation;
916 smp_rmb(); /* node_id must not be older than generation */
917
918 sbp2_send_management_orb(lu, device->node_id, generation,
919 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
920 /*
921 * If a bus reset happened, sbp2_update will have requeued
922 * lu->work already. Reset the work from reconnect to login.
923 */
924 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
925 out:
926 sbp2_target_put(tgt);
927 }
928
929 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
930 {
931 struct sbp2_logical_unit *lu;
932
933 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
934 if (!lu)
935 return -ENOMEM;
936
937 lu->address_handler.length = 0x100;
938 lu->address_handler.address_callback = sbp2_status_write;
939 lu->address_handler.callback_data = lu;
940
941 if (fw_core_add_address_handler(&lu->address_handler,
942 &fw_high_memory_region) < 0) {
943 kfree(lu);
944 return -ENOMEM;
945 }
946
947 lu->tgt = tgt;
948 lu->lun = lun_entry & 0xffff;
949 lu->retries = 0;
950 lu->has_sdev = false;
951 lu->blocked = false;
952 ++tgt->dont_block;
953 INIT_LIST_HEAD(&lu->orb_list);
954 INIT_DELAYED_WORK(&lu->work, sbp2_login);
955
956 list_add_tail(&lu->link, &tgt->lu_list);
957 return 0;
958 }
959
960 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
961 {
962 struct fw_csr_iterator ci;
963 int key, value;
964
965 fw_csr_iterator_init(&ci, directory);
966 while (fw_csr_iterator_next(&ci, &key, &value))
967 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
968 sbp2_add_logical_unit(tgt, value) < 0)
969 return -ENOMEM;
970 return 0;
971 }
972
973 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
974 u32 *model, u32 *firmware_revision)
975 {
976 struct fw_csr_iterator ci;
977 int key, value;
978 unsigned int timeout;
979
980 fw_csr_iterator_init(&ci, directory);
981 while (fw_csr_iterator_next(&ci, &key, &value)) {
982 switch (key) {
983
984 case CSR_DEPENDENT_INFO | CSR_OFFSET:
985 tgt->management_agent_address =
986 CSR_REGISTER_BASE + 4 * value;
987 break;
988
989 case CSR_DIRECTORY_ID:
990 tgt->directory_id = value;
991 break;
992
993 case CSR_MODEL:
994 *model = value;
995 break;
996
997 case SBP2_CSR_FIRMWARE_REVISION:
998 *firmware_revision = value;
999 break;
1000
1001 case SBP2_CSR_UNIT_CHARACTERISTICS:
1002 /* the timeout value is stored in 500ms units */
1003 timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1004 timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1005 tgt->mgt_orb_timeout =
1006 min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1007
1008 if (timeout > tgt->mgt_orb_timeout)
1009 fw_notify("%s: config rom contains %ds "
1010 "management ORB timeout, limiting "
1011 "to %ds\n", tgt->bus_id,
1012 timeout / 1000,
1013 tgt->mgt_orb_timeout / 1000);
1014 break;
1015
1016 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1017 if (sbp2_add_logical_unit(tgt, value) < 0)
1018 return -ENOMEM;
1019 break;
1020
1021 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1022 if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
1023 return -ENOMEM;
1024 break;
1025 }
1026 }
1027 return 0;
1028 }
1029
1030 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1031 u32 firmware_revision)
1032 {
1033 int i;
1034 unsigned int w = sbp2_param_workarounds;
1035
1036 if (w)
1037 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1038 "if you need the workarounds parameter for %s\n",
1039 tgt->bus_id);
1040
1041 if (w & SBP2_WORKAROUND_OVERRIDE)
1042 goto out;
1043
1044 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1045
1046 if (sbp2_workarounds_table[i].firmware_revision !=
1047 (firmware_revision & 0xffffff00))
1048 continue;
1049
1050 if (sbp2_workarounds_table[i].model != model &&
1051 sbp2_workarounds_table[i].model != ~0)
1052 continue;
1053
1054 w |= sbp2_workarounds_table[i].workarounds;
1055 break;
1056 }
1057 out:
1058 if (w)
1059 fw_notify("Workarounds for %s: 0x%x "
1060 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1061 tgt->bus_id, w, firmware_revision, model);
1062 tgt->workarounds = w;
1063 }
1064
1065 static struct scsi_host_template scsi_driver_template;
1066
1067 static int sbp2_probe(struct device *dev)
1068 {
1069 struct fw_unit *unit = fw_unit(dev);
1070 struct fw_device *device = fw_device(unit->device.parent);
1071 struct sbp2_target *tgt;
1072 struct sbp2_logical_unit *lu;
1073 struct Scsi_Host *shost;
1074 u32 model, firmware_revision;
1075
1076 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1077 if (shost == NULL)
1078 return -ENOMEM;
1079
1080 tgt = (struct sbp2_target *)shost->hostdata;
1081 unit->device.driver_data = tgt;
1082 tgt->unit = unit;
1083 kref_init(&tgt->kref);
1084 INIT_LIST_HEAD(&tgt->lu_list);
1085 tgt->bus_id = unit->device.bus_id;
1086
1087 if (fw_device_enable_phys_dma(device) < 0)
1088 goto fail_shost_put;
1089
1090 if (scsi_add_host(shost, &unit->device) < 0)
1091 goto fail_shost_put;
1092
1093 fw_device_get(device);
1094
1095 /* Initialize to values that won't match anything in our table. */
1096 firmware_revision = 0xff000000;
1097 model = 0xff000000;
1098
1099 /* implicit directory ID */
1100 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1101 + CSR_CONFIG_ROM) & 0xffffff;
1102
1103 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1104 &firmware_revision) < 0)
1105 goto fail_tgt_put;
1106
1107 sbp2_init_workarounds(tgt, model, firmware_revision);
1108
1109 get_device(&unit->device);
1110
1111 /* Do the login in a workqueue so we can easily reschedule retries. */
1112 list_for_each_entry(lu, &tgt->lu_list, link)
1113 sbp2_queue_work(lu, 0);
1114 return 0;
1115
1116 fail_tgt_put:
1117 sbp2_target_put(tgt);
1118 return -ENOMEM;
1119
1120 fail_shost_put:
1121 scsi_host_put(shost);
1122 return -ENOMEM;
1123 }
1124
1125 static int sbp2_remove(struct device *dev)
1126 {
1127 struct fw_unit *unit = fw_unit(dev);
1128 struct sbp2_target *tgt = unit->device.driver_data;
1129
1130 sbp2_target_put(tgt);
1131 return 0;
1132 }
1133
1134 static void sbp2_reconnect(struct work_struct *work)
1135 {
1136 struct sbp2_logical_unit *lu =
1137 container_of(work, struct sbp2_logical_unit, work.work);
1138 struct sbp2_target *tgt = lu->tgt;
1139 struct fw_device *device = fw_device(tgt->unit->device.parent);
1140 int generation, node_id, local_node_id;
1141
1142 if (fw_device_is_shutdown(device))
1143 goto out;
1144
1145 generation = device->generation;
1146 smp_rmb(); /* node_id must not be older than generation */
1147 node_id = device->node_id;
1148 local_node_id = device->card->node_id;
1149
1150 if (sbp2_send_management_orb(lu, node_id, generation,
1151 SBP2_RECONNECT_REQUEST,
1152 lu->login_id, NULL) < 0) {
1153 /*
1154 * If reconnect was impossible even though we are in the
1155 * current generation, fall back and try to log in again.
1156 *
1157 * We could check for "Function rejected" status, but
1158 * looking at the bus generation as simpler and more general.
1159 */
1160 smp_rmb(); /* get current card generation */
1161 if (generation == device->card->generation ||
1162 lu->retries++ >= 5) {
1163 fw_error("%s: failed to reconnect\n", tgt->bus_id);
1164 lu->retries = 0;
1165 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1166 }
1167 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1168 goto out;
1169 }
1170
1171 tgt->node_id = node_id;
1172 tgt->address_high = local_node_id << 16;
1173 sbp2_set_generation(lu, generation);
1174
1175 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1176 tgt->bus_id, lu->lun, lu->retries);
1177
1178 sbp2_agent_reset(lu);
1179 sbp2_cancel_orbs(lu);
1180 sbp2_conditionally_unblock(lu);
1181 out:
1182 sbp2_target_put(tgt);
1183 }
1184
1185 static void sbp2_update(struct fw_unit *unit)
1186 {
1187 struct sbp2_target *tgt = unit->device.driver_data;
1188 struct sbp2_logical_unit *lu;
1189
1190 fw_device_enable_phys_dma(fw_device(unit->device.parent));
1191
1192 /*
1193 * Fw-core serializes sbp2_update() against sbp2_remove().
1194 * Iteration over tgt->lu_list is therefore safe here.
1195 */
1196 list_for_each_entry(lu, &tgt->lu_list, link) {
1197 sbp2_conditionally_block(lu);
1198 lu->retries = 0;
1199 sbp2_queue_work(lu, 0);
1200 }
1201 }
1202
1203 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1204 #define SBP2_SW_VERSION_ENTRY 0x00010483
1205
1206 static const struct fw_device_id sbp2_id_table[] = {
1207 {
1208 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1209 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1210 .version = SBP2_SW_VERSION_ENTRY,
1211 },
1212 { }
1213 };
1214
1215 static struct fw_driver sbp2_driver = {
1216 .driver = {
1217 .owner = THIS_MODULE,
1218 .name = sbp2_driver_name,
1219 .bus = &fw_bus_type,
1220 .probe = sbp2_probe,
1221 .remove = sbp2_remove,
1222 },
1223 .update = sbp2_update,
1224 .id_table = sbp2_id_table,
1225 };
1226
1227 static unsigned int
1228 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1229 {
1230 int sam_status;
1231
1232 sense_data[0] = 0x70;
1233 sense_data[1] = 0x0;
1234 sense_data[2] = sbp2_status[1];
1235 sense_data[3] = sbp2_status[4];
1236 sense_data[4] = sbp2_status[5];
1237 sense_data[5] = sbp2_status[6];
1238 sense_data[6] = sbp2_status[7];
1239 sense_data[7] = 10;
1240 sense_data[8] = sbp2_status[8];
1241 sense_data[9] = sbp2_status[9];
1242 sense_data[10] = sbp2_status[10];
1243 sense_data[11] = sbp2_status[11];
1244 sense_data[12] = sbp2_status[2];
1245 sense_data[13] = sbp2_status[3];
1246 sense_data[14] = sbp2_status[12];
1247 sense_data[15] = sbp2_status[13];
1248
1249 sam_status = sbp2_status[0] & 0x3f;
1250
1251 switch (sam_status) {
1252 case SAM_STAT_GOOD:
1253 case SAM_STAT_CHECK_CONDITION:
1254 case SAM_STAT_CONDITION_MET:
1255 case SAM_STAT_BUSY:
1256 case SAM_STAT_RESERVATION_CONFLICT:
1257 case SAM_STAT_COMMAND_TERMINATED:
1258 return DID_OK << 16 | sam_status;
1259
1260 default:
1261 return DID_ERROR << 16;
1262 }
1263 }
1264
1265 static void
1266 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1267 {
1268 struct sbp2_command_orb *orb =
1269 container_of(base_orb, struct sbp2_command_orb, base);
1270 struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1271 int result;
1272
1273 if (status != NULL) {
1274 if (STATUS_GET_DEAD(*status))
1275 sbp2_agent_reset_no_wait(orb->lu);
1276
1277 switch (STATUS_GET_RESPONSE(*status)) {
1278 case SBP2_STATUS_REQUEST_COMPLETE:
1279 result = DID_OK << 16;
1280 break;
1281 case SBP2_STATUS_TRANSPORT_FAILURE:
1282 result = DID_BUS_BUSY << 16;
1283 break;
1284 case SBP2_STATUS_ILLEGAL_REQUEST:
1285 case SBP2_STATUS_VENDOR_DEPENDENT:
1286 default:
1287 result = DID_ERROR << 16;
1288 break;
1289 }
1290
1291 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1292 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1293 orb->cmd->sense_buffer);
1294 } else {
1295 /*
1296 * If the orb completes with status == NULL, something
1297 * went wrong, typically a bus reset happened mid-orb
1298 * or when sending the write (less likely).
1299 */
1300 result = DID_BUS_BUSY << 16;
1301 sbp2_conditionally_block(orb->lu);
1302 }
1303
1304 dma_unmap_single(device->card->device, orb->base.request_bus,
1305 sizeof(orb->request), DMA_TO_DEVICE);
1306
1307 if (scsi_sg_count(orb->cmd) > 0)
1308 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1309 scsi_sg_count(orb->cmd),
1310 orb->cmd->sc_data_direction);
1311
1312 if (orb->page_table_bus != 0)
1313 dma_unmap_single(device->card->device, orb->page_table_bus,
1314 sizeof(orb->page_table), DMA_TO_DEVICE);
1315
1316 orb->cmd->result = result;
1317 orb->done(orb->cmd);
1318 }
1319
1320 static int
1321 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1322 struct sbp2_logical_unit *lu)
1323 {
1324 struct scatterlist *sg;
1325 int sg_len, l, i, j, count;
1326 dma_addr_t sg_addr;
1327
1328 sg = scsi_sglist(orb->cmd);
1329 count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1330 orb->cmd->sc_data_direction);
1331 if (count == 0)
1332 goto fail;
1333
1334 /*
1335 * Handle the special case where there is only one element in
1336 * the scatter list by converting it to an immediate block
1337 * request. This is also a workaround for broken devices such
1338 * as the second generation iPod which doesn't support page
1339 * tables.
1340 */
1341 if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1342 orb->request.data_descriptor.high = lu->tgt->address_high;
1343 orb->request.data_descriptor.low = sg_dma_address(sg);
1344 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1345 return 0;
1346 }
1347
1348 /*
1349 * Convert the scatterlist to an sbp2 page table. If any
1350 * scatterlist entries are too big for sbp2, we split them as we
1351 * go. Even if we ask the block I/O layer to not give us sg
1352 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1353 * during DMA mapping, and Linux currently doesn't prevent this.
1354 */
1355 for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1356 sg_len = sg_dma_len(sg);
1357 sg_addr = sg_dma_address(sg);
1358 while (sg_len) {
1359 /* FIXME: This won't get us out of the pinch. */
1360 if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1361 fw_error("page table overflow\n");
1362 goto fail_page_table;
1363 }
1364 l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1365 orb->page_table[j].low = sg_addr;
1366 orb->page_table[j].high = (l << 16);
1367 sg_addr += l;
1368 sg_len -= l;
1369 j++;
1370 }
1371 }
1372
1373 fw_memcpy_to_be32(orb->page_table, orb->page_table,
1374 sizeof(orb->page_table[0]) * j);
1375 orb->page_table_bus =
1376 dma_map_single(device->card->device, orb->page_table,
1377 sizeof(orb->page_table), DMA_TO_DEVICE);
1378 if (dma_mapping_error(orb->page_table_bus))
1379 goto fail_page_table;
1380
1381 /*
1382 * The data_descriptor pointer is the one case where we need
1383 * to fill in the node ID part of the address. All other
1384 * pointers assume that the data referenced reside on the
1385 * initiator (i.e. us), but data_descriptor can refer to data
1386 * on other nodes so we need to put our ID in descriptor.high.
1387 */
1388 orb->request.data_descriptor.high = lu->tgt->address_high;
1389 orb->request.data_descriptor.low = orb->page_table_bus;
1390 orb->request.misc |=
1391 COMMAND_ORB_PAGE_TABLE_PRESENT |
1392 COMMAND_ORB_DATA_SIZE(j);
1393
1394 return 0;
1395
1396 fail_page_table:
1397 dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1398 orb->cmd->sc_data_direction);
1399 fail:
1400 return -ENOMEM;
1401 }
1402
1403 /* SCSI stack integration */
1404
1405 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1406 {
1407 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1408 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1409 struct sbp2_command_orb *orb;
1410 unsigned int max_payload;
1411 int retval = SCSI_MLQUEUE_HOST_BUSY;
1412
1413 /*
1414 * Bidirectional commands are not yet implemented, and unknown
1415 * transfer direction not handled.
1416 */
1417 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1418 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1419 cmd->result = DID_ERROR << 16;
1420 done(cmd);
1421 return 0;
1422 }
1423
1424 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1425 if (orb == NULL) {
1426 fw_notify("failed to alloc orb\n");
1427 return SCSI_MLQUEUE_HOST_BUSY;
1428 }
1429
1430 /* Initialize rcode to something not RCODE_COMPLETE. */
1431 orb->base.rcode = -1;
1432 kref_init(&orb->base.kref);
1433
1434 orb->lu = lu;
1435 orb->done = done;
1436 orb->cmd = cmd;
1437
1438 orb->request.next.high = SBP2_ORB_NULL;
1439 orb->request.next.low = 0x0;
1440 /*
1441 * At speed 100 we can do 512 bytes per packet, at speed 200,
1442 * 1024 bytes per packet etc. The SBP-2 max_payload field
1443 * specifies the max payload size as 2 ^ (max_payload + 2), so
1444 * if we set this to max_speed + 7, we get the right value.
1445 */
1446 max_payload = min(device->max_speed + 7,
1447 device->card->max_receive - 1);
1448 orb->request.misc =
1449 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1450 COMMAND_ORB_SPEED(device->max_speed) |
1451 COMMAND_ORB_NOTIFY;
1452
1453 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1454 orb->request.misc |=
1455 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1456 else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1457 orb->request.misc |=
1458 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1459
1460 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1461 goto out;
1462
1463 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1464
1465 memset(orb->request.command_block,
1466 0, sizeof(orb->request.command_block));
1467 memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1468
1469 orb->base.callback = complete_command_orb;
1470 orb->base.request_bus =
1471 dma_map_single(device->card->device, &orb->request,
1472 sizeof(orb->request), DMA_TO_DEVICE);
1473 if (dma_mapping_error(orb->base.request_bus))
1474 goto out;
1475
1476 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1477 lu->command_block_agent_address + SBP2_ORB_POINTER);
1478 retval = 0;
1479 out:
1480 kref_put(&orb->base.kref, free_orb);
1481 return retval;
1482 }
1483
1484 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1485 {
1486 struct sbp2_logical_unit *lu = sdev->hostdata;
1487
1488 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1489 if (!lu)
1490 return -ENOSYS;
1491
1492 sdev->allow_restart = 1;
1493
1494 /*
1495 * Update the dma alignment (minimum alignment requirements for
1496 * start and end of DMA transfers) to be a sector
1497 */
1498 blk_queue_update_dma_alignment(sdev->request_queue, 511);
1499
1500 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1501 sdev->inquiry_len = 36;
1502
1503 return 0;
1504 }
1505
1506 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1507 {
1508 struct sbp2_logical_unit *lu = sdev->hostdata;
1509
1510 sdev->use_10_for_rw = 1;
1511
1512 if (sdev->type == TYPE_ROM)
1513 sdev->use_10_for_ms = 1;
1514
1515 if (sdev->type == TYPE_DISK &&
1516 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1517 sdev->skip_ms_page_8 = 1;
1518
1519 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1520 sdev->fix_capacity = 1;
1521
1522 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1523 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1524
1525 return 0;
1526 }
1527
1528 /*
1529 * Called by scsi stack when something has really gone wrong. Usually
1530 * called when a command has timed-out for some reason.
1531 */
1532 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1533 {
1534 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1535
1536 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1537 sbp2_agent_reset(lu);
1538 sbp2_cancel_orbs(lu);
1539
1540 return SUCCESS;
1541 }
1542
1543 /*
1544 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1545 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1546 *
1547 * This is the concatenation of target port identifier and logical unit
1548 * identifier as per SAM-2...SAM-4 annex A.
1549 */
1550 static ssize_t
1551 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1552 char *buf)
1553 {
1554 struct scsi_device *sdev = to_scsi_device(dev);
1555 struct sbp2_logical_unit *lu;
1556 struct fw_device *device;
1557
1558 if (!sdev)
1559 return 0;
1560
1561 lu = sdev->hostdata;
1562 device = fw_device(lu->tgt->unit->device.parent);
1563
1564 return sprintf(buf, "%08x%08x:%06x:%04x\n",
1565 device->config_rom[3], device->config_rom[4],
1566 lu->tgt->directory_id, lu->lun);
1567 }
1568
1569 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1570
1571 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1572 &dev_attr_ieee1394_id,
1573 NULL
1574 };
1575
1576 static struct scsi_host_template scsi_driver_template = {
1577 .module = THIS_MODULE,
1578 .name = "SBP-2 IEEE-1394",
1579 .proc_name = sbp2_driver_name,
1580 .queuecommand = sbp2_scsi_queuecommand,
1581 .slave_alloc = sbp2_scsi_slave_alloc,
1582 .slave_configure = sbp2_scsi_slave_configure,
1583 .eh_abort_handler = sbp2_scsi_abort,
1584 .this_id = -1,
1585 .sg_tablesize = SG_ALL,
1586 .use_clustering = ENABLE_CLUSTERING,
1587 .cmd_per_lun = 1,
1588 .can_queue = 1,
1589 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1590 };
1591
1592 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1593 MODULE_DESCRIPTION("SCSI over IEEE1394");
1594 MODULE_LICENSE("GPL");
1595 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1596
1597 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1598 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1599 MODULE_ALIAS("sbp2");
1600 #endif
1601
1602 static int __init sbp2_init(void)
1603 {
1604 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1605 if (!sbp2_wq)
1606 return -ENOMEM;
1607
1608 return driver_register(&sbp2_driver.driver);
1609 }
1610
1611 static void __exit sbp2_cleanup(void)
1612 {
1613 driver_unregister(&sbp2_driver.driver);
1614 destroy_workqueue(sbp2_wq);
1615 }
1616
1617 module_init(sbp2_init);
1618 module_exit(sbp2_cleanup);
This page took 0.09502 seconds and 5 git commands to generate.