firewire: wait until PHY configuration packet was transmitted (fix bus reset loop)
[deliverable/linux.git] / drivers / firewire / fw-transaction.c
1 /*
2 * Core IEEE1394 transaction logic
3 *
4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/completion.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/delay.h>
28 #include <linux/poll.h>
29 #include <linux/list.h>
30 #include <linux/kthread.h>
31 #include <asm/uaccess.h>
32 #include <asm/semaphore.h>
33
34 #include "fw-transaction.h"
35 #include "fw-topology.h"
36 #include "fw-device.h"
37
38 #define HEADER_PRI(pri) ((pri) << 0)
39 #define HEADER_TCODE(tcode) ((tcode) << 4)
40 #define HEADER_RETRY(retry) ((retry) << 8)
41 #define HEADER_TLABEL(tlabel) ((tlabel) << 10)
42 #define HEADER_DESTINATION(destination) ((destination) << 16)
43 #define HEADER_SOURCE(source) ((source) << 16)
44 #define HEADER_RCODE(rcode) ((rcode) << 12)
45 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
46 #define HEADER_DATA_LENGTH(length) ((length) << 16)
47 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
48
49 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
50 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
51 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
52 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
53 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
54 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
55 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
56 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
57
58 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
59 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
60 #define PHY_IDENTIFIER(id) ((id) << 30)
61
62 static int
63 close_transaction(struct fw_transaction *transaction,
64 struct fw_card *card, int rcode,
65 u32 *payload, size_t length)
66 {
67 struct fw_transaction *t;
68 unsigned long flags;
69
70 spin_lock_irqsave(&card->lock, flags);
71 list_for_each_entry(t, &card->transaction_list, link) {
72 if (t == transaction) {
73 list_del(&t->link);
74 card->tlabel_mask &= ~(1 << t->tlabel);
75 break;
76 }
77 }
78 spin_unlock_irqrestore(&card->lock, flags);
79
80 if (&t->link != &card->transaction_list) {
81 t->callback(card, rcode, payload, length, t->callback_data);
82 return 0;
83 }
84
85 return -ENOENT;
86 }
87
88 /*
89 * Only valid for transactions that are potentially pending (ie have
90 * been sent).
91 */
92 int
93 fw_cancel_transaction(struct fw_card *card,
94 struct fw_transaction *transaction)
95 {
96 /*
97 * Cancel the packet transmission if it's still queued. That
98 * will call the packet transmission callback which cancels
99 * the transaction.
100 */
101
102 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
103 return 0;
104
105 /*
106 * If the request packet has already been sent, we need to see
107 * if the transaction is still pending and remove it in that case.
108 */
109
110 return close_transaction(transaction, card, RCODE_CANCELLED, NULL, 0);
111 }
112 EXPORT_SYMBOL(fw_cancel_transaction);
113
114 static void
115 transmit_complete_callback(struct fw_packet *packet,
116 struct fw_card *card, int status)
117 {
118 struct fw_transaction *t =
119 container_of(packet, struct fw_transaction, packet);
120
121 switch (status) {
122 case ACK_COMPLETE:
123 close_transaction(t, card, RCODE_COMPLETE, NULL, 0);
124 break;
125 case ACK_PENDING:
126 t->timestamp = packet->timestamp;
127 break;
128 case ACK_BUSY_X:
129 case ACK_BUSY_A:
130 case ACK_BUSY_B:
131 close_transaction(t, card, RCODE_BUSY, NULL, 0);
132 break;
133 case ACK_DATA_ERROR:
134 close_transaction(t, card, RCODE_DATA_ERROR, NULL, 0);
135 break;
136 case ACK_TYPE_ERROR:
137 close_transaction(t, card, RCODE_TYPE_ERROR, NULL, 0);
138 break;
139 default:
140 /*
141 * In this case the ack is really a juju specific
142 * rcode, so just forward that to the callback.
143 */
144 close_transaction(t, card, status, NULL, 0);
145 break;
146 }
147 }
148
149 static void
150 fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
151 int node_id, int source_id, int generation, int speed,
152 unsigned long long offset, void *payload, size_t length)
153 {
154 int ext_tcode;
155
156 if (tcode > 0x10) {
157 ext_tcode = tcode & ~0x10;
158 tcode = TCODE_LOCK_REQUEST;
159 } else
160 ext_tcode = 0;
161
162 packet->header[0] =
163 HEADER_RETRY(RETRY_X) |
164 HEADER_TLABEL(tlabel) |
165 HEADER_TCODE(tcode) |
166 HEADER_DESTINATION(node_id);
167 packet->header[1] =
168 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
169 packet->header[2] =
170 offset;
171
172 switch (tcode) {
173 case TCODE_WRITE_QUADLET_REQUEST:
174 packet->header[3] = *(u32 *)payload;
175 packet->header_length = 16;
176 packet->payload_length = 0;
177 break;
178
179 case TCODE_LOCK_REQUEST:
180 case TCODE_WRITE_BLOCK_REQUEST:
181 packet->header[3] =
182 HEADER_DATA_LENGTH(length) |
183 HEADER_EXTENDED_TCODE(ext_tcode);
184 packet->header_length = 16;
185 packet->payload = payload;
186 packet->payload_length = length;
187 break;
188
189 case TCODE_READ_QUADLET_REQUEST:
190 packet->header_length = 12;
191 packet->payload_length = 0;
192 break;
193
194 case TCODE_READ_BLOCK_REQUEST:
195 packet->header[3] =
196 HEADER_DATA_LENGTH(length) |
197 HEADER_EXTENDED_TCODE(ext_tcode);
198 packet->header_length = 16;
199 packet->payload_length = 0;
200 break;
201 }
202
203 packet->speed = speed;
204 packet->generation = generation;
205 packet->ack = 0;
206 }
207
208 /**
209 * This function provides low-level access to the IEEE1394 transaction
210 * logic. Most C programs would use either fw_read(), fw_write() or
211 * fw_lock() instead - those function are convenience wrappers for
212 * this function. The fw_send_request() function is primarily
213 * provided as a flexible, one-stop entry point for languages bindings
214 * and protocol bindings.
215 *
216 * FIXME: Document this function further, in particular the possible
217 * values for rcode in the callback. In short, we map ACK_COMPLETE to
218 * RCODE_COMPLETE, internal errors set errno and set rcode to
219 * RCODE_SEND_ERROR (which is out of range for standard ieee1394
220 * rcodes). All other rcodes are forwarded unchanged. For all
221 * errors, payload is NULL, length is 0.
222 *
223 * Can not expect the callback to be called before the function
224 * returns, though this does happen in some cases (ACK_COMPLETE and
225 * errors).
226 *
227 * The payload is only used for write requests and must not be freed
228 * until the callback has been called.
229 *
230 * @param card the card from which to send the request
231 * @param tcode the tcode for this transaction. Do not use
232 * TCODE_LOCK_REQUEST directly, instead use TCODE_LOCK_MASK_SWAP
233 * etc. to specify tcode and ext_tcode.
234 * @param node_id the destination node ID (bus ID and PHY ID concatenated)
235 * @param generation the generation for which node_id is valid
236 * @param speed the speed to use for sending the request
237 * @param offset the 48 bit offset on the destination node
238 * @param payload the data payload for the request subaction
239 * @param length the length in bytes of the data to read
240 * @param callback function to be called when the transaction is completed
241 * @param callback_data pointer to arbitrary data, which will be
242 * passed to the callback
243 */
244 void
245 fw_send_request(struct fw_card *card, struct fw_transaction *t,
246 int tcode, int node_id, int generation, int speed,
247 unsigned long long offset,
248 void *payload, size_t length,
249 fw_transaction_callback_t callback, void *callback_data)
250 {
251 unsigned long flags;
252 int tlabel, source;
253
254 /*
255 * Bump the flush timer up 100ms first of all so we
256 * don't race with a flush timer callback.
257 */
258
259 mod_timer(&card->flush_timer, jiffies + DIV_ROUND_UP(HZ, 10));
260
261 /*
262 * Allocate tlabel from the bitmap and put the transaction on
263 * the list while holding the card spinlock.
264 */
265
266 spin_lock_irqsave(&card->lock, flags);
267
268 source = card->node_id;
269 tlabel = card->current_tlabel;
270 if (card->tlabel_mask & (1 << tlabel)) {
271 spin_unlock_irqrestore(&card->lock, flags);
272 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
273 return;
274 }
275
276 card->current_tlabel = (card->current_tlabel + 1) & 0x1f;
277 card->tlabel_mask |= (1 << tlabel);
278
279 list_add_tail(&t->link, &card->transaction_list);
280
281 spin_unlock_irqrestore(&card->lock, flags);
282
283 /* Initialize rest of transaction, fill out packet and send it. */
284 t->node_id = node_id;
285 t->tlabel = tlabel;
286 t->callback = callback;
287 t->callback_data = callback_data;
288
289 fw_fill_request(&t->packet, tcode, t->tlabel,
290 node_id, source, generation,
291 speed, offset, payload, length);
292 t->packet.callback = transmit_complete_callback;
293
294 card->driver->send_request(card, &t->packet);
295 }
296 EXPORT_SYMBOL(fw_send_request);
297
298 struct fw_phy_packet {
299 struct fw_packet packet;
300 struct completion done;
301 };
302
303 static void
304 transmit_phy_packet_callback(struct fw_packet *packet,
305 struct fw_card *card, int status)
306 {
307 struct fw_phy_packet *p =
308 container_of(packet, struct fw_phy_packet, packet);
309
310 complete(&p->done);
311 }
312
313 void fw_send_phy_config(struct fw_card *card,
314 int node_id, int generation, int gap_count)
315 {
316 struct fw_phy_packet p;
317 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG) |
318 PHY_CONFIG_ROOT_ID(node_id) |
319 PHY_CONFIG_GAP_COUNT(gap_count);
320
321 p.packet.header[0] = data;
322 p.packet.header[1] = ~data;
323 p.packet.header_length = 8;
324 p.packet.payload_length = 0;
325 p.packet.speed = SCODE_100;
326 p.packet.generation = generation;
327 p.packet.callback = transmit_phy_packet_callback;
328 init_completion(&p.done);
329
330 card->driver->send_request(card, &p.packet);
331 wait_for_completion(&p.done);
332 }
333
334 void fw_flush_transactions(struct fw_card *card)
335 {
336 struct fw_transaction *t, *next;
337 struct list_head list;
338 unsigned long flags;
339
340 INIT_LIST_HEAD(&list);
341 spin_lock_irqsave(&card->lock, flags);
342 list_splice_init(&card->transaction_list, &list);
343 card->tlabel_mask = 0;
344 spin_unlock_irqrestore(&card->lock, flags);
345
346 list_for_each_entry_safe(t, next, &list, link) {
347 card->driver->cancel_packet(card, &t->packet);
348
349 /*
350 * At this point cancel_packet will never call the
351 * transaction callback, since we just took all the
352 * transactions out of the list. So do it here.
353 */
354 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
355 }
356 }
357
358 static struct fw_address_handler *
359 lookup_overlapping_address_handler(struct list_head *list,
360 unsigned long long offset, size_t length)
361 {
362 struct fw_address_handler *handler;
363
364 list_for_each_entry(handler, list, link) {
365 if (handler->offset < offset + length &&
366 offset < handler->offset + handler->length)
367 return handler;
368 }
369
370 return NULL;
371 }
372
373 static struct fw_address_handler *
374 lookup_enclosing_address_handler(struct list_head *list,
375 unsigned long long offset, size_t length)
376 {
377 struct fw_address_handler *handler;
378
379 list_for_each_entry(handler, list, link) {
380 if (handler->offset <= offset &&
381 offset + length <= handler->offset + handler->length)
382 return handler;
383 }
384
385 return NULL;
386 }
387
388 static DEFINE_SPINLOCK(address_handler_lock);
389 static LIST_HEAD(address_handler_list);
390
391 const struct fw_address_region fw_low_memory_region =
392 { .start = 0x000000000000ULL, .end = 0x000100000000ULL, };
393 const struct fw_address_region fw_high_memory_region =
394 { .start = 0x000100000000ULL, .end = 0xffffe0000000ULL, };
395 const struct fw_address_region fw_private_region =
396 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
397 const struct fw_address_region fw_csr_region =
398 { .start = CSR_REGISTER_BASE,
399 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
400 const struct fw_address_region fw_unit_space_region =
401 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
402 EXPORT_SYMBOL(fw_low_memory_region);
403 EXPORT_SYMBOL(fw_high_memory_region);
404 EXPORT_SYMBOL(fw_private_region);
405 EXPORT_SYMBOL(fw_csr_region);
406 EXPORT_SYMBOL(fw_unit_space_region);
407
408 /**
409 * Allocate a range of addresses in the node space of the OHCI
410 * controller. When a request is received that falls within the
411 * specified address range, the specified callback is invoked. The
412 * parameters passed to the callback give the details of the
413 * particular request.
414 *
415 * Return value: 0 on success, non-zero otherwise.
416 * The start offset of the handler's address region is determined by
417 * fw_core_add_address_handler() and is returned in handler->offset.
418 * The offset is quadlet-aligned.
419 */
420 int
421 fw_core_add_address_handler(struct fw_address_handler *handler,
422 const struct fw_address_region *region)
423 {
424 struct fw_address_handler *other;
425 unsigned long flags;
426 int ret = -EBUSY;
427
428 spin_lock_irqsave(&address_handler_lock, flags);
429
430 handler->offset = roundup(region->start, 4);
431 while (handler->offset + handler->length <= region->end) {
432 other =
433 lookup_overlapping_address_handler(&address_handler_list,
434 handler->offset,
435 handler->length);
436 if (other != NULL) {
437 handler->offset =
438 roundup(other->offset + other->length, 4);
439 } else {
440 list_add_tail(&handler->link, &address_handler_list);
441 ret = 0;
442 break;
443 }
444 }
445
446 spin_unlock_irqrestore(&address_handler_lock, flags);
447
448 return ret;
449 }
450 EXPORT_SYMBOL(fw_core_add_address_handler);
451
452 /**
453 * Deallocate a range of addresses allocated with fw_allocate. This
454 * will call the associated callback one last time with a the special
455 * tcode TCODE_DEALLOCATE, to let the client destroy the registered
456 * callback data. For convenience, the callback parameters offset and
457 * length are set to the start and the length respectively for the
458 * deallocated region, payload is set to NULL.
459 */
460 void fw_core_remove_address_handler(struct fw_address_handler *handler)
461 {
462 unsigned long flags;
463
464 spin_lock_irqsave(&address_handler_lock, flags);
465 list_del(&handler->link);
466 spin_unlock_irqrestore(&address_handler_lock, flags);
467 }
468 EXPORT_SYMBOL(fw_core_remove_address_handler);
469
470 struct fw_request {
471 struct fw_packet response;
472 u32 request_header[4];
473 int ack;
474 u32 length;
475 u32 data[0];
476 };
477
478 static void
479 free_response_callback(struct fw_packet *packet,
480 struct fw_card *card, int status)
481 {
482 struct fw_request *request;
483
484 request = container_of(packet, struct fw_request, response);
485 kfree(request);
486 }
487
488 void
489 fw_fill_response(struct fw_packet *response, u32 *request_header,
490 int rcode, void *payload, size_t length)
491 {
492 int tcode, tlabel, extended_tcode, source, destination;
493
494 tcode = HEADER_GET_TCODE(request_header[0]);
495 tlabel = HEADER_GET_TLABEL(request_header[0]);
496 source = HEADER_GET_DESTINATION(request_header[0]);
497 destination = HEADER_GET_SOURCE(request_header[1]);
498 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
499
500 response->header[0] =
501 HEADER_RETRY(RETRY_1) |
502 HEADER_TLABEL(tlabel) |
503 HEADER_DESTINATION(destination);
504 response->header[1] =
505 HEADER_SOURCE(source) |
506 HEADER_RCODE(rcode);
507 response->header[2] = 0;
508
509 switch (tcode) {
510 case TCODE_WRITE_QUADLET_REQUEST:
511 case TCODE_WRITE_BLOCK_REQUEST:
512 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
513 response->header_length = 12;
514 response->payload_length = 0;
515 break;
516
517 case TCODE_READ_QUADLET_REQUEST:
518 response->header[0] |=
519 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
520 if (payload != NULL)
521 response->header[3] = *(u32 *)payload;
522 else
523 response->header[3] = 0;
524 response->header_length = 16;
525 response->payload_length = 0;
526 break;
527
528 case TCODE_READ_BLOCK_REQUEST:
529 case TCODE_LOCK_REQUEST:
530 response->header[0] |= HEADER_TCODE(tcode + 2);
531 response->header[3] =
532 HEADER_DATA_LENGTH(length) |
533 HEADER_EXTENDED_TCODE(extended_tcode);
534 response->header_length = 16;
535 response->payload = payload;
536 response->payload_length = length;
537 break;
538
539 default:
540 BUG();
541 return;
542 }
543 }
544 EXPORT_SYMBOL(fw_fill_response);
545
546 static struct fw_request *
547 allocate_request(struct fw_packet *p)
548 {
549 struct fw_request *request;
550 u32 *data, length;
551 int request_tcode, t;
552
553 request_tcode = HEADER_GET_TCODE(p->header[0]);
554 switch (request_tcode) {
555 case TCODE_WRITE_QUADLET_REQUEST:
556 data = &p->header[3];
557 length = 4;
558 break;
559
560 case TCODE_WRITE_BLOCK_REQUEST:
561 case TCODE_LOCK_REQUEST:
562 data = p->payload;
563 length = HEADER_GET_DATA_LENGTH(p->header[3]);
564 break;
565
566 case TCODE_READ_QUADLET_REQUEST:
567 data = NULL;
568 length = 4;
569 break;
570
571 case TCODE_READ_BLOCK_REQUEST:
572 data = NULL;
573 length = HEADER_GET_DATA_LENGTH(p->header[3]);
574 break;
575
576 default:
577 BUG();
578 return NULL;
579 }
580
581 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
582 if (request == NULL)
583 return NULL;
584
585 t = (p->timestamp & 0x1fff) + 4000;
586 if (t >= 8000)
587 t = (p->timestamp & ~0x1fff) + 0x2000 + t - 8000;
588 else
589 t = (p->timestamp & ~0x1fff) + t;
590
591 request->response.speed = p->speed;
592 request->response.timestamp = t;
593 request->response.generation = p->generation;
594 request->response.ack = 0;
595 request->response.callback = free_response_callback;
596 request->ack = p->ack;
597 request->length = length;
598 if (data)
599 memcpy(request->data, data, length);
600
601 memcpy(request->request_header, p->header, sizeof(p->header));
602
603 return request;
604 }
605
606 void
607 fw_send_response(struct fw_card *card, struct fw_request *request, int rcode)
608 {
609 /*
610 * Broadcast packets are reported as ACK_COMPLETE, so this
611 * check is sufficient to ensure we don't send response to
612 * broadcast packets or posted writes.
613 */
614 if (request->ack != ACK_PENDING) {
615 kfree(request);
616 return;
617 }
618
619 if (rcode == RCODE_COMPLETE)
620 fw_fill_response(&request->response, request->request_header,
621 rcode, request->data, request->length);
622 else
623 fw_fill_response(&request->response, request->request_header,
624 rcode, NULL, 0);
625
626 card->driver->send_response(card, &request->response);
627 }
628 EXPORT_SYMBOL(fw_send_response);
629
630 void
631 fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
632 {
633 struct fw_address_handler *handler;
634 struct fw_request *request;
635 unsigned long long offset;
636 unsigned long flags;
637 int tcode, destination, source;
638
639 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
640 return;
641
642 request = allocate_request(p);
643 if (request == NULL) {
644 /* FIXME: send statically allocated busy packet. */
645 return;
646 }
647
648 offset =
649 ((unsigned long long)
650 HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) | p->header[2];
651 tcode = HEADER_GET_TCODE(p->header[0]);
652 destination = HEADER_GET_DESTINATION(p->header[0]);
653 source = HEADER_GET_SOURCE(p->header[1]);
654
655 spin_lock_irqsave(&address_handler_lock, flags);
656 handler = lookup_enclosing_address_handler(&address_handler_list,
657 offset, request->length);
658 spin_unlock_irqrestore(&address_handler_lock, flags);
659
660 /*
661 * FIXME: lookup the fw_node corresponding to the sender of
662 * this request and pass that to the address handler instead
663 * of the node ID. We may also want to move the address
664 * allocations to fw_node so we only do this callback if the
665 * upper layers registered it for this node.
666 */
667
668 if (handler == NULL)
669 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
670 else
671 handler->address_callback(card, request,
672 tcode, destination, source,
673 p->generation, p->speed, offset,
674 request->data, request->length,
675 handler->callback_data);
676 }
677 EXPORT_SYMBOL(fw_core_handle_request);
678
679 void
680 fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
681 {
682 struct fw_transaction *t;
683 unsigned long flags;
684 u32 *data;
685 size_t data_length;
686 int tcode, tlabel, destination, source, rcode;
687
688 tcode = HEADER_GET_TCODE(p->header[0]);
689 tlabel = HEADER_GET_TLABEL(p->header[0]);
690 destination = HEADER_GET_DESTINATION(p->header[0]);
691 source = HEADER_GET_SOURCE(p->header[1]);
692 rcode = HEADER_GET_RCODE(p->header[1]);
693
694 spin_lock_irqsave(&card->lock, flags);
695 list_for_each_entry(t, &card->transaction_list, link) {
696 if (t->node_id == source && t->tlabel == tlabel) {
697 list_del(&t->link);
698 card->tlabel_mask &= ~(1 << t->tlabel);
699 break;
700 }
701 }
702 spin_unlock_irqrestore(&card->lock, flags);
703
704 if (&t->link == &card->transaction_list) {
705 fw_notify("Unsolicited response (source %x, tlabel %x)\n",
706 source, tlabel);
707 return;
708 }
709
710 /*
711 * FIXME: sanity check packet, is length correct, does tcodes
712 * and addresses match.
713 */
714
715 switch (tcode) {
716 case TCODE_READ_QUADLET_RESPONSE:
717 data = (u32 *) &p->header[3];
718 data_length = 4;
719 break;
720
721 case TCODE_WRITE_RESPONSE:
722 data = NULL;
723 data_length = 0;
724 break;
725
726 case TCODE_READ_BLOCK_RESPONSE:
727 case TCODE_LOCK_RESPONSE:
728 data = p->payload;
729 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
730 break;
731
732 default:
733 /* Should never happen, this is just to shut up gcc. */
734 data = NULL;
735 data_length = 0;
736 break;
737 }
738
739 /*
740 * The response handler may be executed while the request handler
741 * is still pending. Cancel the request handler.
742 */
743 card->driver->cancel_packet(card, &t->packet);
744
745 t->callback(card, rcode, data, data_length, t->callback_data);
746 }
747 EXPORT_SYMBOL(fw_core_handle_response);
748
749 static const struct fw_address_region topology_map_region =
750 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
751 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
752
753 static void
754 handle_topology_map(struct fw_card *card, struct fw_request *request,
755 int tcode, int destination, int source,
756 int generation, int speed,
757 unsigned long long offset,
758 void *payload, size_t length, void *callback_data)
759 {
760 int i, start, end;
761 __be32 *map;
762
763 if (!TCODE_IS_READ_REQUEST(tcode)) {
764 fw_send_response(card, request, RCODE_TYPE_ERROR);
765 return;
766 }
767
768 if ((offset & 3) > 0 || (length & 3) > 0) {
769 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
770 return;
771 }
772
773 start = (offset - topology_map_region.start) / 4;
774 end = start + length / 4;
775 map = payload;
776
777 for (i = 0; i < length / 4; i++)
778 map[i] = cpu_to_be32(card->topology_map[start + i]);
779
780 fw_send_response(card, request, RCODE_COMPLETE);
781 }
782
783 static struct fw_address_handler topology_map = {
784 .length = 0x200,
785 .address_callback = handle_topology_map,
786 };
787
788 static const struct fw_address_region registers_region =
789 { .start = CSR_REGISTER_BASE,
790 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
791
792 static void
793 handle_registers(struct fw_card *card, struct fw_request *request,
794 int tcode, int destination, int source,
795 int generation, int speed,
796 unsigned long long offset,
797 void *payload, size_t length, void *callback_data)
798 {
799 int reg = offset & ~CSR_REGISTER_BASE;
800 unsigned long long bus_time;
801 __be32 *data = payload;
802
803 switch (reg) {
804 case CSR_CYCLE_TIME:
805 case CSR_BUS_TIME:
806 if (!TCODE_IS_READ_REQUEST(tcode) || length != 4) {
807 fw_send_response(card, request, RCODE_TYPE_ERROR);
808 break;
809 }
810
811 bus_time = card->driver->get_bus_time(card);
812 if (reg == CSR_CYCLE_TIME)
813 *data = cpu_to_be32(bus_time);
814 else
815 *data = cpu_to_be32(bus_time >> 25);
816 fw_send_response(card, request, RCODE_COMPLETE);
817 break;
818
819 case CSR_BUS_MANAGER_ID:
820 case CSR_BANDWIDTH_AVAILABLE:
821 case CSR_CHANNELS_AVAILABLE_HI:
822 case CSR_CHANNELS_AVAILABLE_LO:
823 /*
824 * FIXME: these are handled by the OHCI hardware and
825 * the stack never sees these request. If we add
826 * support for a new type of controller that doesn't
827 * handle this in hardware we need to deal with these
828 * transactions.
829 */
830 BUG();
831 break;
832
833 case CSR_BUSY_TIMEOUT:
834 /* FIXME: Implement this. */
835 default:
836 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
837 break;
838 }
839 }
840
841 static struct fw_address_handler registers = {
842 .length = 0x400,
843 .address_callback = handle_registers,
844 };
845
846 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
847 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
848 MODULE_LICENSE("GPL");
849
850 static const u32 vendor_textual_descriptor[] = {
851 /* textual descriptor leaf () */
852 0x00060000,
853 0x00000000,
854 0x00000000,
855 0x4c696e75, /* L i n u */
856 0x78204669, /* x F i */
857 0x72657769, /* r e w i */
858 0x72650000, /* r e */
859 };
860
861 static const u32 model_textual_descriptor[] = {
862 /* model descriptor leaf () */
863 0x00030000,
864 0x00000000,
865 0x00000000,
866 0x4a756a75, /* J u j u */
867 };
868
869 static struct fw_descriptor vendor_id_descriptor = {
870 .length = ARRAY_SIZE(vendor_textual_descriptor),
871 .immediate = 0x03d00d1e,
872 .key = 0x81000000,
873 .data = vendor_textual_descriptor,
874 };
875
876 static struct fw_descriptor model_id_descriptor = {
877 .length = ARRAY_SIZE(model_textual_descriptor),
878 .immediate = 0x17000001,
879 .key = 0x81000000,
880 .data = model_textual_descriptor,
881 };
882
883 static int __init fw_core_init(void)
884 {
885 int retval;
886
887 retval = bus_register(&fw_bus_type);
888 if (retval < 0)
889 return retval;
890
891 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
892 if (fw_cdev_major < 0) {
893 bus_unregister(&fw_bus_type);
894 return fw_cdev_major;
895 }
896
897 retval = fw_core_add_address_handler(&topology_map,
898 &topology_map_region);
899 BUG_ON(retval < 0);
900
901 retval = fw_core_add_address_handler(&registers,
902 &registers_region);
903 BUG_ON(retval < 0);
904
905 /* Add the vendor textual descriptor. */
906 retval = fw_core_add_descriptor(&vendor_id_descriptor);
907 BUG_ON(retval < 0);
908 retval = fw_core_add_descriptor(&model_id_descriptor);
909 BUG_ON(retval < 0);
910
911 return 0;
912 }
913
914 static void __exit fw_core_cleanup(void)
915 {
916 unregister_chrdev(fw_cdev_major, "firewire");
917 bus_unregister(&fw_bus_type);
918 }
919
920 module_init(fw_core_init);
921 module_exit(fw_core_cleanup);
This page took 0.06674 seconds and 5 git commands to generate.