firewire: reorganize header files
[deliverable/linux.git] / drivers / firewire / fw-sbp2.c
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
29 */
30
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
53
54 #include <asm/byteorder.h>
55 #include <asm/system.h>
56
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_device.h>
60 #include <scsi/scsi_host.h>
61
62 /*
63 * So far only bridges from Oxford Semiconductor are known to support
64 * concurrent logins. Depending on firmware, four or two concurrent logins
65 * are possible on OXFW911 and newer Oxsemi bridges.
66 *
67 * Concurrent logins are useful together with cluster filesystems.
68 */
69 static int sbp2_param_exclusive_login = 1;
70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72 "(default = Y, use N for concurrent initiators)");
73
74 /*
75 * Flags for firmware oddities
76 *
77 * - 128kB max transfer
78 * Limit transfer size. Necessary for some old bridges.
79 *
80 * - 36 byte inquiry
81 * When scsi_mod probes the device, let the inquiry command look like that
82 * from MS Windows.
83 *
84 * - skip mode page 8
85 * Suppress sending of mode_sense for mode page 8 if the device pretends to
86 * support the SCSI Primary Block commands instead of Reduced Block Commands.
87 *
88 * - fix capacity
89 * Tell sd_mod to correct the last sector number reported by read_capacity.
90 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
91 * Don't use this with devices which don't have this bug.
92 *
93 * - delay inquiry
94 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
95 *
96 * - power condition
97 * Set the power condition field in the START STOP UNIT commands sent by
98 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99 * Some disks need this to spin down or to resume properly.
100 *
101 * - override internal blacklist
102 * Instead of adding to the built-in blacklist, use only the workarounds
103 * specified in the module load parameter.
104 * Useful if a blacklist entry interfered with a non-broken device.
105 */
106 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
107 #define SBP2_WORKAROUND_INQUIRY_36 0x2
108 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
109 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
110 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
111 #define SBP2_INQUIRY_DELAY 12
112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
113 #define SBP2_WORKAROUND_OVERRIDE 0x100
114
115 static int sbp2_param_workarounds;
116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
120 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123 ", set power condition in start stop unit = "
124 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126 ", or a combination)");
127
128 /* I don't know why the SCSI stack doesn't define something like this... */
129 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
130
131 static const char sbp2_driver_name[] = "sbp2";
132
133 /*
134 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
135 * and one struct scsi_device per sbp2_logical_unit.
136 */
137 struct sbp2_logical_unit {
138 struct sbp2_target *tgt;
139 struct list_head link;
140 struct fw_address_handler address_handler;
141 struct list_head orb_list;
142
143 u64 command_block_agent_address;
144 u16 lun;
145 int login_id;
146
147 /*
148 * The generation is updated once we've logged in or reconnected
149 * to the logical unit. Thus, I/O to the device will automatically
150 * fail and get retried if it happens in a window where the device
151 * is not ready, e.g. after a bus reset but before we reconnect.
152 */
153 int generation;
154 int retries;
155 struct delayed_work work;
156 bool has_sdev;
157 bool blocked;
158 };
159
160 /*
161 * We create one struct sbp2_target per IEEE 1212 Unit Directory
162 * and one struct Scsi_Host per sbp2_target.
163 */
164 struct sbp2_target {
165 struct kref kref;
166 struct fw_unit *unit;
167 const char *bus_id;
168 struct list_head lu_list;
169
170 u64 management_agent_address;
171 u64 guid;
172 int directory_id;
173 int node_id;
174 int address_high;
175 unsigned int workarounds;
176 unsigned int mgt_orb_timeout;
177 unsigned int max_payload;
178
179 int dont_block; /* counter for each logical unit */
180 int blocked; /* ditto */
181 };
182
183 /* Impossible login_id, to detect logout attempt before successful login */
184 #define INVALID_LOGIN_ID 0x10000
185
186 /*
187 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
188 * provided in the config rom. Most devices do provide a value, which
189 * we'll use for login management orbs, but with some sane limits.
190 */
191 #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
192 #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
193 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
194 #define SBP2_ORB_NULL 0x80000000
195 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
196 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
197
198 /*
199 * The default maximum s/g segment size of a FireWire controller is
200 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
201 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
202 */
203 #define SBP2_MAX_SEG_SIZE 0xfffc
204
205 /* Unit directory keys */
206 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
207 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
208 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
209 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
210
211 /* Management orb opcodes */
212 #define SBP2_LOGIN_REQUEST 0x0
213 #define SBP2_QUERY_LOGINS_REQUEST 0x1
214 #define SBP2_RECONNECT_REQUEST 0x3
215 #define SBP2_SET_PASSWORD_REQUEST 0x4
216 #define SBP2_LOGOUT_REQUEST 0x7
217 #define SBP2_ABORT_TASK_REQUEST 0xb
218 #define SBP2_ABORT_TASK_SET 0xc
219 #define SBP2_LOGICAL_UNIT_RESET 0xe
220 #define SBP2_TARGET_RESET_REQUEST 0xf
221
222 /* Offsets for command block agent registers */
223 #define SBP2_AGENT_STATE 0x00
224 #define SBP2_AGENT_RESET 0x04
225 #define SBP2_ORB_POINTER 0x08
226 #define SBP2_DOORBELL 0x10
227 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
228
229 /* Status write response codes */
230 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
231 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
232 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
233 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
234
235 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
236 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
237 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
238 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
239 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
240 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
241 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
242 #define STATUS_GET_DATA(v) ((v).data)
243
244 struct sbp2_status {
245 u32 status;
246 u32 orb_low;
247 u8 data[24];
248 };
249
250 struct sbp2_pointer {
251 __be32 high;
252 __be32 low;
253 };
254
255 struct sbp2_orb {
256 struct fw_transaction t;
257 struct kref kref;
258 dma_addr_t request_bus;
259 int rcode;
260 struct sbp2_pointer pointer;
261 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
262 struct list_head link;
263 };
264
265 #define MANAGEMENT_ORB_LUN(v) ((v))
266 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
267 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
268 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
269 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
270 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
271
272 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
273 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
274
275 struct sbp2_management_orb {
276 struct sbp2_orb base;
277 struct {
278 struct sbp2_pointer password;
279 struct sbp2_pointer response;
280 __be32 misc;
281 __be32 length;
282 struct sbp2_pointer status_fifo;
283 } request;
284 __be32 response[4];
285 dma_addr_t response_bus;
286 struct completion done;
287 struct sbp2_status status;
288 };
289
290 struct sbp2_login_response {
291 __be32 misc;
292 struct sbp2_pointer command_block_agent;
293 __be32 reconnect_hold;
294 };
295 #define COMMAND_ORB_DATA_SIZE(v) ((v))
296 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
297 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
298 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
299 #define COMMAND_ORB_SPEED(v) ((v) << 24)
300 #define COMMAND_ORB_DIRECTION ((1) << 27)
301 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
302 #define COMMAND_ORB_NOTIFY ((1) << 31)
303
304 struct sbp2_command_orb {
305 struct sbp2_orb base;
306 struct {
307 struct sbp2_pointer next;
308 struct sbp2_pointer data_descriptor;
309 __be32 misc;
310 u8 command_block[12];
311 } request;
312 struct scsi_cmnd *cmd;
313 scsi_done_fn_t done;
314 struct sbp2_logical_unit *lu;
315
316 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
317 dma_addr_t page_table_bus;
318 };
319
320 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
321 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
322
323 /*
324 * List of devices with known bugs.
325 *
326 * The firmware_revision field, masked with 0xffff00, is the best
327 * indicator for the type of bridge chip of a device. It yields a few
328 * false positives but this did not break correctly behaving devices
329 * so far.
330 */
331 static const struct {
332 u32 firmware_revision;
333 u32 model;
334 unsigned int workarounds;
335 } sbp2_workarounds_table[] = {
336 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
337 .firmware_revision = 0x002800,
338 .model = 0x001010,
339 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
340 SBP2_WORKAROUND_MODE_SENSE_8 |
341 SBP2_WORKAROUND_POWER_CONDITION,
342 },
343 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
344 .firmware_revision = 0x002800,
345 .model = 0x000000,
346 .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY |
347 SBP2_WORKAROUND_POWER_CONDITION,
348 },
349 /* Initio bridges, actually only needed for some older ones */ {
350 .firmware_revision = 0x000200,
351 .model = SBP2_ROM_VALUE_WILDCARD,
352 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
353 },
354 /* PL-3507 bridge with Prolific firmware */ {
355 .firmware_revision = 0x012800,
356 .model = SBP2_ROM_VALUE_WILDCARD,
357 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
358 },
359 /* Symbios bridge */ {
360 .firmware_revision = 0xa0b800,
361 .model = SBP2_ROM_VALUE_WILDCARD,
362 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
363 },
364 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
365 .firmware_revision = 0x002600,
366 .model = SBP2_ROM_VALUE_WILDCARD,
367 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
368 },
369 /*
370 * iPod 2nd generation: needs 128k max transfer size workaround
371 * iPod 3rd generation: needs fix capacity workaround
372 */
373 {
374 .firmware_revision = 0x0a2700,
375 .model = 0x000000,
376 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
377 SBP2_WORKAROUND_FIX_CAPACITY,
378 },
379 /* iPod 4th generation */ {
380 .firmware_revision = 0x0a2700,
381 .model = 0x000021,
382 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
383 },
384 /* iPod mini */ {
385 .firmware_revision = 0x0a2700,
386 .model = 0x000022,
387 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
388 },
389 /* iPod mini */ {
390 .firmware_revision = 0x0a2700,
391 .model = 0x000023,
392 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
393 },
394 /* iPod Photo */ {
395 .firmware_revision = 0x0a2700,
396 .model = 0x00007e,
397 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
398 }
399 };
400
401 static void free_orb(struct kref *kref)
402 {
403 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
404
405 kfree(orb);
406 }
407
408 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
409 int tcode, int destination, int source,
410 int generation, int speed,
411 unsigned long long offset,
412 void *payload, size_t length, void *callback_data)
413 {
414 struct sbp2_logical_unit *lu = callback_data;
415 struct sbp2_orb *orb;
416 struct sbp2_status status;
417 size_t header_size;
418 unsigned long flags;
419
420 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
421 length == 0 || length > sizeof(status)) {
422 fw_send_response(card, request, RCODE_TYPE_ERROR);
423 return;
424 }
425
426 header_size = min(length, 2 * sizeof(u32));
427 fw_memcpy_from_be32(&status, payload, header_size);
428 if (length > header_size)
429 memcpy(status.data, payload + 8, length - header_size);
430 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
431 fw_notify("non-orb related status write, not handled\n");
432 fw_send_response(card, request, RCODE_COMPLETE);
433 return;
434 }
435
436 /* Lookup the orb corresponding to this status write. */
437 spin_lock_irqsave(&card->lock, flags);
438 list_for_each_entry(orb, &lu->orb_list, link) {
439 if (STATUS_GET_ORB_HIGH(status) == 0 &&
440 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
441 orb->rcode = RCODE_COMPLETE;
442 list_del(&orb->link);
443 break;
444 }
445 }
446 spin_unlock_irqrestore(&card->lock, flags);
447
448 if (&orb->link != &lu->orb_list)
449 orb->callback(orb, &status);
450 else
451 fw_error("status write for unknown orb\n");
452
453 kref_put(&orb->kref, free_orb);
454
455 fw_send_response(card, request, RCODE_COMPLETE);
456 }
457
458 static void complete_transaction(struct fw_card *card, int rcode,
459 void *payload, size_t length, void *data)
460 {
461 struct sbp2_orb *orb = data;
462 unsigned long flags;
463
464 /*
465 * This is a little tricky. We can get the status write for
466 * the orb before we get this callback. The status write
467 * handler above will assume the orb pointer transaction was
468 * successful and set the rcode to RCODE_COMPLETE for the orb.
469 * So this callback only sets the rcode if it hasn't already
470 * been set and only does the cleanup if the transaction
471 * failed and we didn't already get a status write.
472 */
473 spin_lock_irqsave(&card->lock, flags);
474
475 if (orb->rcode == -1)
476 orb->rcode = rcode;
477 if (orb->rcode != RCODE_COMPLETE) {
478 list_del(&orb->link);
479 spin_unlock_irqrestore(&card->lock, flags);
480 orb->callback(orb, NULL);
481 } else {
482 spin_unlock_irqrestore(&card->lock, flags);
483 }
484
485 kref_put(&orb->kref, free_orb);
486 }
487
488 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
489 int node_id, int generation, u64 offset)
490 {
491 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
492 unsigned long flags;
493
494 orb->pointer.high = 0;
495 orb->pointer.low = cpu_to_be32(orb->request_bus);
496
497 spin_lock_irqsave(&device->card->lock, flags);
498 list_add_tail(&orb->link, &lu->orb_list);
499 spin_unlock_irqrestore(&device->card->lock, flags);
500
501 /* Take a ref for the orb list and for the transaction callback. */
502 kref_get(&orb->kref);
503 kref_get(&orb->kref);
504
505 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
506 node_id, generation, device->max_speed, offset,
507 &orb->pointer, sizeof(orb->pointer),
508 complete_transaction, orb);
509 }
510
511 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
512 {
513 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
514 struct sbp2_orb *orb, *next;
515 struct list_head list;
516 unsigned long flags;
517 int retval = -ENOENT;
518
519 INIT_LIST_HEAD(&list);
520 spin_lock_irqsave(&device->card->lock, flags);
521 list_splice_init(&lu->orb_list, &list);
522 spin_unlock_irqrestore(&device->card->lock, flags);
523
524 list_for_each_entry_safe(orb, next, &list, link) {
525 retval = 0;
526 if (fw_cancel_transaction(device->card, &orb->t) == 0)
527 continue;
528
529 orb->rcode = RCODE_CANCELLED;
530 orb->callback(orb, NULL);
531 }
532
533 return retval;
534 }
535
536 static void complete_management_orb(struct sbp2_orb *base_orb,
537 struct sbp2_status *status)
538 {
539 struct sbp2_management_orb *orb =
540 container_of(base_orb, struct sbp2_management_orb, base);
541
542 if (status)
543 memcpy(&orb->status, status, sizeof(*status));
544 complete(&orb->done);
545 }
546
547 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
548 int generation, int function,
549 int lun_or_login_id, void *response)
550 {
551 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
552 struct sbp2_management_orb *orb;
553 unsigned int timeout;
554 int retval = -ENOMEM;
555
556 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
557 return 0;
558
559 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
560 if (orb == NULL)
561 return -ENOMEM;
562
563 kref_init(&orb->base.kref);
564 orb->response_bus =
565 dma_map_single(device->card->device, &orb->response,
566 sizeof(orb->response), DMA_FROM_DEVICE);
567 if (dma_mapping_error(device->card->device, orb->response_bus))
568 goto fail_mapping_response;
569
570 orb->request.response.high = 0;
571 orb->request.response.low = cpu_to_be32(orb->response_bus);
572
573 orb->request.misc = cpu_to_be32(
574 MANAGEMENT_ORB_NOTIFY |
575 MANAGEMENT_ORB_FUNCTION(function) |
576 MANAGEMENT_ORB_LUN(lun_or_login_id));
577 orb->request.length = cpu_to_be32(
578 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
579
580 orb->request.status_fifo.high =
581 cpu_to_be32(lu->address_handler.offset >> 32);
582 orb->request.status_fifo.low =
583 cpu_to_be32(lu->address_handler.offset);
584
585 if (function == SBP2_LOGIN_REQUEST) {
586 /* Ask for 2^2 == 4 seconds reconnect grace period */
587 orb->request.misc |= cpu_to_be32(
588 MANAGEMENT_ORB_RECONNECT(2) |
589 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
590 timeout = lu->tgt->mgt_orb_timeout;
591 } else {
592 timeout = SBP2_ORB_TIMEOUT;
593 }
594
595 init_completion(&orb->done);
596 orb->base.callback = complete_management_orb;
597
598 orb->base.request_bus =
599 dma_map_single(device->card->device, &orb->request,
600 sizeof(orb->request), DMA_TO_DEVICE);
601 if (dma_mapping_error(device->card->device, orb->base.request_bus))
602 goto fail_mapping_request;
603
604 sbp2_send_orb(&orb->base, lu, node_id, generation,
605 lu->tgt->management_agent_address);
606
607 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
608
609 retval = -EIO;
610 if (sbp2_cancel_orbs(lu) == 0) {
611 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
612 lu->tgt->bus_id, orb->base.rcode);
613 goto out;
614 }
615
616 if (orb->base.rcode != RCODE_COMPLETE) {
617 fw_error("%s: management write failed, rcode 0x%02x\n",
618 lu->tgt->bus_id, orb->base.rcode);
619 goto out;
620 }
621
622 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
623 STATUS_GET_SBP_STATUS(orb->status) != 0) {
624 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
625 STATUS_GET_RESPONSE(orb->status),
626 STATUS_GET_SBP_STATUS(orb->status));
627 goto out;
628 }
629
630 retval = 0;
631 out:
632 dma_unmap_single(device->card->device, orb->base.request_bus,
633 sizeof(orb->request), DMA_TO_DEVICE);
634 fail_mapping_request:
635 dma_unmap_single(device->card->device, orb->response_bus,
636 sizeof(orb->response), DMA_FROM_DEVICE);
637 fail_mapping_response:
638 if (response)
639 memcpy(response, orb->response, sizeof(orb->response));
640 kref_put(&orb->base.kref, free_orb);
641
642 return retval;
643 }
644
645 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
646 {
647 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
648 __be32 d = 0;
649
650 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
651 lu->tgt->node_id, lu->generation, device->max_speed,
652 lu->command_block_agent_address + SBP2_AGENT_RESET,
653 &d, sizeof(d));
654 }
655
656 static void complete_agent_reset_write_no_wait(struct fw_card *card,
657 int rcode, void *payload, size_t length, void *data)
658 {
659 kfree(data);
660 }
661
662 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
663 {
664 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
665 struct fw_transaction *t;
666 static __be32 d;
667
668 t = kmalloc(sizeof(*t), GFP_ATOMIC);
669 if (t == NULL)
670 return;
671
672 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
673 lu->tgt->node_id, lu->generation, device->max_speed,
674 lu->command_block_agent_address + SBP2_AGENT_RESET,
675 &d, sizeof(d), complete_agent_reset_write_no_wait, t);
676 }
677
678 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
679 {
680 /*
681 * We may access dont_block without taking card->lock here:
682 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
683 * are currently serialized against each other.
684 * And a wrong result in sbp2_conditionally_block()'s access of
685 * dont_block is rather harmless, it simply misses its first chance.
686 */
687 --lu->tgt->dont_block;
688 }
689
690 /*
691 * Blocks lu->tgt if all of the following conditions are met:
692 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
693 * logical units have been finished (indicated by dont_block == 0).
694 * - lu->generation is stale.
695 *
696 * Note, scsi_block_requests() must be called while holding card->lock,
697 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
698 * unblock the target.
699 */
700 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
701 {
702 struct sbp2_target *tgt = lu->tgt;
703 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
704 struct Scsi_Host *shost =
705 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
706 unsigned long flags;
707
708 spin_lock_irqsave(&card->lock, flags);
709 if (!tgt->dont_block && !lu->blocked &&
710 lu->generation != card->generation) {
711 lu->blocked = true;
712 if (++tgt->blocked == 1)
713 scsi_block_requests(shost);
714 }
715 spin_unlock_irqrestore(&card->lock, flags);
716 }
717
718 /*
719 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
720 * Note, it is harmless to run scsi_unblock_requests() outside the
721 * card->lock protected section. On the other hand, running it inside
722 * the section might clash with shost->host_lock.
723 */
724 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
725 {
726 struct sbp2_target *tgt = lu->tgt;
727 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
728 struct Scsi_Host *shost =
729 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
730 unsigned long flags;
731 bool unblock = false;
732
733 spin_lock_irqsave(&card->lock, flags);
734 if (lu->blocked && lu->generation == card->generation) {
735 lu->blocked = false;
736 unblock = --tgt->blocked == 0;
737 }
738 spin_unlock_irqrestore(&card->lock, flags);
739
740 if (unblock)
741 scsi_unblock_requests(shost);
742 }
743
744 /*
745 * Prevents future blocking of tgt and unblocks it.
746 * Note, it is harmless to run scsi_unblock_requests() outside the
747 * card->lock protected section. On the other hand, running it inside
748 * the section might clash with shost->host_lock.
749 */
750 static void sbp2_unblock(struct sbp2_target *tgt)
751 {
752 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
753 struct Scsi_Host *shost =
754 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
755 unsigned long flags;
756
757 spin_lock_irqsave(&card->lock, flags);
758 ++tgt->dont_block;
759 spin_unlock_irqrestore(&card->lock, flags);
760
761 scsi_unblock_requests(shost);
762 }
763
764 static int sbp2_lun2int(u16 lun)
765 {
766 struct scsi_lun eight_bytes_lun;
767
768 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
769 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
770 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
771
772 return scsilun_to_int(&eight_bytes_lun);
773 }
774
775 static void sbp2_release_target(struct kref *kref)
776 {
777 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
778 struct sbp2_logical_unit *lu, *next;
779 struct Scsi_Host *shost =
780 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
781 struct scsi_device *sdev;
782 struct fw_device *device = fw_device(tgt->unit->device.parent);
783
784 /* prevent deadlocks */
785 sbp2_unblock(tgt);
786
787 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
788 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
789 if (sdev) {
790 scsi_remove_device(sdev);
791 scsi_device_put(sdev);
792 }
793 if (lu->login_id != INVALID_LOGIN_ID) {
794 int generation, node_id;
795 /*
796 * tgt->node_id may be obsolete here if we failed
797 * during initial login or after a bus reset where
798 * the topology changed.
799 */
800 generation = device->generation;
801 smp_rmb(); /* node_id vs. generation */
802 node_id = device->node_id;
803 sbp2_send_management_orb(lu, node_id, generation,
804 SBP2_LOGOUT_REQUEST,
805 lu->login_id, NULL);
806 }
807 fw_core_remove_address_handler(&lu->address_handler);
808 list_del(&lu->link);
809 kfree(lu);
810 }
811 scsi_remove_host(shost);
812 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
813
814 fw_unit_put(tgt->unit);
815 scsi_host_put(shost);
816 fw_device_put(device);
817 }
818
819 static struct workqueue_struct *sbp2_wq;
820
821 static void sbp2_target_put(struct sbp2_target *tgt)
822 {
823 kref_put(&tgt->kref, sbp2_release_target);
824 }
825
826 /*
827 * Always get the target's kref when scheduling work on one its units.
828 * Each workqueue job is responsible to call sbp2_target_put() upon return.
829 */
830 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
831 {
832 kref_get(&lu->tgt->kref);
833 if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
834 sbp2_target_put(lu->tgt);
835 }
836
837 /*
838 * Write retransmit retry values into the BUSY_TIMEOUT register.
839 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
840 * default retry_limit value is 0 (i.e. never retry transmission). We write a
841 * saner value after logging into the device.
842 * - The dual-phase retry protocol is optional to implement, and if not
843 * supported, writes to the dual-phase portion of the register will be
844 * ignored. We try to write the original 1394-1995 default here.
845 * - In the case of devices that are also SBP-3-compliant, all writes are
846 * ignored, as the register is read-only, but contains single-phase retry of
847 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
848 * write attempt is safe and yields more consistent behavior for all devices.
849 *
850 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
851 * and section 6.4 of the SBP-3 spec for further details.
852 */
853 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
854 {
855 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
856 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
857
858 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
859 lu->tgt->node_id, lu->generation, device->max_speed,
860 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT,
861 &d, sizeof(d));
862 }
863
864 static void sbp2_reconnect(struct work_struct *work);
865
866 static void sbp2_login(struct work_struct *work)
867 {
868 struct sbp2_logical_unit *lu =
869 container_of(work, struct sbp2_logical_unit, work.work);
870 struct sbp2_target *tgt = lu->tgt;
871 struct fw_device *device = fw_device(tgt->unit->device.parent);
872 struct Scsi_Host *shost;
873 struct scsi_device *sdev;
874 struct sbp2_login_response response;
875 int generation, node_id, local_node_id;
876
877 if (fw_device_is_shutdown(device))
878 goto out;
879
880 generation = device->generation;
881 smp_rmb(); /* node IDs must not be older than generation */
882 node_id = device->node_id;
883 local_node_id = device->card->node_id;
884
885 /* If this is a re-login attempt, log out, or we might be rejected. */
886 if (lu->has_sdev)
887 sbp2_send_management_orb(lu, device->node_id, generation,
888 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
889
890 if (sbp2_send_management_orb(lu, node_id, generation,
891 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
892 if (lu->retries++ < 5) {
893 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
894 } else {
895 fw_error("%s: failed to login to LUN %04x\n",
896 tgt->bus_id, lu->lun);
897 /* Let any waiting I/O fail from now on. */
898 sbp2_unblock(lu->tgt);
899 }
900 goto out;
901 }
902
903 tgt->node_id = node_id;
904 tgt->address_high = local_node_id << 16;
905 smp_wmb(); /* node IDs must not be older than generation */
906 lu->generation = generation;
907
908 lu->command_block_agent_address =
909 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
910 << 32) | be32_to_cpu(response.command_block_agent.low);
911 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
912
913 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
914 tgt->bus_id, lu->lun, lu->retries);
915
916 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
917 sbp2_set_busy_timeout(lu);
918
919 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
920 sbp2_agent_reset(lu);
921
922 /* This was a re-login. */
923 if (lu->has_sdev) {
924 sbp2_cancel_orbs(lu);
925 sbp2_conditionally_unblock(lu);
926 goto out;
927 }
928
929 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
930 ssleep(SBP2_INQUIRY_DELAY);
931
932 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
933 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
934 /*
935 * FIXME: We are unable to perform reconnects while in sbp2_login().
936 * Therefore __scsi_add_device() will get into trouble if a bus reset
937 * happens in parallel. It will either fail or leave us with an
938 * unusable sdev. As a workaround we check for this and retry the
939 * whole login and SCSI probing.
940 */
941
942 /* Reported error during __scsi_add_device() */
943 if (IS_ERR(sdev))
944 goto out_logout_login;
945
946 /* Unreported error during __scsi_add_device() */
947 smp_rmb(); /* get current card generation */
948 if (generation != device->card->generation) {
949 scsi_remove_device(sdev);
950 scsi_device_put(sdev);
951 goto out_logout_login;
952 }
953
954 /* No error during __scsi_add_device() */
955 lu->has_sdev = true;
956 scsi_device_put(sdev);
957 sbp2_allow_block(lu);
958 goto out;
959
960 out_logout_login:
961 smp_rmb(); /* generation may have changed */
962 generation = device->generation;
963 smp_rmb(); /* node_id must not be older than generation */
964
965 sbp2_send_management_orb(lu, device->node_id, generation,
966 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
967 /*
968 * If a bus reset happened, sbp2_update will have requeued
969 * lu->work already. Reset the work from reconnect to login.
970 */
971 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
972 out:
973 sbp2_target_put(tgt);
974 }
975
976 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
977 {
978 struct sbp2_logical_unit *lu;
979
980 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
981 if (!lu)
982 return -ENOMEM;
983
984 lu->address_handler.length = 0x100;
985 lu->address_handler.address_callback = sbp2_status_write;
986 lu->address_handler.callback_data = lu;
987
988 if (fw_core_add_address_handler(&lu->address_handler,
989 &fw_high_memory_region) < 0) {
990 kfree(lu);
991 return -ENOMEM;
992 }
993
994 lu->tgt = tgt;
995 lu->lun = lun_entry & 0xffff;
996 lu->login_id = INVALID_LOGIN_ID;
997 lu->retries = 0;
998 lu->has_sdev = false;
999 lu->blocked = false;
1000 ++tgt->dont_block;
1001 INIT_LIST_HEAD(&lu->orb_list);
1002 INIT_DELAYED_WORK(&lu->work, sbp2_login);
1003
1004 list_add_tail(&lu->link, &tgt->lu_list);
1005 return 0;
1006 }
1007
1008 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
1009 {
1010 struct fw_csr_iterator ci;
1011 int key, value;
1012
1013 fw_csr_iterator_init(&ci, directory);
1014 while (fw_csr_iterator_next(&ci, &key, &value))
1015 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1016 sbp2_add_logical_unit(tgt, value) < 0)
1017 return -ENOMEM;
1018 return 0;
1019 }
1020
1021 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
1022 u32 *model, u32 *firmware_revision)
1023 {
1024 struct fw_csr_iterator ci;
1025 int key, value;
1026 unsigned int timeout;
1027
1028 fw_csr_iterator_init(&ci, directory);
1029 while (fw_csr_iterator_next(&ci, &key, &value)) {
1030 switch (key) {
1031
1032 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1033 tgt->management_agent_address =
1034 CSR_REGISTER_BASE + 4 * value;
1035 break;
1036
1037 case CSR_DIRECTORY_ID:
1038 tgt->directory_id = value;
1039 break;
1040
1041 case CSR_MODEL:
1042 *model = value;
1043 break;
1044
1045 case SBP2_CSR_FIRMWARE_REVISION:
1046 *firmware_revision = value;
1047 break;
1048
1049 case SBP2_CSR_UNIT_CHARACTERISTICS:
1050 /* the timeout value is stored in 500ms units */
1051 timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1052 timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1053 tgt->mgt_orb_timeout =
1054 min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1055
1056 if (timeout > tgt->mgt_orb_timeout)
1057 fw_notify("%s: config rom contains %ds "
1058 "management ORB timeout, limiting "
1059 "to %ds\n", tgt->bus_id,
1060 timeout / 1000,
1061 tgt->mgt_orb_timeout / 1000);
1062 break;
1063
1064 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1065 if (sbp2_add_logical_unit(tgt, value) < 0)
1066 return -ENOMEM;
1067 break;
1068
1069 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1070 /* Adjust for the increment in the iterator */
1071 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1072 return -ENOMEM;
1073 break;
1074 }
1075 }
1076 return 0;
1077 }
1078
1079 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1080 u32 firmware_revision)
1081 {
1082 int i;
1083 unsigned int w = sbp2_param_workarounds;
1084
1085 if (w)
1086 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1087 "if you need the workarounds parameter for %s\n",
1088 tgt->bus_id);
1089
1090 if (w & SBP2_WORKAROUND_OVERRIDE)
1091 goto out;
1092
1093 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1094
1095 if (sbp2_workarounds_table[i].firmware_revision !=
1096 (firmware_revision & 0xffffff00))
1097 continue;
1098
1099 if (sbp2_workarounds_table[i].model != model &&
1100 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1101 continue;
1102
1103 w |= sbp2_workarounds_table[i].workarounds;
1104 break;
1105 }
1106 out:
1107 if (w)
1108 fw_notify("Workarounds for %s: 0x%x "
1109 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1110 tgt->bus_id, w, firmware_revision, model);
1111 tgt->workarounds = w;
1112 }
1113
1114 static struct scsi_host_template scsi_driver_template;
1115
1116 static int sbp2_probe(struct device *dev)
1117 {
1118 struct fw_unit *unit = fw_unit(dev);
1119 struct fw_device *device = fw_device(unit->device.parent);
1120 struct sbp2_target *tgt;
1121 struct sbp2_logical_unit *lu;
1122 struct Scsi_Host *shost;
1123 u32 model, firmware_revision;
1124
1125 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1126 BUG_ON(dma_set_max_seg_size(device->card->device,
1127 SBP2_MAX_SEG_SIZE));
1128
1129 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1130 if (shost == NULL)
1131 return -ENOMEM;
1132
1133 tgt = (struct sbp2_target *)shost->hostdata;
1134 unit->device.driver_data = tgt;
1135 tgt->unit = unit;
1136 kref_init(&tgt->kref);
1137 INIT_LIST_HEAD(&tgt->lu_list);
1138 tgt->bus_id = dev_name(&unit->device);
1139 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1140
1141 if (fw_device_enable_phys_dma(device) < 0)
1142 goto fail_shost_put;
1143
1144 if (scsi_add_host(shost, &unit->device) < 0)
1145 goto fail_shost_put;
1146
1147 fw_device_get(device);
1148 fw_unit_get(unit);
1149
1150 /* implicit directory ID */
1151 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1152 + CSR_CONFIG_ROM) & 0xffffff;
1153
1154 firmware_revision = SBP2_ROM_VALUE_MISSING;
1155 model = SBP2_ROM_VALUE_MISSING;
1156
1157 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1158 &firmware_revision) < 0)
1159 goto fail_tgt_put;
1160
1161 sbp2_init_workarounds(tgt, model, firmware_revision);
1162
1163 /*
1164 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1165 * and so on up to 4096 bytes. The SBP-2 max_payload field
1166 * specifies the max payload size as 2 ^ (max_payload + 2), so
1167 * if we set this to max_speed + 7, we get the right value.
1168 */
1169 tgt->max_payload = min(device->max_speed + 7, 10U);
1170 tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1171
1172 /* Do the login in a workqueue so we can easily reschedule retries. */
1173 list_for_each_entry(lu, &tgt->lu_list, link)
1174 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1175 return 0;
1176
1177 fail_tgt_put:
1178 sbp2_target_put(tgt);
1179 return -ENOMEM;
1180
1181 fail_shost_put:
1182 scsi_host_put(shost);
1183 return -ENOMEM;
1184 }
1185
1186 static int sbp2_remove(struct device *dev)
1187 {
1188 struct fw_unit *unit = fw_unit(dev);
1189 struct sbp2_target *tgt = unit->device.driver_data;
1190
1191 sbp2_target_put(tgt);
1192 return 0;
1193 }
1194
1195 static void sbp2_reconnect(struct work_struct *work)
1196 {
1197 struct sbp2_logical_unit *lu =
1198 container_of(work, struct sbp2_logical_unit, work.work);
1199 struct sbp2_target *tgt = lu->tgt;
1200 struct fw_device *device = fw_device(tgt->unit->device.parent);
1201 int generation, node_id, local_node_id;
1202
1203 if (fw_device_is_shutdown(device))
1204 goto out;
1205
1206 generation = device->generation;
1207 smp_rmb(); /* node IDs must not be older than generation */
1208 node_id = device->node_id;
1209 local_node_id = device->card->node_id;
1210
1211 if (sbp2_send_management_orb(lu, node_id, generation,
1212 SBP2_RECONNECT_REQUEST,
1213 lu->login_id, NULL) < 0) {
1214 /*
1215 * If reconnect was impossible even though we are in the
1216 * current generation, fall back and try to log in again.
1217 *
1218 * We could check for "Function rejected" status, but
1219 * looking at the bus generation as simpler and more general.
1220 */
1221 smp_rmb(); /* get current card generation */
1222 if (generation == device->card->generation ||
1223 lu->retries++ >= 5) {
1224 fw_error("%s: failed to reconnect\n", tgt->bus_id);
1225 lu->retries = 0;
1226 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1227 }
1228 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1229 goto out;
1230 }
1231
1232 tgt->node_id = node_id;
1233 tgt->address_high = local_node_id << 16;
1234 smp_wmb(); /* node IDs must not be older than generation */
1235 lu->generation = generation;
1236
1237 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1238 tgt->bus_id, lu->lun, lu->retries);
1239
1240 sbp2_agent_reset(lu);
1241 sbp2_cancel_orbs(lu);
1242 sbp2_conditionally_unblock(lu);
1243 out:
1244 sbp2_target_put(tgt);
1245 }
1246
1247 static void sbp2_update(struct fw_unit *unit)
1248 {
1249 struct sbp2_target *tgt = unit->device.driver_data;
1250 struct sbp2_logical_unit *lu;
1251
1252 fw_device_enable_phys_dma(fw_device(unit->device.parent));
1253
1254 /*
1255 * Fw-core serializes sbp2_update() against sbp2_remove().
1256 * Iteration over tgt->lu_list is therefore safe here.
1257 */
1258 list_for_each_entry(lu, &tgt->lu_list, link) {
1259 sbp2_conditionally_block(lu);
1260 lu->retries = 0;
1261 sbp2_queue_work(lu, 0);
1262 }
1263 }
1264
1265 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1266 #define SBP2_SW_VERSION_ENTRY 0x00010483
1267
1268 static const struct ieee1394_device_id sbp2_id_table[] = {
1269 {
1270 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1271 IEEE1394_MATCH_VERSION,
1272 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1273 .version = SBP2_SW_VERSION_ENTRY,
1274 },
1275 { }
1276 };
1277
1278 static struct fw_driver sbp2_driver = {
1279 .driver = {
1280 .owner = THIS_MODULE,
1281 .name = sbp2_driver_name,
1282 .bus = &fw_bus_type,
1283 .probe = sbp2_probe,
1284 .remove = sbp2_remove,
1285 },
1286 .update = sbp2_update,
1287 .id_table = sbp2_id_table,
1288 };
1289
1290 static void sbp2_unmap_scatterlist(struct device *card_device,
1291 struct sbp2_command_orb *orb)
1292 {
1293 if (scsi_sg_count(orb->cmd))
1294 dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1295 scsi_sg_count(orb->cmd),
1296 orb->cmd->sc_data_direction);
1297
1298 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1299 dma_unmap_single(card_device, orb->page_table_bus,
1300 sizeof(orb->page_table), DMA_TO_DEVICE);
1301 }
1302
1303 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1304 {
1305 int sam_status;
1306
1307 sense_data[0] = 0x70;
1308 sense_data[1] = 0x0;
1309 sense_data[2] = sbp2_status[1];
1310 sense_data[3] = sbp2_status[4];
1311 sense_data[4] = sbp2_status[5];
1312 sense_data[5] = sbp2_status[6];
1313 sense_data[6] = sbp2_status[7];
1314 sense_data[7] = 10;
1315 sense_data[8] = sbp2_status[8];
1316 sense_data[9] = sbp2_status[9];
1317 sense_data[10] = sbp2_status[10];
1318 sense_data[11] = sbp2_status[11];
1319 sense_data[12] = sbp2_status[2];
1320 sense_data[13] = sbp2_status[3];
1321 sense_data[14] = sbp2_status[12];
1322 sense_data[15] = sbp2_status[13];
1323
1324 sam_status = sbp2_status[0] & 0x3f;
1325
1326 switch (sam_status) {
1327 case SAM_STAT_GOOD:
1328 case SAM_STAT_CHECK_CONDITION:
1329 case SAM_STAT_CONDITION_MET:
1330 case SAM_STAT_BUSY:
1331 case SAM_STAT_RESERVATION_CONFLICT:
1332 case SAM_STAT_COMMAND_TERMINATED:
1333 return DID_OK << 16 | sam_status;
1334
1335 default:
1336 return DID_ERROR << 16;
1337 }
1338 }
1339
1340 static void complete_command_orb(struct sbp2_orb *base_orb,
1341 struct sbp2_status *status)
1342 {
1343 struct sbp2_command_orb *orb =
1344 container_of(base_orb, struct sbp2_command_orb, base);
1345 struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1346 int result;
1347
1348 if (status != NULL) {
1349 if (STATUS_GET_DEAD(*status))
1350 sbp2_agent_reset_no_wait(orb->lu);
1351
1352 switch (STATUS_GET_RESPONSE(*status)) {
1353 case SBP2_STATUS_REQUEST_COMPLETE:
1354 result = DID_OK << 16;
1355 break;
1356 case SBP2_STATUS_TRANSPORT_FAILURE:
1357 result = DID_BUS_BUSY << 16;
1358 break;
1359 case SBP2_STATUS_ILLEGAL_REQUEST:
1360 case SBP2_STATUS_VENDOR_DEPENDENT:
1361 default:
1362 result = DID_ERROR << 16;
1363 break;
1364 }
1365
1366 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1367 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1368 orb->cmd->sense_buffer);
1369 } else {
1370 /*
1371 * If the orb completes with status == NULL, something
1372 * went wrong, typically a bus reset happened mid-orb
1373 * or when sending the write (less likely).
1374 */
1375 result = DID_BUS_BUSY << 16;
1376 sbp2_conditionally_block(orb->lu);
1377 }
1378
1379 dma_unmap_single(device->card->device, orb->base.request_bus,
1380 sizeof(orb->request), DMA_TO_DEVICE);
1381 sbp2_unmap_scatterlist(device->card->device, orb);
1382
1383 orb->cmd->result = result;
1384 orb->done(orb->cmd);
1385 }
1386
1387 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1388 struct fw_device *device, struct sbp2_logical_unit *lu)
1389 {
1390 struct scatterlist *sg = scsi_sglist(orb->cmd);
1391 int i, n;
1392
1393 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1394 orb->cmd->sc_data_direction);
1395 if (n == 0)
1396 goto fail;
1397
1398 /*
1399 * Handle the special case where there is only one element in
1400 * the scatter list by converting it to an immediate block
1401 * request. This is also a workaround for broken devices such
1402 * as the second generation iPod which doesn't support page
1403 * tables.
1404 */
1405 if (n == 1) {
1406 orb->request.data_descriptor.high =
1407 cpu_to_be32(lu->tgt->address_high);
1408 orb->request.data_descriptor.low =
1409 cpu_to_be32(sg_dma_address(sg));
1410 orb->request.misc |=
1411 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1412 return 0;
1413 }
1414
1415 for_each_sg(sg, sg, n, i) {
1416 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1417 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1418 }
1419
1420 orb->page_table_bus =
1421 dma_map_single(device->card->device, orb->page_table,
1422 sizeof(orb->page_table), DMA_TO_DEVICE);
1423 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1424 goto fail_page_table;
1425
1426 /*
1427 * The data_descriptor pointer is the one case where we need
1428 * to fill in the node ID part of the address. All other
1429 * pointers assume that the data referenced reside on the
1430 * initiator (i.e. us), but data_descriptor can refer to data
1431 * on other nodes so we need to put our ID in descriptor.high.
1432 */
1433 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1434 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1435 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1436 COMMAND_ORB_DATA_SIZE(n));
1437
1438 return 0;
1439
1440 fail_page_table:
1441 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1442 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1443 fail:
1444 return -ENOMEM;
1445 }
1446
1447 /* SCSI stack integration */
1448
1449 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1450 {
1451 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1452 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1453 struct sbp2_command_orb *orb;
1454 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1455
1456 /*
1457 * Bidirectional commands are not yet implemented, and unknown
1458 * transfer direction not handled.
1459 */
1460 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1461 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1462 cmd->result = DID_ERROR << 16;
1463 done(cmd);
1464 return 0;
1465 }
1466
1467 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1468 if (orb == NULL) {
1469 fw_notify("failed to alloc orb\n");
1470 return SCSI_MLQUEUE_HOST_BUSY;
1471 }
1472
1473 /* Initialize rcode to something not RCODE_COMPLETE. */
1474 orb->base.rcode = -1;
1475 kref_init(&orb->base.kref);
1476
1477 orb->lu = lu;
1478 orb->done = done;
1479 orb->cmd = cmd;
1480
1481 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1482 orb->request.misc = cpu_to_be32(
1483 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1484 COMMAND_ORB_SPEED(device->max_speed) |
1485 COMMAND_ORB_NOTIFY);
1486
1487 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1488 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1489
1490 generation = device->generation;
1491 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1492
1493 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1494 goto out;
1495
1496 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1497
1498 orb->base.callback = complete_command_orb;
1499 orb->base.request_bus =
1500 dma_map_single(device->card->device, &orb->request,
1501 sizeof(orb->request), DMA_TO_DEVICE);
1502 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1503 sbp2_unmap_scatterlist(device->card->device, orb);
1504 goto out;
1505 }
1506
1507 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1508 lu->command_block_agent_address + SBP2_ORB_POINTER);
1509 retval = 0;
1510 out:
1511 kref_put(&orb->base.kref, free_orb);
1512 return retval;
1513 }
1514
1515 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1516 {
1517 struct sbp2_logical_unit *lu = sdev->hostdata;
1518
1519 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1520 if (!lu)
1521 return -ENOSYS;
1522
1523 sdev->allow_restart = 1;
1524
1525 /* SBP-2 requires quadlet alignment of the data buffers. */
1526 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1527
1528 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1529 sdev->inquiry_len = 36;
1530
1531 return 0;
1532 }
1533
1534 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1535 {
1536 struct sbp2_logical_unit *lu = sdev->hostdata;
1537
1538 sdev->use_10_for_rw = 1;
1539
1540 if (sbp2_param_exclusive_login)
1541 sdev->manage_start_stop = 1;
1542
1543 if (sdev->type == TYPE_ROM)
1544 sdev->use_10_for_ms = 1;
1545
1546 if (sdev->type == TYPE_DISK &&
1547 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1548 sdev->skip_ms_page_8 = 1;
1549
1550 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1551 sdev->fix_capacity = 1;
1552
1553 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1554 sdev->start_stop_pwr_cond = 1;
1555
1556 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1557 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1558
1559 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1560
1561 return 0;
1562 }
1563
1564 /*
1565 * Called by scsi stack when something has really gone wrong. Usually
1566 * called when a command has timed-out for some reason.
1567 */
1568 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1569 {
1570 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1571
1572 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1573 sbp2_agent_reset(lu);
1574 sbp2_cancel_orbs(lu);
1575
1576 return SUCCESS;
1577 }
1578
1579 /*
1580 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1581 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1582 *
1583 * This is the concatenation of target port identifier and logical unit
1584 * identifier as per SAM-2...SAM-4 annex A.
1585 */
1586 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1587 struct device_attribute *attr, char *buf)
1588 {
1589 struct scsi_device *sdev = to_scsi_device(dev);
1590 struct sbp2_logical_unit *lu;
1591
1592 if (!sdev)
1593 return 0;
1594
1595 lu = sdev->hostdata;
1596
1597 return sprintf(buf, "%016llx:%06x:%04x\n",
1598 (unsigned long long)lu->tgt->guid,
1599 lu->tgt->directory_id, lu->lun);
1600 }
1601
1602 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1603
1604 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1605 &dev_attr_ieee1394_id,
1606 NULL
1607 };
1608
1609 static struct scsi_host_template scsi_driver_template = {
1610 .module = THIS_MODULE,
1611 .name = "SBP-2 IEEE-1394",
1612 .proc_name = sbp2_driver_name,
1613 .queuecommand = sbp2_scsi_queuecommand,
1614 .slave_alloc = sbp2_scsi_slave_alloc,
1615 .slave_configure = sbp2_scsi_slave_configure,
1616 .eh_abort_handler = sbp2_scsi_abort,
1617 .this_id = -1,
1618 .sg_tablesize = SG_ALL,
1619 .use_clustering = ENABLE_CLUSTERING,
1620 .cmd_per_lun = 1,
1621 .can_queue = 1,
1622 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1623 };
1624
1625 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1626 MODULE_DESCRIPTION("SCSI over IEEE1394");
1627 MODULE_LICENSE("GPL");
1628 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1629
1630 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1631 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1632 MODULE_ALIAS("sbp2");
1633 #endif
1634
1635 static int __init sbp2_init(void)
1636 {
1637 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1638 if (!sbp2_wq)
1639 return -ENOMEM;
1640
1641 return driver_register(&sbp2_driver.driver);
1642 }
1643
1644 static void __exit sbp2_cleanup(void)
1645 {
1646 driver_unregister(&sbp2_driver.driver);
1647 destroy_workqueue(sbp2_wq);
1648 }
1649
1650 module_init(sbp2_init);
1651 module_exit(sbp2_cleanup);
This page took 0.074629 seconds and 5 git commands to generate.