firewire: Only use INIT_DELAYED_WORK for first initialization.
[deliverable/linux.git] / drivers / firewire / fw-sbp2.c
1 /* -*- c-basic-offset: 8 -*-
2 * fw-spb2.c -- SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /* The basic structure of this driver is based the old storage driver,
22 * drivers/ieee1394/sbp2.c, originally written by
23 * James Goodwin <jamesg@filanet.com>
24 * with later contributions and ongoing maintenance from
25 * Ben Collins <bcollins@debian.org>,
26 * Stefan Richter <stefanr@s5r6.in-berlin.de>
27 * and many others.
28 */
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/device.h>
34 #include <linux/scatterlist.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/timer.h>
37
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_dbg.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43
44 #include "fw-transaction.h"
45 #include "fw-topology.h"
46 #include "fw-device.h"
47
48 /* I don't know why the SCSI stack doesn't define something like this... */
49 typedef void (*scsi_done_fn_t) (struct scsi_cmnd *);
50
51 static const char sbp2_driver_name[] = "sbp2";
52
53 struct sbp2_device {
54 struct fw_unit *unit;
55 struct fw_address_handler address_handler;
56 struct list_head orb_list;
57 u64 management_agent_address;
58 u64 command_block_agent_address;
59 u32 workarounds;
60 int login_id;
61
62 /* We cache these addresses and only update them once we've
63 * logged in or reconnected to the sbp2 device. That way, any
64 * IO to the device will automatically fail and get retried if
65 * it happens in a window where the device is not ready to
66 * handle it (e.g. after a bus reset but before we reconnect). */
67 int node_id;
68 int address_high;
69 int generation;
70
71 /* Timer for flushing ORBs. */
72 struct timer_list orb_timer;
73
74 int retries;
75 struct delayed_work work;
76 struct Scsi_Host *scsi_host;
77 };
78
79 #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
80 #define SBP2_MAX_SECTORS 255 /* Max sectors supported */
81 #define SBP2_ORB_TIMEOUT 2000 /* Timeout in ms */
82
83 #define SBP2_ORB_NULL 0x80000000
84
85 #define SBP2_DIRECTION_TO_MEDIA 0x0
86 #define SBP2_DIRECTION_FROM_MEDIA 0x1
87
88 /* Unit directory keys */
89 #define SBP2_COMMAND_SET_SPECIFIER 0x38
90 #define SBP2_COMMAND_SET 0x39
91 #define SBP2_COMMAND_SET_REVISION 0x3b
92 #define SBP2_FIRMWARE_REVISION 0x3c
93
94 /* Flags for detected oddities and brokeness */
95 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
96 #define SBP2_WORKAROUND_INQUIRY_36 0x2
97 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
98 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
99 #define SBP2_WORKAROUND_OVERRIDE 0x100
100
101 /* Management orb opcodes */
102 #define SBP2_LOGIN_REQUEST 0x0
103 #define SBP2_QUERY_LOGINS_REQUEST 0x1
104 #define SBP2_RECONNECT_REQUEST 0x3
105 #define SBP2_SET_PASSWORD_REQUEST 0x4
106 #define SBP2_LOGOUT_REQUEST 0x7
107 #define SBP2_ABORT_TASK_REQUEST 0xb
108 #define SBP2_ABORT_TASK_SET 0xc
109 #define SBP2_LOGICAL_UNIT_RESET 0xe
110 #define SBP2_TARGET_RESET_REQUEST 0xf
111
112 /* Offsets for command block agent registers */
113 #define SBP2_AGENT_STATE 0x00
114 #define SBP2_AGENT_RESET 0x04
115 #define SBP2_ORB_POINTER 0x08
116 #define SBP2_DOORBELL 0x10
117 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
118
119 /* Status write response codes */
120 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
121 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
122 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
123 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
124
125 #define status_get_orb_high(v) ((v).status & 0xffff)
126 #define status_get_sbp_status(v) (((v).status >> 16) & 0xff)
127 #define status_get_len(v) (((v).status >> 24) & 0x07)
128 #define status_get_dead(v) (((v).status >> 27) & 0x01)
129 #define status_get_response(v) (((v).status >> 28) & 0x03)
130 #define status_get_source(v) (((v).status >> 30) & 0x03)
131 #define status_get_orb_low(v) ((v).orb_low)
132 #define status_get_data(v) ((v).data)
133
134 struct sbp2_status {
135 u32 status;
136 u32 orb_low;
137 u8 data[24];
138 };
139
140 struct sbp2_pointer {
141 u32 high;
142 u32 low;
143 };
144
145 struct sbp2_orb {
146 struct fw_transaction t;
147 dma_addr_t request_bus;
148 int rcode;
149 struct sbp2_pointer pointer;
150 void (*callback) (struct sbp2_orb * orb, struct sbp2_status * status);
151 struct list_head link;
152 };
153
154 #define management_orb_lun(v) ((v))
155 #define management_orb_function(v) ((v) << 16)
156 #define management_orb_reconnect(v) ((v) << 20)
157 #define management_orb_exclusive ((1) << 28)
158 #define management_orb_request_format(v) ((v) << 29)
159 #define management_orb_notify ((1) << 31)
160
161 #define management_orb_response_length(v) ((v))
162 #define management_orb_password_length(v) ((v) << 16)
163
164 struct sbp2_management_orb {
165 struct sbp2_orb base;
166 struct {
167 struct sbp2_pointer password;
168 struct sbp2_pointer response;
169 u32 misc;
170 u32 length;
171 struct sbp2_pointer status_fifo;
172 } request;
173 __be32 response[4];
174 dma_addr_t response_bus;
175 struct completion done;
176 struct sbp2_status status;
177 };
178
179 #define login_response_get_login_id(v) ((v).misc & 0xffff)
180 #define login_response_get_length(v) (((v).misc >> 16) & 0xffff)
181
182 struct sbp2_login_response {
183 u32 misc;
184 struct sbp2_pointer command_block_agent;
185 u32 reconnect_hold;
186 };
187
188 #define command_orb_data_size(v) ((v))
189 #define command_orb_page_size(v) ((v) << 16)
190 #define command_orb_page_table_present ((1) << 19)
191 #define command_orb_max_payload(v) ((v) << 20)
192 #define command_orb_speed(v) ((v) << 24)
193 #define command_orb_direction(v) ((v) << 27)
194 #define command_orb_request_format(v) ((v) << 29)
195 #define command_orb_notify ((1) << 31)
196
197 struct sbp2_command_orb {
198 struct sbp2_orb base;
199 struct {
200 struct sbp2_pointer next;
201 struct sbp2_pointer data_descriptor;
202 u32 misc;
203 u8 command_block[12];
204 } request;
205 struct scsi_cmnd *cmd;
206 scsi_done_fn_t done;
207 struct fw_unit *unit;
208
209 struct sbp2_pointer page_table[SG_ALL];
210 dma_addr_t page_table_bus;
211 dma_addr_t request_buffer_bus;
212 };
213
214 /*
215 * List of devices with known bugs.
216 *
217 * The firmware_revision field, masked with 0xffff00, is the best
218 * indicator for the type of bridge chip of a device. It yields a few
219 * false positives but this did not break correctly behaving devices
220 * so far. We use ~0 as a wildcard, since the 24 bit values we get
221 * from the config rom can never match that.
222 */
223 static const struct {
224 u32 firmware_revision;
225 u32 model;
226 unsigned workarounds;
227 } sbp2_workarounds_table[] = {
228 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
229 .firmware_revision = 0x002800,
230 .model = 0x001010,
231 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
232 SBP2_WORKAROUND_MODE_SENSE_8,
233 },
234 /* Initio bridges, actually only needed for some older ones */ {
235 .firmware_revision = 0x000200,
236 .model = ~0,
237 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
238 },
239 /* Symbios bridge */ {
240 .firmware_revision = 0xa0b800,
241 .model = ~0,
242 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
243 },
244 /* There are iPods (2nd gen, 3rd gen) with model_id == 0, but
245 * these iPods do not feature the read_capacity bug according
246 * to one report. Read_capacity behaviour as well as model_id
247 * could change due to Apple-supplied firmware updates though. */
248 /* iPod 4th generation. */ {
249 .firmware_revision = 0x0a2700,
250 .model = 0x000021,
251 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
252 },
253 /* iPod mini */ {
254 .firmware_revision = 0x0a2700,
255 .model = 0x000023,
256 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
257 },
258 /* iPod Photo */ {
259 .firmware_revision = 0x0a2700,
260 .model = 0x00007e,
261 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
262 }
263 };
264
265 static void
266 sbp2_status_write(struct fw_card *card, struct fw_request *request,
267 int tcode, int destination, int source,
268 int generation, int speed,
269 unsigned long long offset,
270 void *payload, size_t length, void *callback_data)
271 {
272 struct sbp2_device *sd = callback_data;
273 struct sbp2_orb *orb;
274 struct sbp2_status status;
275 size_t header_size;
276 unsigned long flags;
277
278 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
279 length == 0 || length > sizeof status) {
280 fw_send_response(card, request, RCODE_TYPE_ERROR);
281 return;
282 }
283
284 header_size = min(length, 2 * sizeof(u32));
285 fw_memcpy_from_be32(&status, payload, header_size);
286 if (length > header_size)
287 memcpy(status.data, payload + 8, length - header_size);
288 if (status_get_source(status) == 2 || status_get_source(status) == 3) {
289 fw_notify("non-orb related status write, not handled\n");
290 fw_send_response(card, request, RCODE_COMPLETE);
291 return;
292 }
293
294 /* Lookup the orb corresponding to this status write. */
295 spin_lock_irqsave(&card->lock, flags);
296 list_for_each_entry(orb, &sd->orb_list, link) {
297 if (status_get_orb_high(status) == 0 &&
298 status_get_orb_low(status) == orb->request_bus) {
299 list_del(&orb->link);
300 break;
301 }
302 }
303 spin_unlock_irqrestore(&card->lock, flags);
304
305 if (&orb->link != &sd->orb_list)
306 orb->callback(orb, &status);
307 else
308 fw_error("status write for unknown orb\n");
309
310 fw_send_response(card, request, RCODE_COMPLETE);
311 }
312
313 static void
314 complete_transaction(struct fw_card *card, int rcode,
315 void *payload, size_t length, void *data)
316 {
317 struct sbp2_orb *orb = data;
318 unsigned long flags;
319
320 orb->rcode = rcode;
321 if (rcode != RCODE_COMPLETE) {
322 spin_lock_irqsave(&card->lock, flags);
323 list_del(&orb->link);
324 spin_unlock_irqrestore(&card->lock, flags);
325 orb->callback(orb, NULL);
326 }
327 }
328
329 static void
330 sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit,
331 int node_id, int generation, u64 offset)
332 {
333 struct fw_device *device = fw_device(unit->device.parent);
334 struct sbp2_device *sd = unit->device.driver_data;
335 unsigned long flags;
336
337 orb->pointer.high = 0;
338 orb->pointer.low = orb->request_bus;
339 fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof orb->pointer);
340
341 spin_lock_irqsave(&device->card->lock, flags);
342 list_add_tail(&orb->link, &sd->orb_list);
343 spin_unlock_irqrestore(&device->card->lock, flags);
344
345 mod_timer(&sd->orb_timer,
346 jiffies + DIV_ROUND_UP(SBP2_ORB_TIMEOUT * HZ, 1000));
347
348 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
349 node_id, generation,
350 device->node->max_speed, offset,
351 &orb->pointer, sizeof orb->pointer,
352 complete_transaction, orb);
353 }
354
355 static void sbp2_cancel_orbs(struct fw_unit *unit)
356 {
357 struct fw_device *device = fw_device(unit->device.parent);
358 struct sbp2_device *sd = unit->device.driver_data;
359 struct sbp2_orb *orb, *next;
360 struct list_head list;
361 unsigned long flags;
362
363 INIT_LIST_HEAD(&list);
364 spin_lock_irqsave(&device->card->lock, flags);
365 list_splice_init(&sd->orb_list, &list);
366 spin_unlock_irqrestore(&device->card->lock, flags);
367
368 list_for_each_entry_safe(orb, next, &list, link) {
369 if (fw_cancel_transaction(device->card, &orb->t) == 0)
370 continue;
371
372 orb->rcode = RCODE_CANCELLED;
373 orb->callback(orb, NULL);
374 }
375 }
376
377 static void orb_timer_callback(unsigned long data)
378 {
379 struct sbp2_device *sd = (struct sbp2_device *)data;
380
381 sbp2_cancel_orbs(sd->unit);
382 }
383
384 static void
385 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
386 {
387 struct sbp2_management_orb *orb =
388 (struct sbp2_management_orb *)base_orb;
389
390 if (status)
391 memcpy(&orb->status, status, sizeof *status);
392 complete(&orb->done);
393 }
394
395 static int
396 sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation,
397 int function, int lun, void *response)
398 {
399 struct fw_device *device = fw_device(unit->device.parent);
400 struct sbp2_device *sd = unit->device.driver_data;
401 struct sbp2_management_orb *orb;
402 int retval = -ENOMEM;
403
404 orb = kzalloc(sizeof *orb, GFP_ATOMIC);
405 if (orb == NULL)
406 return -ENOMEM;
407
408 /* The sbp2 device is going to send a block read request to
409 * read out the request from host memory, so map it for
410 * dma. */
411 orb->base.request_bus =
412 dma_map_single(device->card->device, &orb->request,
413 sizeof orb->request, DMA_TO_DEVICE);
414 if (dma_mapping_error(orb->base.request_bus))
415 goto out;
416
417 orb->response_bus =
418 dma_map_single(device->card->device, &orb->response,
419 sizeof orb->response, DMA_FROM_DEVICE);
420 if (dma_mapping_error(orb->response_bus))
421 goto out;
422
423 orb->request.response.high = 0;
424 orb->request.response.low = orb->response_bus;
425
426 orb->request.misc =
427 management_orb_notify |
428 management_orb_function(function) |
429 management_orb_lun(lun);
430 orb->request.length =
431 management_orb_response_length(sizeof orb->response);
432
433 orb->request.status_fifo.high = sd->address_handler.offset >> 32;
434 orb->request.status_fifo.low = sd->address_handler.offset;
435
436 /* FIXME: Yeah, ok this isn't elegant, we hardwire exclusive
437 * login and 1 second reconnect time. The reconnect setting
438 * is probably fine, but the exclusive login should be an
439 * option. */
440 if (function == SBP2_LOGIN_REQUEST) {
441 orb->request.misc |=
442 management_orb_exclusive |
443 management_orb_reconnect(0);
444 }
445
446 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof orb->request);
447
448 init_completion(&orb->done);
449 orb->base.callback = complete_management_orb;
450 sbp2_send_orb(&orb->base, unit,
451 node_id, generation, sd->management_agent_address);
452
453 wait_for_completion(&orb->done);
454
455 /* FIXME: Handle bus reset race here. */
456
457 retval = -EIO;
458 if (orb->base.rcode != RCODE_COMPLETE) {
459 fw_error("management write failed, rcode 0x%02x\n",
460 orb->base.rcode);
461 goto out;
462 }
463
464 if (orb->base.rcode == RCODE_CANCELLED) {
465 fw_error("orb reply timed out, rcode=0x%02x\n",
466 orb->base.rcode);
467 goto out;
468 }
469
470 if (status_get_response(orb->status) != 0 ||
471 status_get_sbp_status(orb->status) != 0) {
472 fw_error("error status: %d:%d\n",
473 status_get_response(orb->status),
474 status_get_sbp_status(orb->status));
475 goto out;
476 }
477
478 retval = 0;
479 out:
480 dma_unmap_single(device->card->device, orb->base.request_bus,
481 sizeof orb->request, DMA_TO_DEVICE);
482 dma_unmap_single(device->card->device, orb->response_bus,
483 sizeof orb->response, DMA_FROM_DEVICE);
484
485 if (response)
486 fw_memcpy_from_be32(response,
487 orb->response, sizeof orb->response);
488 kfree(orb);
489
490 return retval;
491 }
492
493 static void
494 complete_agent_reset_write(struct fw_card *card, int rcode,
495 void *payload, size_t length, void *data)
496 {
497 struct fw_transaction *t = data;
498
499 fw_notify("agent reset write rcode=%d\n", rcode);
500 kfree(t);
501 }
502
503 static int sbp2_agent_reset(struct fw_unit *unit)
504 {
505 struct fw_device *device = fw_device(unit->device.parent);
506 struct sbp2_device *sd = unit->device.driver_data;
507 struct fw_transaction *t;
508 static u32 zero;
509
510 t = kzalloc(sizeof *t, GFP_ATOMIC);
511 if (t == NULL)
512 return -ENOMEM;
513
514 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
515 sd->node_id, sd->generation, SCODE_400,
516 sd->command_block_agent_address + SBP2_AGENT_RESET,
517 &zero, sizeof zero, complete_agent_reset_write, t);
518
519 return 0;
520 }
521
522 static int add_scsi_devices(struct fw_unit *unit);
523 static void remove_scsi_devices(struct fw_unit *unit);
524 static void sbp2_reconnect(struct work_struct *work);
525
526 static void sbp2_login(struct work_struct *work)
527 {
528 struct sbp2_device *sd =
529 container_of(work, struct sbp2_device, work.work);
530 struct fw_unit *unit = sd->unit;
531 struct fw_device *device = fw_device(unit->device.parent);
532 struct sbp2_login_response response;
533 int generation, node_id, local_node_id, lun, retval;
534
535 /* FIXME: Make this work for multi-lun devices. */
536 lun = 0;
537
538 generation = device->card->generation;
539 node_id = device->node->node_id;
540 local_node_id = device->card->local_node->node_id;
541
542 if (sbp2_send_management_orb(unit, node_id, generation,
543 SBP2_LOGIN_REQUEST, lun, &response) < 0) {
544 if (sd->retries++ < 5) {
545 fw_error("login attempt %d for %s failed, "
546 "rescheduling\n",
547 sd->retries, unit->device.bus_id);
548 schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
549 } else {
550 fw_error("failed to login to %s\n",
551 unit->device.bus_id);
552 remove_scsi_devices(unit);
553 }
554 return;
555 }
556
557 sd->generation = generation;
558 sd->node_id = node_id;
559 sd->address_high = local_node_id << 16;
560
561 /* Get command block agent offset and login id. */
562 sd->command_block_agent_address =
563 ((u64) response.command_block_agent.high << 32) |
564 response.command_block_agent.low;
565 sd->login_id = login_response_get_login_id(response);
566
567 fw_notify("logged in to sbp2 unit %s\n", unit->device.bus_id);
568 fw_notify(" - management_agent_address: 0x%012llx\n",
569 (unsigned long long) sd->management_agent_address);
570 fw_notify(" - command_block_agent_address: 0x%012llx\n",
571 (unsigned long long) sd->command_block_agent_address);
572 fw_notify(" - status write address: 0x%012llx\n",
573 (unsigned long long) sd->address_handler.offset);
574
575 #if 0
576 /* FIXME: The linux1394 sbp2 does this last step. */
577 sbp2_set_busy_timeout(scsi_id);
578 #endif
579
580 PREPARE_DELAYED_WORK(&sd->work, sbp2_reconnect);
581 sbp2_agent_reset(unit);
582
583 retval = add_scsi_devices(unit);
584 if (retval < 0) {
585 sbp2_send_management_orb(unit, sd->node_id, sd->generation,
586 SBP2_LOGOUT_REQUEST, sd->login_id,
587 NULL);
588 /* Set this back to sbp2_login so we fall back and
589 * retry login on bus reset. */
590 PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
591 }
592 }
593
594 static int sbp2_probe(struct device *dev)
595 {
596 struct fw_unit *unit = fw_unit(dev);
597 struct fw_device *device = fw_device(unit->device.parent);
598 struct sbp2_device *sd;
599 struct fw_csr_iterator ci;
600 int i, key, value;
601 u32 model, firmware_revision;
602
603 sd = kzalloc(sizeof *sd, GFP_KERNEL);
604 if (sd == NULL)
605 return -ENOMEM;
606
607 unit->device.driver_data = sd;
608 sd->unit = unit;
609 INIT_LIST_HEAD(&sd->orb_list);
610 setup_timer(&sd->orb_timer, orb_timer_callback, (unsigned long)sd);
611
612 sd->address_handler.length = 0x100;
613 sd->address_handler.address_callback = sbp2_status_write;
614 sd->address_handler.callback_data = sd;
615
616 if (fw_core_add_address_handler(&sd->address_handler,
617 &fw_high_memory_region) < 0) {
618 kfree(sd);
619 return -EBUSY;
620 }
621
622 if (fw_device_enable_phys_dma(device) < 0) {
623 fw_core_remove_address_handler(&sd->address_handler);
624 kfree(sd);
625 return -EBUSY;
626 }
627
628 /* Scan unit directory to get management agent address,
629 * firmware revison and model. Initialize firmware_revision
630 * and model to values that wont match anything in our table. */
631 firmware_revision = 0xff000000;
632 model = 0xff000000;
633 fw_csr_iterator_init(&ci, unit->directory);
634 while (fw_csr_iterator_next(&ci, &key, &value)) {
635 switch (key) {
636 case CSR_DEPENDENT_INFO | CSR_OFFSET:
637 sd->management_agent_address =
638 0xfffff0000000ULL + 4 * value;
639 break;
640 case SBP2_FIRMWARE_REVISION:
641 firmware_revision = value;
642 break;
643 case CSR_MODEL:
644 model = value;
645 break;
646 }
647 }
648
649 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
650 if (sbp2_workarounds_table[i].firmware_revision !=
651 (firmware_revision & 0xffffff00))
652 continue;
653 if (sbp2_workarounds_table[i].model != model &&
654 sbp2_workarounds_table[i].model != ~0)
655 continue;
656 sd->workarounds |= sbp2_workarounds_table[i].workarounds;
657 break;
658 }
659
660 if (sd->workarounds)
661 fw_notify("Workarounds for node %s: 0x%x "
662 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
663 unit->device.bus_id,
664 sd->workarounds, firmware_revision, model);
665
666 /* We schedule work to do the login so we can easily
667 * reschedule retries. */
668 INIT_DELAYED_WORK(&sd->work, sbp2_login);
669 schedule_delayed_work(&sd->work, 0);
670
671 return 0;
672 }
673
674 static int sbp2_remove(struct device *dev)
675 {
676 struct fw_unit *unit = fw_unit(dev);
677 struct sbp2_device *sd = unit->device.driver_data;
678
679 sbp2_send_management_orb(unit, sd->node_id, sd->generation,
680 SBP2_LOGOUT_REQUEST, sd->login_id, NULL);
681
682 remove_scsi_devices(unit);
683 del_timer_sync(&sd->orb_timer);
684
685 fw_core_remove_address_handler(&sd->address_handler);
686 kfree(sd);
687
688 fw_notify("removed sbp2 unit %s\n", dev->bus_id);
689
690 return 0;
691 }
692
693 static void sbp2_reconnect(struct work_struct *work)
694 {
695 struct sbp2_device *sd =
696 container_of(work, struct sbp2_device, work.work);
697 struct fw_unit *unit = sd->unit;
698 struct fw_device *device = fw_device(unit->device.parent);
699 int generation, node_id, local_node_id;
700
701 generation = device->card->generation;
702 node_id = device->node->node_id;
703 local_node_id = device->card->local_node->node_id;
704
705 if (sbp2_send_management_orb(unit, node_id, generation,
706 SBP2_RECONNECT_REQUEST,
707 sd->login_id, NULL) < 0) {
708 if (sd->retries++ < 5) {
709 fw_error("reconnect attempt %d for %s failed, "
710 "rescheduling\n",
711 sd->retries, unit->device.bus_id);
712 } else {
713 fw_error("failed to reconnect to %s\n",
714 unit->device.bus_id);
715 /* Fall back and try to log in again. */
716 sd->retries = 0;
717 PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
718 }
719 schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
720 return;
721 }
722
723 sd->generation = generation;
724 sd->node_id = node_id;
725 sd->address_high = local_node_id << 16;
726
727 fw_notify("reconnected to unit %s\n", unit->device.bus_id);
728 sbp2_agent_reset(unit);
729 sbp2_cancel_orbs(unit);
730 }
731
732 static void sbp2_update(struct fw_unit *unit)
733 {
734 struct fw_device *device = fw_device(unit->device.parent);
735 struct sbp2_device *sd = unit->device.driver_data;
736
737 sd->retries = 0;
738 fw_device_enable_phys_dma(device);
739 schedule_delayed_work(&sd->work, 0);
740 }
741
742 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
743 #define SBP2_SW_VERSION_ENTRY 0x00010483
744
745 static const struct fw_device_id sbp2_id_table[] = {
746 {
747 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
748 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
749 .version = SBP2_SW_VERSION_ENTRY,
750 },
751 { }
752 };
753
754 static struct fw_driver sbp2_driver = {
755 .driver = {
756 .owner = THIS_MODULE,
757 .name = sbp2_driver_name,
758 .bus = &fw_bus_type,
759 .probe = sbp2_probe,
760 .remove = sbp2_remove,
761 },
762 .update = sbp2_update,
763 .id_table = sbp2_id_table,
764 };
765
766 static unsigned int sbp2_status_to_sense_data(u8 * sbp2_status, u8 * sense_data)
767 {
768 sense_data[0] = 0x70;
769 sense_data[1] = 0x0;
770 sense_data[2] = sbp2_status[1];
771 sense_data[3] = sbp2_status[4];
772 sense_data[4] = sbp2_status[5];
773 sense_data[5] = sbp2_status[6];
774 sense_data[6] = sbp2_status[7];
775 sense_data[7] = 10;
776 sense_data[8] = sbp2_status[8];
777 sense_data[9] = sbp2_status[9];
778 sense_data[10] = sbp2_status[10];
779 sense_data[11] = sbp2_status[11];
780 sense_data[12] = sbp2_status[2];
781 sense_data[13] = sbp2_status[3];
782 sense_data[14] = sbp2_status[12];
783 sense_data[15] = sbp2_status[13];
784
785 switch (sbp2_status[0] & 0x3f) {
786 case SAM_STAT_GOOD:
787 return DID_OK;
788
789 case SAM_STAT_CHECK_CONDITION:
790 /* return CHECK_CONDITION << 1 | DID_OK << 16; */
791 return DID_OK;
792
793 case SAM_STAT_BUSY:
794 return DID_BUS_BUSY;
795
796 case SAM_STAT_CONDITION_MET:
797 case SAM_STAT_RESERVATION_CONFLICT:
798 case SAM_STAT_COMMAND_TERMINATED:
799 default:
800 return DID_ERROR;
801 }
802 }
803
804 static void
805 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
806 {
807 struct sbp2_command_orb *orb = (struct sbp2_command_orb *)base_orb;
808 struct fw_unit *unit = orb->unit;
809 struct fw_device *device = fw_device(unit->device.parent);
810 struct scatterlist *sg;
811 int result;
812
813 if (status != NULL) {
814 if (status_get_dead(*status)) {
815 fw_notify("agent died, issuing agent reset\n");
816 sbp2_agent_reset(unit);
817 }
818
819 switch (status_get_response(*status)) {
820 case SBP2_STATUS_REQUEST_COMPLETE:
821 result = DID_OK;
822 break;
823 case SBP2_STATUS_TRANSPORT_FAILURE:
824 result = DID_BUS_BUSY;
825 break;
826 case SBP2_STATUS_ILLEGAL_REQUEST:
827 case SBP2_STATUS_VENDOR_DEPENDENT:
828 default:
829 result = DID_ERROR;
830 break;
831 }
832
833 if (result == DID_OK && status_get_len(*status) > 1)
834 result = sbp2_status_to_sense_data(status_get_data(*status),
835 orb->cmd->sense_buffer);
836 } else {
837 /* If the orb completes with status == NULL, something
838 * went wrong, typically a bus reset happened mid-orb
839 * or when sending the write (less likely). */
840 fw_notify("no command orb status, rcode=%d\n",
841 orb->base.rcode);
842 result = DID_BUS_BUSY;
843 }
844
845 dma_unmap_single(device->card->device, orb->base.request_bus,
846 sizeof orb->request, DMA_TO_DEVICE);
847
848 if (orb->cmd->use_sg > 0) {
849 sg = (struct scatterlist *)orb->cmd->request_buffer;
850 dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
851 orb->cmd->sc_data_direction);
852 }
853
854 if (orb->page_table_bus != 0)
855 dma_unmap_single(device->card->device, orb->page_table_bus,
856 sizeof orb->page_table_bus, DMA_TO_DEVICE);
857
858 if (orb->request_buffer_bus != 0)
859 dma_unmap_single(device->card->device, orb->request_buffer_bus,
860 sizeof orb->request_buffer_bus,
861 DMA_FROM_DEVICE);
862
863 orb->cmd->result = result << 16;
864 orb->done(orb->cmd);
865
866 kfree(orb);
867 }
868
869 static void sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb)
870 {
871 struct fw_unit *unit =
872 (struct fw_unit *)orb->cmd->device->host->hostdata[0];
873 struct fw_device *device = fw_device(unit->device.parent);
874 struct sbp2_device *sd = unit->device.driver_data;
875 struct scatterlist *sg;
876 int sg_len, l, i, j, count;
877 size_t size;
878 dma_addr_t sg_addr;
879
880 sg = (struct scatterlist *)orb->cmd->request_buffer;
881 count = dma_map_sg(device->card->device, sg, orb->cmd->use_sg,
882 orb->cmd->sc_data_direction);
883
884 /* Handle the special case where there is only one element in
885 * the scatter list by converting it to an immediate block
886 * request. This is also a workaround for broken devices such
887 * as the second generation iPod which doesn't support page
888 * tables. */
889 if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
890 orb->request.data_descriptor.high = sd->address_high;
891 orb->request.data_descriptor.low = sg_dma_address(sg);
892 orb->request.misc |=
893 command_orb_data_size(sg_dma_len(sg));
894 return;
895 }
896
897 /* Convert the scatterlist to an sbp2 page table. If any
898 * scatterlist entries are too big for sbp2 we split the as we go. */
899 for (i = 0, j = 0; i < count; i++) {
900 sg_len = sg_dma_len(sg + i);
901 sg_addr = sg_dma_address(sg + i);
902 while (sg_len) {
903 l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
904 orb->page_table[j].low = sg_addr;
905 orb->page_table[j].high = (l << 16);
906 sg_addr += l;
907 sg_len -= l;
908 j++;
909 }
910 }
911
912 size = sizeof orb->page_table[0] * j;
913
914 /* The data_descriptor pointer is the one case where we need
915 * to fill in the node ID part of the address. All other
916 * pointers assume that the data referenced reside on the
917 * initiator (i.e. us), but data_descriptor can refer to data
918 * on other nodes so we need to put our ID in descriptor.high. */
919
920 orb->page_table_bus =
921 dma_map_single(device->card->device, orb->page_table,
922 size, DMA_TO_DEVICE);
923 orb->request.data_descriptor.high = sd->address_high;
924 orb->request.data_descriptor.low = orb->page_table_bus;
925 orb->request.misc |=
926 command_orb_page_table_present |
927 command_orb_data_size(j);
928
929 fw_memcpy_to_be32(orb->page_table, orb->page_table, size);
930 }
931
932 static void sbp2_command_orb_map_buffer(struct sbp2_command_orb *orb)
933 {
934 struct fw_unit *unit =
935 (struct fw_unit *)orb->cmd->device->host->hostdata[0];
936 struct fw_device *device = fw_device(unit->device.parent);
937 struct sbp2_device *sd = unit->device.driver_data;
938
939 /* As for map_scatterlist, we need to fill in the high bits of
940 * the data_descriptor pointer. */
941
942 orb->request_buffer_bus =
943 dma_map_single(device->card->device,
944 orb->cmd->request_buffer,
945 orb->cmd->request_bufflen,
946 orb->cmd->sc_data_direction);
947 orb->request.data_descriptor.high = sd->address_high;
948 orb->request.data_descriptor.low = orb->request_buffer_bus;
949 orb->request.misc |=
950 command_orb_data_size(orb->cmd->request_bufflen);
951 }
952
953 /* SCSI stack integration */
954
955 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
956 {
957 struct fw_unit *unit = (struct fw_unit *)cmd->device->host->hostdata[0];
958 struct fw_device *device = fw_device(unit->device.parent);
959 struct sbp2_device *sd = unit->device.driver_data;
960 struct sbp2_command_orb *orb;
961
962 /* Bidirectional commands are not yet implemented, and unknown
963 * transfer direction not handled. */
964 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
965 fw_error("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
966 goto fail_alloc;
967 }
968
969 orb = kzalloc(sizeof *orb, GFP_ATOMIC);
970 if (orb == NULL) {
971 fw_notify("failed to alloc orb\n");
972 goto fail_alloc;
973 }
974
975 orb->base.request_bus =
976 dma_map_single(device->card->device, &orb->request,
977 sizeof orb->request, DMA_TO_DEVICE);
978 if (dma_mapping_error(orb->base.request_bus))
979 goto fail_mapping;
980
981 orb->unit = unit;
982 orb->done = done;
983 orb->cmd = cmd;
984
985 orb->request.next.high = SBP2_ORB_NULL;
986 orb->request.next.low = 0x0;
987 /* At speed 100 we can do 512 bytes per packet, at speed 200,
988 * 1024 bytes per packet etc. The SBP-2 max_payload field
989 * specifies the max payload size as 2 ^ (max_payload + 2), so
990 * if we set this to max_speed + 7, we get the right value. */
991 orb->request.misc =
992 command_orb_max_payload(device->node->max_speed + 7) |
993 command_orb_speed(device->node->max_speed) |
994 command_orb_notify;
995
996 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
997 orb->request.misc |=
998 command_orb_direction(SBP2_DIRECTION_FROM_MEDIA);
999 else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1000 orb->request.misc |=
1001 command_orb_direction(SBP2_DIRECTION_TO_MEDIA);
1002
1003 if (cmd->use_sg) {
1004 sbp2_command_orb_map_scatterlist(orb);
1005 } else if (cmd->request_bufflen > SBP2_MAX_SG_ELEMENT_LENGTH) {
1006 /* FIXME: Need to split this into a sg list... but
1007 * could we get the scsi or blk layer to do that by
1008 * reporting our max supported block size? */
1009 fw_error("command > 64k\n");
1010 goto fail_bufflen;
1011 } else if (cmd->request_bufflen > 0) {
1012 sbp2_command_orb_map_buffer(orb);
1013 }
1014
1015 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof orb->request);
1016
1017 memset(orb->request.command_block,
1018 0, sizeof orb->request.command_block);
1019 memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1020
1021 orb->base.callback = complete_command_orb;
1022
1023 sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation,
1024 sd->command_block_agent_address + SBP2_ORB_POINTER);
1025
1026 return 0;
1027
1028 fail_bufflen:
1029 dma_unmap_single(device->card->device, orb->base.request_bus,
1030 sizeof orb->request, DMA_TO_DEVICE);
1031 fail_mapping:
1032 kfree(orb);
1033 fail_alloc:
1034 cmd->result = DID_ERROR << 16;
1035 done(cmd);
1036 return 0;
1037 }
1038
1039 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1040 {
1041 struct fw_unit *unit = (struct fw_unit *)sdev->host->hostdata[0];
1042 struct sbp2_device *sd = unit->device.driver_data;
1043
1044 sdev->allow_restart = 1;
1045
1046 if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1047 sdev->inquiry_len = 36;
1048 return 0;
1049 }
1050
1051 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1052 {
1053 struct fw_unit *unit = (struct fw_unit *)sdev->host->hostdata[0];
1054 struct sbp2_device *sd = unit->device.driver_data;
1055
1056 sdev->use_10_for_rw = 1;
1057
1058 if (sdev->type == TYPE_ROM)
1059 sdev->use_10_for_ms = 1;
1060 if (sdev->type == TYPE_DISK &&
1061 sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1062 sdev->skip_ms_page_8 = 1;
1063 if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) {
1064 fw_notify("setting fix_capacity for %s\n", unit->device.bus_id);
1065 sdev->fix_capacity = 1;
1066 }
1067
1068 return 0;
1069 }
1070
1071 /*
1072 * Called by scsi stack when something has really gone wrong. Usually
1073 * called when a command has timed-out for some reason.
1074 */
1075 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1076 {
1077 struct fw_unit *unit = (struct fw_unit *)cmd->device->host->hostdata[0];
1078
1079 fw_notify("sbp2_scsi_abort\n");
1080
1081 sbp2_cancel_orbs(unit);
1082
1083 return SUCCESS;
1084 }
1085
1086 static struct scsi_host_template scsi_driver_template = {
1087 .module = THIS_MODULE,
1088 .name = "SBP-2 IEEE-1394",
1089 .proc_name = (char *)sbp2_driver_name,
1090 .queuecommand = sbp2_scsi_queuecommand,
1091 .slave_alloc = sbp2_scsi_slave_alloc,
1092 .slave_configure = sbp2_scsi_slave_configure,
1093 .eh_abort_handler = sbp2_scsi_abort,
1094 .this_id = -1,
1095 .sg_tablesize = SG_ALL,
1096 .use_clustering = ENABLE_CLUSTERING,
1097 .cmd_per_lun = 1,
1098 .can_queue = 1,
1099 };
1100
1101 static int add_scsi_devices(struct fw_unit *unit)
1102 {
1103 struct sbp2_device *sd = unit->device.driver_data;
1104 int retval, lun;
1105
1106 if (sd->scsi_host != NULL)
1107 return 0;
1108
1109 sd->scsi_host = scsi_host_alloc(&scsi_driver_template,
1110 sizeof(unsigned long));
1111 if (sd->scsi_host == NULL) {
1112 fw_error("failed to register scsi host\n");
1113 return -1;
1114 }
1115
1116 sd->scsi_host->hostdata[0] = (unsigned long)unit;
1117 retval = scsi_add_host(sd->scsi_host, &unit->device);
1118 if (retval < 0) {
1119 fw_error("failed to add scsi host\n");
1120 scsi_host_put(sd->scsi_host);
1121 return retval;
1122 }
1123
1124 /* FIXME: Loop over luns here. */
1125 lun = 0;
1126 retval = scsi_add_device(sd->scsi_host, 0, 0, lun);
1127 if (retval < 0) {
1128 fw_error("failed to add scsi device\n");
1129 scsi_remove_host(sd->scsi_host);
1130 scsi_host_put(sd->scsi_host);
1131 return retval;
1132 }
1133
1134 return 0;
1135 }
1136
1137 static void remove_scsi_devices(struct fw_unit *unit)
1138 {
1139 struct sbp2_device *sd = unit->device.driver_data;
1140
1141 if (sd->scsi_host != NULL) {
1142 scsi_remove_host(sd->scsi_host);
1143 scsi_host_put(sd->scsi_host);
1144 }
1145 sd->scsi_host = NULL;
1146 }
1147
1148 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1149 MODULE_DESCRIPTION("SCSI over IEEE1394");
1150 MODULE_LICENSE("GPL");
1151 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1152
1153 static int __init sbp2_init(void)
1154 {
1155 return driver_register(&sbp2_driver.driver);
1156 }
1157
1158 static void __exit sbp2_cleanup(void)
1159 {
1160 driver_unregister(&sbp2_driver.driver);
1161 }
1162
1163 module_init(sbp2_init);
1164 module_exit(sbp2_cleanup);
This page took 0.077785 seconds and 5 git commands to generate.