Merge branch 'late/board' into devel-late
[deliverable/linux.git] / drivers / firewire / ohci.c
1 /*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
49
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
53
54 #include "core.h"
55 #include "ohci.h"
56
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
70
71 struct descriptor {
72 __le16 req_count;
73 __le16 control;
74 __le32 data_address;
75 __le32 branch_address;
76 __le16 res_count;
77 __le16 transfer_status;
78 } __attribute__((aligned(16)));
79
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
84
85 #define AR_BUFFER_SIZE (32*1024)
86 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
89
90 #define MAX_ASYNC_PAYLOAD 4096
91 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93
94 struct ar_context {
95 struct fw_ohci *ohci;
96 struct page *pages[AR_BUFFERS];
97 void *buffer;
98 struct descriptor *descriptors;
99 dma_addr_t descriptors_bus;
100 void *pointer;
101 unsigned int last_buffer_index;
102 u32 regs;
103 struct tasklet_struct tasklet;
104 };
105
106 struct context;
107
108 typedef int (*descriptor_callback_t)(struct context *ctx,
109 struct descriptor *d,
110 struct descriptor *last);
111
112 /*
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
115 */
116 struct descriptor_buffer {
117 struct list_head list;
118 dma_addr_t buffer_bus;
119 size_t buffer_size;
120 size_t used;
121 struct descriptor buffer[0];
122 };
123
124 struct context {
125 struct fw_ohci *ohci;
126 u32 regs;
127 int total_allocation;
128 u32 current_bus;
129 bool running;
130 bool flushing;
131
132 /*
133 * List of page-sized buffers for storing DMA descriptors.
134 * Head of list contains buffers in use and tail of list contains
135 * free buffers.
136 */
137 struct list_head buffer_list;
138
139 /*
140 * Pointer to a buffer inside buffer_list that contains the tail
141 * end of the current DMA program.
142 */
143 struct descriptor_buffer *buffer_tail;
144
145 /*
146 * The descriptor containing the branch address of the first
147 * descriptor that has not yet been filled by the device.
148 */
149 struct descriptor *last;
150
151 /*
152 * The last descriptor in the DMA program. It contains the branch
153 * address that must be updated upon appending a new descriptor.
154 */
155 struct descriptor *prev;
156
157 descriptor_callback_t callback;
158
159 struct tasklet_struct tasklet;
160 };
161
162 #define IT_HEADER_SY(v) ((v) << 0)
163 #define IT_HEADER_TCODE(v) ((v) << 4)
164 #define IT_HEADER_CHANNEL(v) ((v) << 8)
165 #define IT_HEADER_TAG(v) ((v) << 14)
166 #define IT_HEADER_SPEED(v) ((v) << 16)
167 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
168
169 struct iso_context {
170 struct fw_iso_context base;
171 struct context context;
172 void *header;
173 size_t header_length;
174 unsigned long flushing_completions;
175 u32 mc_buffer_bus;
176 u16 mc_completed;
177 u16 last_timestamp;
178 u8 sync;
179 u8 tags;
180 };
181
182 #define CONFIG_ROM_SIZE 1024
183
184 struct fw_ohci {
185 struct fw_card card;
186
187 __iomem char *registers;
188 int node_id;
189 int generation;
190 int request_generation; /* for timestamping incoming requests */
191 unsigned quirks;
192 unsigned int pri_req_max;
193 u32 bus_time;
194 bool is_root;
195 bool csr_state_setclear_abdicate;
196 int n_ir;
197 int n_it;
198 /*
199 * Spinlock for accessing fw_ohci data. Never call out of
200 * this driver with this lock held.
201 */
202 spinlock_t lock;
203
204 struct mutex phy_reg_mutex;
205
206 void *misc_buffer;
207 dma_addr_t misc_buffer_bus;
208
209 struct ar_context ar_request_ctx;
210 struct ar_context ar_response_ctx;
211 struct context at_request_ctx;
212 struct context at_response_ctx;
213
214 u32 it_context_support;
215 u32 it_context_mask; /* unoccupied IT contexts */
216 struct iso_context *it_context_list;
217 u64 ir_context_channels; /* unoccupied channels */
218 u32 ir_context_support;
219 u32 ir_context_mask; /* unoccupied IR contexts */
220 struct iso_context *ir_context_list;
221 u64 mc_channels; /* channels in use by the multichannel IR context */
222 bool mc_allocated;
223
224 __be32 *config_rom;
225 dma_addr_t config_rom_bus;
226 __be32 *next_config_rom;
227 dma_addr_t next_config_rom_bus;
228 __be32 next_header;
229
230 __le32 *self_id_cpu;
231 dma_addr_t self_id_bus;
232 struct work_struct bus_reset_work;
233
234 u32 self_id_buffer[512];
235 };
236
237 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
238 {
239 return container_of(card, struct fw_ohci, card);
240 }
241
242 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
243 #define IR_CONTEXT_BUFFER_FILL 0x80000000
244 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
245 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
246 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
247 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
248
249 #define CONTEXT_RUN 0x8000
250 #define CONTEXT_WAKE 0x1000
251 #define CONTEXT_DEAD 0x0800
252 #define CONTEXT_ACTIVE 0x0400
253
254 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
255 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
256 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
257
258 #define OHCI1394_REGISTER_SIZE 0x800
259 #define OHCI1394_PCI_HCI_Control 0x40
260 #define SELF_ID_BUF_SIZE 0x800
261 #define OHCI_TCODE_PHY_PACKET 0x0e
262 #define OHCI_VERSION_1_1 0x010010
263
264 static char ohci_driver_name[] = KBUILD_MODNAME;
265
266 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
267 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
268 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
269 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
270 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
271 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
272 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
273
274 #define QUIRK_CYCLE_TIMER 1
275 #define QUIRK_RESET_PACKET 2
276 #define QUIRK_BE_HEADERS 4
277 #define QUIRK_NO_1394A 8
278 #define QUIRK_NO_MSI 16
279 #define QUIRK_TI_SLLZ059 32
280
281 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
282 static const struct {
283 unsigned short vendor, device, revision, flags;
284 } ohci_quirks[] = {
285 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
286 QUIRK_CYCLE_TIMER},
287
288 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
289 QUIRK_BE_HEADERS},
290
291 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
292 QUIRK_NO_MSI},
293
294 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
295 QUIRK_RESET_PACKET},
296
297 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
298 QUIRK_NO_MSI},
299
300 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
301 QUIRK_CYCLE_TIMER},
302
303 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
304 QUIRK_NO_MSI},
305
306 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
307 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
308
309 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
310 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
311
312 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
313 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
314
315 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
316 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
317
318 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
319 QUIRK_RESET_PACKET},
320
321 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
322 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
323 };
324
325 /* This overrides anything that was found in ohci_quirks[]. */
326 static int param_quirks;
327 module_param_named(quirks, param_quirks, int, 0644);
328 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
329 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
330 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
331 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
332 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
333 ", disable MSI = " __stringify(QUIRK_NO_MSI)
334 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
335 ")");
336
337 #define OHCI_PARAM_DEBUG_AT_AR 1
338 #define OHCI_PARAM_DEBUG_SELFIDS 2
339 #define OHCI_PARAM_DEBUG_IRQS 4
340 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
341
342 static int param_debug;
343 module_param_named(debug, param_debug, int, 0644);
344 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
345 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
346 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
347 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
348 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
349 ", or a combination, or all = -1)");
350
351 static void log_irqs(struct fw_ohci *ohci, u32 evt)
352 {
353 if (likely(!(param_debug &
354 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
355 return;
356
357 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
358 !(evt & OHCI1394_busReset))
359 return;
360
361 dev_notice(ohci->card.device,
362 "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
363 evt & OHCI1394_selfIDComplete ? " selfID" : "",
364 evt & OHCI1394_RQPkt ? " AR_req" : "",
365 evt & OHCI1394_RSPkt ? " AR_resp" : "",
366 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
367 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
368 evt & OHCI1394_isochRx ? " IR" : "",
369 evt & OHCI1394_isochTx ? " IT" : "",
370 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
371 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
372 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
373 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
374 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
375 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
376 evt & OHCI1394_busReset ? " busReset" : "",
377 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
378 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
379 OHCI1394_respTxComplete | OHCI1394_isochRx |
380 OHCI1394_isochTx | OHCI1394_postedWriteErr |
381 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
382 OHCI1394_cycleInconsistent |
383 OHCI1394_regAccessFail | OHCI1394_busReset)
384 ? " ?" : "");
385 }
386
387 static const char *speed[] = {
388 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
389 };
390 static const char *power[] = {
391 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
392 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
393 };
394 static const char port[] = { '.', '-', 'p', 'c', };
395
396 static char _p(u32 *s, int shift)
397 {
398 return port[*s >> shift & 3];
399 }
400
401 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
402 {
403 u32 *s;
404
405 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
406 return;
407
408 dev_notice(ohci->card.device,
409 "%d selfIDs, generation %d, local node ID %04x\n",
410 self_id_count, generation, ohci->node_id);
411
412 for (s = ohci->self_id_buffer; self_id_count--; ++s)
413 if ((*s & 1 << 23) == 0)
414 dev_notice(ohci->card.device,
415 "selfID 0: %08x, phy %d [%c%c%c] "
416 "%s gc=%d %s %s%s%s\n",
417 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
418 speed[*s >> 14 & 3], *s >> 16 & 63,
419 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
420 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
421 else
422 dev_notice(ohci->card.device,
423 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
424 *s, *s >> 24 & 63,
425 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
426 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
427 }
428
429 static const char *evts[] = {
430 [0x00] = "evt_no_status", [0x01] = "-reserved-",
431 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
432 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
433 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
434 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
435 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
436 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
437 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
438 [0x10] = "-reserved-", [0x11] = "ack_complete",
439 [0x12] = "ack_pending ", [0x13] = "-reserved-",
440 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
441 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
442 [0x18] = "-reserved-", [0x19] = "-reserved-",
443 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
444 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
445 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
446 [0x20] = "pending/cancelled",
447 };
448 static const char *tcodes[] = {
449 [0x0] = "QW req", [0x1] = "BW req",
450 [0x2] = "W resp", [0x3] = "-reserved-",
451 [0x4] = "QR req", [0x5] = "BR req",
452 [0x6] = "QR resp", [0x7] = "BR resp",
453 [0x8] = "cycle start", [0x9] = "Lk req",
454 [0xa] = "async stream packet", [0xb] = "Lk resp",
455 [0xc] = "-reserved-", [0xd] = "-reserved-",
456 [0xe] = "link internal", [0xf] = "-reserved-",
457 };
458
459 static void log_ar_at_event(struct fw_ohci *ohci,
460 char dir, int speed, u32 *header, int evt)
461 {
462 int tcode = header[0] >> 4 & 0xf;
463 char specific[12];
464
465 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
466 return;
467
468 if (unlikely(evt >= ARRAY_SIZE(evts)))
469 evt = 0x1f;
470
471 if (evt == OHCI1394_evt_bus_reset) {
472 dev_notice(ohci->card.device,
473 "A%c evt_bus_reset, generation %d\n",
474 dir, (header[2] >> 16) & 0xff);
475 return;
476 }
477
478 switch (tcode) {
479 case 0x0: case 0x6: case 0x8:
480 snprintf(specific, sizeof(specific), " = %08x",
481 be32_to_cpu((__force __be32)header[3]));
482 break;
483 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
484 snprintf(specific, sizeof(specific), " %x,%x",
485 header[3] >> 16, header[3] & 0xffff);
486 break;
487 default:
488 specific[0] = '\0';
489 }
490
491 switch (tcode) {
492 case 0xa:
493 dev_notice(ohci->card.device,
494 "A%c %s, %s\n",
495 dir, evts[evt], tcodes[tcode]);
496 break;
497 case 0xe:
498 dev_notice(ohci->card.device,
499 "A%c %s, PHY %08x %08x\n",
500 dir, evts[evt], header[1], header[2]);
501 break;
502 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
503 dev_notice(ohci->card.device,
504 "A%c spd %x tl %02x, "
505 "%04x -> %04x, %s, "
506 "%s, %04x%08x%s\n",
507 dir, speed, header[0] >> 10 & 0x3f,
508 header[1] >> 16, header[0] >> 16, evts[evt],
509 tcodes[tcode], header[1] & 0xffff, header[2], specific);
510 break;
511 default:
512 dev_notice(ohci->card.device,
513 "A%c spd %x tl %02x, "
514 "%04x -> %04x, %s, "
515 "%s%s\n",
516 dir, speed, header[0] >> 10 & 0x3f,
517 header[1] >> 16, header[0] >> 16, evts[evt],
518 tcodes[tcode], specific);
519 }
520 }
521
522 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
523 {
524 writel(data, ohci->registers + offset);
525 }
526
527 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
528 {
529 return readl(ohci->registers + offset);
530 }
531
532 static inline void flush_writes(const struct fw_ohci *ohci)
533 {
534 /* Do a dummy read to flush writes. */
535 reg_read(ohci, OHCI1394_Version);
536 }
537
538 /*
539 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
540 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
541 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
542 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
543 */
544 static int read_phy_reg(struct fw_ohci *ohci, int addr)
545 {
546 u32 val;
547 int i;
548
549 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
550 for (i = 0; i < 3 + 100; i++) {
551 val = reg_read(ohci, OHCI1394_PhyControl);
552 if (!~val)
553 return -ENODEV; /* Card was ejected. */
554
555 if (val & OHCI1394_PhyControl_ReadDone)
556 return OHCI1394_PhyControl_ReadData(val);
557
558 /*
559 * Try a few times without waiting. Sleeping is necessary
560 * only when the link/PHY interface is busy.
561 */
562 if (i >= 3)
563 msleep(1);
564 }
565 dev_err(ohci->card.device, "failed to read phy reg\n");
566
567 return -EBUSY;
568 }
569
570 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
571 {
572 int i;
573
574 reg_write(ohci, OHCI1394_PhyControl,
575 OHCI1394_PhyControl_Write(addr, val));
576 for (i = 0; i < 3 + 100; i++) {
577 val = reg_read(ohci, OHCI1394_PhyControl);
578 if (!~val)
579 return -ENODEV; /* Card was ejected. */
580
581 if (!(val & OHCI1394_PhyControl_WritePending))
582 return 0;
583
584 if (i >= 3)
585 msleep(1);
586 }
587 dev_err(ohci->card.device, "failed to write phy reg\n");
588
589 return -EBUSY;
590 }
591
592 static int update_phy_reg(struct fw_ohci *ohci, int addr,
593 int clear_bits, int set_bits)
594 {
595 int ret = read_phy_reg(ohci, addr);
596 if (ret < 0)
597 return ret;
598
599 /*
600 * The interrupt status bits are cleared by writing a one bit.
601 * Avoid clearing them unless explicitly requested in set_bits.
602 */
603 if (addr == 5)
604 clear_bits |= PHY_INT_STATUS_BITS;
605
606 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
607 }
608
609 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
610 {
611 int ret;
612
613 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
614 if (ret < 0)
615 return ret;
616
617 return read_phy_reg(ohci, addr);
618 }
619
620 static int ohci_read_phy_reg(struct fw_card *card, int addr)
621 {
622 struct fw_ohci *ohci = fw_ohci(card);
623 int ret;
624
625 mutex_lock(&ohci->phy_reg_mutex);
626 ret = read_phy_reg(ohci, addr);
627 mutex_unlock(&ohci->phy_reg_mutex);
628
629 return ret;
630 }
631
632 static int ohci_update_phy_reg(struct fw_card *card, int addr,
633 int clear_bits, int set_bits)
634 {
635 struct fw_ohci *ohci = fw_ohci(card);
636 int ret;
637
638 mutex_lock(&ohci->phy_reg_mutex);
639 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
640 mutex_unlock(&ohci->phy_reg_mutex);
641
642 return ret;
643 }
644
645 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
646 {
647 return page_private(ctx->pages[i]);
648 }
649
650 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
651 {
652 struct descriptor *d;
653
654 d = &ctx->descriptors[index];
655 d->branch_address &= cpu_to_le32(~0xf);
656 d->res_count = cpu_to_le16(PAGE_SIZE);
657 d->transfer_status = 0;
658
659 wmb(); /* finish init of new descriptors before branch_address update */
660 d = &ctx->descriptors[ctx->last_buffer_index];
661 d->branch_address |= cpu_to_le32(1);
662
663 ctx->last_buffer_index = index;
664
665 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
666 }
667
668 static void ar_context_release(struct ar_context *ctx)
669 {
670 unsigned int i;
671
672 if (ctx->buffer)
673 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
674
675 for (i = 0; i < AR_BUFFERS; i++)
676 if (ctx->pages[i]) {
677 dma_unmap_page(ctx->ohci->card.device,
678 ar_buffer_bus(ctx, i),
679 PAGE_SIZE, DMA_FROM_DEVICE);
680 __free_page(ctx->pages[i]);
681 }
682 }
683
684 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
685 {
686 struct fw_ohci *ohci = ctx->ohci;
687
688 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
689 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
690 flush_writes(ohci);
691
692 dev_err(ohci->card.device, "AR error: %s; DMA stopped\n",
693 error_msg);
694 }
695 /* FIXME: restart? */
696 }
697
698 static inline unsigned int ar_next_buffer_index(unsigned int index)
699 {
700 return (index + 1) % AR_BUFFERS;
701 }
702
703 static inline unsigned int ar_prev_buffer_index(unsigned int index)
704 {
705 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
706 }
707
708 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
709 {
710 return ar_next_buffer_index(ctx->last_buffer_index);
711 }
712
713 /*
714 * We search for the buffer that contains the last AR packet DMA data written
715 * by the controller.
716 */
717 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
718 unsigned int *buffer_offset)
719 {
720 unsigned int i, next_i, last = ctx->last_buffer_index;
721 __le16 res_count, next_res_count;
722
723 i = ar_first_buffer_index(ctx);
724 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
725
726 /* A buffer that is not yet completely filled must be the last one. */
727 while (i != last && res_count == 0) {
728
729 /* Peek at the next descriptor. */
730 next_i = ar_next_buffer_index(i);
731 rmb(); /* read descriptors in order */
732 next_res_count = ACCESS_ONCE(
733 ctx->descriptors[next_i].res_count);
734 /*
735 * If the next descriptor is still empty, we must stop at this
736 * descriptor.
737 */
738 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
739 /*
740 * The exception is when the DMA data for one packet is
741 * split over three buffers; in this case, the middle
742 * buffer's descriptor might be never updated by the
743 * controller and look still empty, and we have to peek
744 * at the third one.
745 */
746 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
747 next_i = ar_next_buffer_index(next_i);
748 rmb();
749 next_res_count = ACCESS_ONCE(
750 ctx->descriptors[next_i].res_count);
751 if (next_res_count != cpu_to_le16(PAGE_SIZE))
752 goto next_buffer_is_active;
753 }
754
755 break;
756 }
757
758 next_buffer_is_active:
759 i = next_i;
760 res_count = next_res_count;
761 }
762
763 rmb(); /* read res_count before the DMA data */
764
765 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
766 if (*buffer_offset > PAGE_SIZE) {
767 *buffer_offset = 0;
768 ar_context_abort(ctx, "corrupted descriptor");
769 }
770
771 return i;
772 }
773
774 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
775 unsigned int end_buffer_index,
776 unsigned int end_buffer_offset)
777 {
778 unsigned int i;
779
780 i = ar_first_buffer_index(ctx);
781 while (i != end_buffer_index) {
782 dma_sync_single_for_cpu(ctx->ohci->card.device,
783 ar_buffer_bus(ctx, i),
784 PAGE_SIZE, DMA_FROM_DEVICE);
785 i = ar_next_buffer_index(i);
786 }
787 if (end_buffer_offset > 0)
788 dma_sync_single_for_cpu(ctx->ohci->card.device,
789 ar_buffer_bus(ctx, i),
790 end_buffer_offset, DMA_FROM_DEVICE);
791 }
792
793 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
794 #define cond_le32_to_cpu(v) \
795 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
796 #else
797 #define cond_le32_to_cpu(v) le32_to_cpu(v)
798 #endif
799
800 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
801 {
802 struct fw_ohci *ohci = ctx->ohci;
803 struct fw_packet p;
804 u32 status, length, tcode;
805 int evt;
806
807 p.header[0] = cond_le32_to_cpu(buffer[0]);
808 p.header[1] = cond_le32_to_cpu(buffer[1]);
809 p.header[2] = cond_le32_to_cpu(buffer[2]);
810
811 tcode = (p.header[0] >> 4) & 0x0f;
812 switch (tcode) {
813 case TCODE_WRITE_QUADLET_REQUEST:
814 case TCODE_READ_QUADLET_RESPONSE:
815 p.header[3] = (__force __u32) buffer[3];
816 p.header_length = 16;
817 p.payload_length = 0;
818 break;
819
820 case TCODE_READ_BLOCK_REQUEST :
821 p.header[3] = cond_le32_to_cpu(buffer[3]);
822 p.header_length = 16;
823 p.payload_length = 0;
824 break;
825
826 case TCODE_WRITE_BLOCK_REQUEST:
827 case TCODE_READ_BLOCK_RESPONSE:
828 case TCODE_LOCK_REQUEST:
829 case TCODE_LOCK_RESPONSE:
830 p.header[3] = cond_le32_to_cpu(buffer[3]);
831 p.header_length = 16;
832 p.payload_length = p.header[3] >> 16;
833 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
834 ar_context_abort(ctx, "invalid packet length");
835 return NULL;
836 }
837 break;
838
839 case TCODE_WRITE_RESPONSE:
840 case TCODE_READ_QUADLET_REQUEST:
841 case OHCI_TCODE_PHY_PACKET:
842 p.header_length = 12;
843 p.payload_length = 0;
844 break;
845
846 default:
847 ar_context_abort(ctx, "invalid tcode");
848 return NULL;
849 }
850
851 p.payload = (void *) buffer + p.header_length;
852
853 /* FIXME: What to do about evt_* errors? */
854 length = (p.header_length + p.payload_length + 3) / 4;
855 status = cond_le32_to_cpu(buffer[length]);
856 evt = (status >> 16) & 0x1f;
857
858 p.ack = evt - 16;
859 p.speed = (status >> 21) & 0x7;
860 p.timestamp = status & 0xffff;
861 p.generation = ohci->request_generation;
862
863 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
864
865 /*
866 * Several controllers, notably from NEC and VIA, forget to
867 * write ack_complete status at PHY packet reception.
868 */
869 if (evt == OHCI1394_evt_no_status &&
870 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
871 p.ack = ACK_COMPLETE;
872
873 /*
874 * The OHCI bus reset handler synthesizes a PHY packet with
875 * the new generation number when a bus reset happens (see
876 * section 8.4.2.3). This helps us determine when a request
877 * was received and make sure we send the response in the same
878 * generation. We only need this for requests; for responses
879 * we use the unique tlabel for finding the matching
880 * request.
881 *
882 * Alas some chips sometimes emit bus reset packets with a
883 * wrong generation. We set the correct generation for these
884 * at a slightly incorrect time (in bus_reset_work).
885 */
886 if (evt == OHCI1394_evt_bus_reset) {
887 if (!(ohci->quirks & QUIRK_RESET_PACKET))
888 ohci->request_generation = (p.header[2] >> 16) & 0xff;
889 } else if (ctx == &ohci->ar_request_ctx) {
890 fw_core_handle_request(&ohci->card, &p);
891 } else {
892 fw_core_handle_response(&ohci->card, &p);
893 }
894
895 return buffer + length + 1;
896 }
897
898 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
899 {
900 void *next;
901
902 while (p < end) {
903 next = handle_ar_packet(ctx, p);
904 if (!next)
905 return p;
906 p = next;
907 }
908
909 return p;
910 }
911
912 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
913 {
914 unsigned int i;
915
916 i = ar_first_buffer_index(ctx);
917 while (i != end_buffer) {
918 dma_sync_single_for_device(ctx->ohci->card.device,
919 ar_buffer_bus(ctx, i),
920 PAGE_SIZE, DMA_FROM_DEVICE);
921 ar_context_link_page(ctx, i);
922 i = ar_next_buffer_index(i);
923 }
924 }
925
926 static void ar_context_tasklet(unsigned long data)
927 {
928 struct ar_context *ctx = (struct ar_context *)data;
929 unsigned int end_buffer_index, end_buffer_offset;
930 void *p, *end;
931
932 p = ctx->pointer;
933 if (!p)
934 return;
935
936 end_buffer_index = ar_search_last_active_buffer(ctx,
937 &end_buffer_offset);
938 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
939 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
940
941 if (end_buffer_index < ar_first_buffer_index(ctx)) {
942 /*
943 * The filled part of the overall buffer wraps around; handle
944 * all packets up to the buffer end here. If the last packet
945 * wraps around, its tail will be visible after the buffer end
946 * because the buffer start pages are mapped there again.
947 */
948 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
949 p = handle_ar_packets(ctx, p, buffer_end);
950 if (p < buffer_end)
951 goto error;
952 /* adjust p to point back into the actual buffer */
953 p -= AR_BUFFERS * PAGE_SIZE;
954 }
955
956 p = handle_ar_packets(ctx, p, end);
957 if (p != end) {
958 if (p > end)
959 ar_context_abort(ctx, "inconsistent descriptor");
960 goto error;
961 }
962
963 ctx->pointer = p;
964 ar_recycle_buffers(ctx, end_buffer_index);
965
966 return;
967
968 error:
969 ctx->pointer = NULL;
970 }
971
972 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
973 unsigned int descriptors_offset, u32 regs)
974 {
975 unsigned int i;
976 dma_addr_t dma_addr;
977 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
978 struct descriptor *d;
979
980 ctx->regs = regs;
981 ctx->ohci = ohci;
982 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
983
984 for (i = 0; i < AR_BUFFERS; i++) {
985 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
986 if (!ctx->pages[i])
987 goto out_of_memory;
988 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
989 0, PAGE_SIZE, DMA_FROM_DEVICE);
990 if (dma_mapping_error(ohci->card.device, dma_addr)) {
991 __free_page(ctx->pages[i]);
992 ctx->pages[i] = NULL;
993 goto out_of_memory;
994 }
995 set_page_private(ctx->pages[i], dma_addr);
996 }
997
998 for (i = 0; i < AR_BUFFERS; i++)
999 pages[i] = ctx->pages[i];
1000 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1001 pages[AR_BUFFERS + i] = ctx->pages[i];
1002 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1003 -1, PAGE_KERNEL);
1004 if (!ctx->buffer)
1005 goto out_of_memory;
1006
1007 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1008 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1009
1010 for (i = 0; i < AR_BUFFERS; i++) {
1011 d = &ctx->descriptors[i];
1012 d->req_count = cpu_to_le16(PAGE_SIZE);
1013 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1014 DESCRIPTOR_STATUS |
1015 DESCRIPTOR_BRANCH_ALWAYS);
1016 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1017 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1018 ar_next_buffer_index(i) * sizeof(struct descriptor));
1019 }
1020
1021 return 0;
1022
1023 out_of_memory:
1024 ar_context_release(ctx);
1025
1026 return -ENOMEM;
1027 }
1028
1029 static void ar_context_run(struct ar_context *ctx)
1030 {
1031 unsigned int i;
1032
1033 for (i = 0; i < AR_BUFFERS; i++)
1034 ar_context_link_page(ctx, i);
1035
1036 ctx->pointer = ctx->buffer;
1037
1038 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1039 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1040 }
1041
1042 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1043 {
1044 __le16 branch;
1045
1046 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1047
1048 /* figure out which descriptor the branch address goes in */
1049 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1050 return d;
1051 else
1052 return d + z - 1;
1053 }
1054
1055 static void context_tasklet(unsigned long data)
1056 {
1057 struct context *ctx = (struct context *) data;
1058 struct descriptor *d, *last;
1059 u32 address;
1060 int z;
1061 struct descriptor_buffer *desc;
1062
1063 desc = list_entry(ctx->buffer_list.next,
1064 struct descriptor_buffer, list);
1065 last = ctx->last;
1066 while (last->branch_address != 0) {
1067 struct descriptor_buffer *old_desc = desc;
1068 address = le32_to_cpu(last->branch_address);
1069 z = address & 0xf;
1070 address &= ~0xf;
1071 ctx->current_bus = address;
1072
1073 /* If the branch address points to a buffer outside of the
1074 * current buffer, advance to the next buffer. */
1075 if (address < desc->buffer_bus ||
1076 address >= desc->buffer_bus + desc->used)
1077 desc = list_entry(desc->list.next,
1078 struct descriptor_buffer, list);
1079 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1080 last = find_branch_descriptor(d, z);
1081
1082 if (!ctx->callback(ctx, d, last))
1083 break;
1084
1085 if (old_desc != desc) {
1086 /* If we've advanced to the next buffer, move the
1087 * previous buffer to the free list. */
1088 unsigned long flags;
1089 old_desc->used = 0;
1090 spin_lock_irqsave(&ctx->ohci->lock, flags);
1091 list_move_tail(&old_desc->list, &ctx->buffer_list);
1092 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1093 }
1094 ctx->last = last;
1095 }
1096 }
1097
1098 /*
1099 * Allocate a new buffer and add it to the list of free buffers for this
1100 * context. Must be called with ohci->lock held.
1101 */
1102 static int context_add_buffer(struct context *ctx)
1103 {
1104 struct descriptor_buffer *desc;
1105 dma_addr_t uninitialized_var(bus_addr);
1106 int offset;
1107
1108 /*
1109 * 16MB of descriptors should be far more than enough for any DMA
1110 * program. This will catch run-away userspace or DoS attacks.
1111 */
1112 if (ctx->total_allocation >= 16*1024*1024)
1113 return -ENOMEM;
1114
1115 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1116 &bus_addr, GFP_ATOMIC);
1117 if (!desc)
1118 return -ENOMEM;
1119
1120 offset = (void *)&desc->buffer - (void *)desc;
1121 desc->buffer_size = PAGE_SIZE - offset;
1122 desc->buffer_bus = bus_addr + offset;
1123 desc->used = 0;
1124
1125 list_add_tail(&desc->list, &ctx->buffer_list);
1126 ctx->total_allocation += PAGE_SIZE;
1127
1128 return 0;
1129 }
1130
1131 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1132 u32 regs, descriptor_callback_t callback)
1133 {
1134 ctx->ohci = ohci;
1135 ctx->regs = regs;
1136 ctx->total_allocation = 0;
1137
1138 INIT_LIST_HEAD(&ctx->buffer_list);
1139 if (context_add_buffer(ctx) < 0)
1140 return -ENOMEM;
1141
1142 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1143 struct descriptor_buffer, list);
1144
1145 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1146 ctx->callback = callback;
1147
1148 /*
1149 * We put a dummy descriptor in the buffer that has a NULL
1150 * branch address and looks like it's been sent. That way we
1151 * have a descriptor to append DMA programs to.
1152 */
1153 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1154 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1155 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1156 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1157 ctx->last = ctx->buffer_tail->buffer;
1158 ctx->prev = ctx->buffer_tail->buffer;
1159
1160 return 0;
1161 }
1162
1163 static void context_release(struct context *ctx)
1164 {
1165 struct fw_card *card = &ctx->ohci->card;
1166 struct descriptor_buffer *desc, *tmp;
1167
1168 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1169 dma_free_coherent(card->device, PAGE_SIZE, desc,
1170 desc->buffer_bus -
1171 ((void *)&desc->buffer - (void *)desc));
1172 }
1173
1174 /* Must be called with ohci->lock held */
1175 static struct descriptor *context_get_descriptors(struct context *ctx,
1176 int z, dma_addr_t *d_bus)
1177 {
1178 struct descriptor *d = NULL;
1179 struct descriptor_buffer *desc = ctx->buffer_tail;
1180
1181 if (z * sizeof(*d) > desc->buffer_size)
1182 return NULL;
1183
1184 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1185 /* No room for the descriptor in this buffer, so advance to the
1186 * next one. */
1187
1188 if (desc->list.next == &ctx->buffer_list) {
1189 /* If there is no free buffer next in the list,
1190 * allocate one. */
1191 if (context_add_buffer(ctx) < 0)
1192 return NULL;
1193 }
1194 desc = list_entry(desc->list.next,
1195 struct descriptor_buffer, list);
1196 ctx->buffer_tail = desc;
1197 }
1198
1199 d = desc->buffer + desc->used / sizeof(*d);
1200 memset(d, 0, z * sizeof(*d));
1201 *d_bus = desc->buffer_bus + desc->used;
1202
1203 return d;
1204 }
1205
1206 static void context_run(struct context *ctx, u32 extra)
1207 {
1208 struct fw_ohci *ohci = ctx->ohci;
1209
1210 reg_write(ohci, COMMAND_PTR(ctx->regs),
1211 le32_to_cpu(ctx->last->branch_address));
1212 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1213 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1214 ctx->running = true;
1215 flush_writes(ohci);
1216 }
1217
1218 static void context_append(struct context *ctx,
1219 struct descriptor *d, int z, int extra)
1220 {
1221 dma_addr_t d_bus;
1222 struct descriptor_buffer *desc = ctx->buffer_tail;
1223
1224 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1225
1226 desc->used += (z + extra) * sizeof(*d);
1227
1228 wmb(); /* finish init of new descriptors before branch_address update */
1229 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1230 ctx->prev = find_branch_descriptor(d, z);
1231 }
1232
1233 static void context_stop(struct context *ctx)
1234 {
1235 struct fw_ohci *ohci = ctx->ohci;
1236 u32 reg;
1237 int i;
1238
1239 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1240 ctx->running = false;
1241
1242 for (i = 0; i < 1000; i++) {
1243 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1244 if ((reg & CONTEXT_ACTIVE) == 0)
1245 return;
1246
1247 if (i)
1248 udelay(10);
1249 }
1250 dev_err(ohci->card.device, "DMA context still active (0x%08x)\n", reg);
1251 }
1252
1253 struct driver_data {
1254 u8 inline_data[8];
1255 struct fw_packet *packet;
1256 };
1257
1258 /*
1259 * This function apppends a packet to the DMA queue for transmission.
1260 * Must always be called with the ochi->lock held to ensure proper
1261 * generation handling and locking around packet queue manipulation.
1262 */
1263 static int at_context_queue_packet(struct context *ctx,
1264 struct fw_packet *packet)
1265 {
1266 struct fw_ohci *ohci = ctx->ohci;
1267 dma_addr_t d_bus, uninitialized_var(payload_bus);
1268 struct driver_data *driver_data;
1269 struct descriptor *d, *last;
1270 __le32 *header;
1271 int z, tcode;
1272
1273 d = context_get_descriptors(ctx, 4, &d_bus);
1274 if (d == NULL) {
1275 packet->ack = RCODE_SEND_ERROR;
1276 return -1;
1277 }
1278
1279 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1280 d[0].res_count = cpu_to_le16(packet->timestamp);
1281
1282 /*
1283 * The DMA format for asyncronous link packets is different
1284 * from the IEEE1394 layout, so shift the fields around
1285 * accordingly.
1286 */
1287
1288 tcode = (packet->header[0] >> 4) & 0x0f;
1289 header = (__le32 *) &d[1];
1290 switch (tcode) {
1291 case TCODE_WRITE_QUADLET_REQUEST:
1292 case TCODE_WRITE_BLOCK_REQUEST:
1293 case TCODE_WRITE_RESPONSE:
1294 case TCODE_READ_QUADLET_REQUEST:
1295 case TCODE_READ_BLOCK_REQUEST:
1296 case TCODE_READ_QUADLET_RESPONSE:
1297 case TCODE_READ_BLOCK_RESPONSE:
1298 case TCODE_LOCK_REQUEST:
1299 case TCODE_LOCK_RESPONSE:
1300 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1301 (packet->speed << 16));
1302 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1303 (packet->header[0] & 0xffff0000));
1304 header[2] = cpu_to_le32(packet->header[2]);
1305
1306 if (TCODE_IS_BLOCK_PACKET(tcode))
1307 header[3] = cpu_to_le32(packet->header[3]);
1308 else
1309 header[3] = (__force __le32) packet->header[3];
1310
1311 d[0].req_count = cpu_to_le16(packet->header_length);
1312 break;
1313
1314 case TCODE_LINK_INTERNAL:
1315 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1316 (packet->speed << 16));
1317 header[1] = cpu_to_le32(packet->header[1]);
1318 header[2] = cpu_to_le32(packet->header[2]);
1319 d[0].req_count = cpu_to_le16(12);
1320
1321 if (is_ping_packet(&packet->header[1]))
1322 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1323 break;
1324
1325 case TCODE_STREAM_DATA:
1326 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1327 (packet->speed << 16));
1328 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1329 d[0].req_count = cpu_to_le16(8);
1330 break;
1331
1332 default:
1333 /* BUG(); */
1334 packet->ack = RCODE_SEND_ERROR;
1335 return -1;
1336 }
1337
1338 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1339 driver_data = (struct driver_data *) &d[3];
1340 driver_data->packet = packet;
1341 packet->driver_data = driver_data;
1342
1343 if (packet->payload_length > 0) {
1344 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1345 payload_bus = dma_map_single(ohci->card.device,
1346 packet->payload,
1347 packet->payload_length,
1348 DMA_TO_DEVICE);
1349 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1350 packet->ack = RCODE_SEND_ERROR;
1351 return -1;
1352 }
1353 packet->payload_bus = payload_bus;
1354 packet->payload_mapped = true;
1355 } else {
1356 memcpy(driver_data->inline_data, packet->payload,
1357 packet->payload_length);
1358 payload_bus = d_bus + 3 * sizeof(*d);
1359 }
1360
1361 d[2].req_count = cpu_to_le16(packet->payload_length);
1362 d[2].data_address = cpu_to_le32(payload_bus);
1363 last = &d[2];
1364 z = 3;
1365 } else {
1366 last = &d[0];
1367 z = 2;
1368 }
1369
1370 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1371 DESCRIPTOR_IRQ_ALWAYS |
1372 DESCRIPTOR_BRANCH_ALWAYS);
1373
1374 /* FIXME: Document how the locking works. */
1375 if (ohci->generation != packet->generation) {
1376 if (packet->payload_mapped)
1377 dma_unmap_single(ohci->card.device, payload_bus,
1378 packet->payload_length, DMA_TO_DEVICE);
1379 packet->ack = RCODE_GENERATION;
1380 return -1;
1381 }
1382
1383 context_append(ctx, d, z, 4 - z);
1384
1385 if (ctx->running)
1386 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1387 else
1388 context_run(ctx, 0);
1389
1390 return 0;
1391 }
1392
1393 static void at_context_flush(struct context *ctx)
1394 {
1395 tasklet_disable(&ctx->tasklet);
1396
1397 ctx->flushing = true;
1398 context_tasklet((unsigned long)ctx);
1399 ctx->flushing = false;
1400
1401 tasklet_enable(&ctx->tasklet);
1402 }
1403
1404 static int handle_at_packet(struct context *context,
1405 struct descriptor *d,
1406 struct descriptor *last)
1407 {
1408 struct driver_data *driver_data;
1409 struct fw_packet *packet;
1410 struct fw_ohci *ohci = context->ohci;
1411 int evt;
1412
1413 if (last->transfer_status == 0 && !context->flushing)
1414 /* This descriptor isn't done yet, stop iteration. */
1415 return 0;
1416
1417 driver_data = (struct driver_data *) &d[3];
1418 packet = driver_data->packet;
1419 if (packet == NULL)
1420 /* This packet was cancelled, just continue. */
1421 return 1;
1422
1423 if (packet->payload_mapped)
1424 dma_unmap_single(ohci->card.device, packet->payload_bus,
1425 packet->payload_length, DMA_TO_DEVICE);
1426
1427 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1428 packet->timestamp = le16_to_cpu(last->res_count);
1429
1430 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1431
1432 switch (evt) {
1433 case OHCI1394_evt_timeout:
1434 /* Async response transmit timed out. */
1435 packet->ack = RCODE_CANCELLED;
1436 break;
1437
1438 case OHCI1394_evt_flushed:
1439 /*
1440 * The packet was flushed should give same error as
1441 * when we try to use a stale generation count.
1442 */
1443 packet->ack = RCODE_GENERATION;
1444 break;
1445
1446 case OHCI1394_evt_missing_ack:
1447 if (context->flushing)
1448 packet->ack = RCODE_GENERATION;
1449 else {
1450 /*
1451 * Using a valid (current) generation count, but the
1452 * node is not on the bus or not sending acks.
1453 */
1454 packet->ack = RCODE_NO_ACK;
1455 }
1456 break;
1457
1458 case ACK_COMPLETE + 0x10:
1459 case ACK_PENDING + 0x10:
1460 case ACK_BUSY_X + 0x10:
1461 case ACK_BUSY_A + 0x10:
1462 case ACK_BUSY_B + 0x10:
1463 case ACK_DATA_ERROR + 0x10:
1464 case ACK_TYPE_ERROR + 0x10:
1465 packet->ack = evt - 0x10;
1466 break;
1467
1468 case OHCI1394_evt_no_status:
1469 if (context->flushing) {
1470 packet->ack = RCODE_GENERATION;
1471 break;
1472 }
1473 /* fall through */
1474
1475 default:
1476 packet->ack = RCODE_SEND_ERROR;
1477 break;
1478 }
1479
1480 packet->callback(packet, &ohci->card, packet->ack);
1481
1482 return 1;
1483 }
1484
1485 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1486 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1487 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1488 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1489 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1490
1491 static void handle_local_rom(struct fw_ohci *ohci,
1492 struct fw_packet *packet, u32 csr)
1493 {
1494 struct fw_packet response;
1495 int tcode, length, i;
1496
1497 tcode = HEADER_GET_TCODE(packet->header[0]);
1498 if (TCODE_IS_BLOCK_PACKET(tcode))
1499 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1500 else
1501 length = 4;
1502
1503 i = csr - CSR_CONFIG_ROM;
1504 if (i + length > CONFIG_ROM_SIZE) {
1505 fw_fill_response(&response, packet->header,
1506 RCODE_ADDRESS_ERROR, NULL, 0);
1507 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1508 fw_fill_response(&response, packet->header,
1509 RCODE_TYPE_ERROR, NULL, 0);
1510 } else {
1511 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1512 (void *) ohci->config_rom + i, length);
1513 }
1514
1515 fw_core_handle_response(&ohci->card, &response);
1516 }
1517
1518 static void handle_local_lock(struct fw_ohci *ohci,
1519 struct fw_packet *packet, u32 csr)
1520 {
1521 struct fw_packet response;
1522 int tcode, length, ext_tcode, sel, try;
1523 __be32 *payload, lock_old;
1524 u32 lock_arg, lock_data;
1525
1526 tcode = HEADER_GET_TCODE(packet->header[0]);
1527 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1528 payload = packet->payload;
1529 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1530
1531 if (tcode == TCODE_LOCK_REQUEST &&
1532 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1533 lock_arg = be32_to_cpu(payload[0]);
1534 lock_data = be32_to_cpu(payload[1]);
1535 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1536 lock_arg = 0;
1537 lock_data = 0;
1538 } else {
1539 fw_fill_response(&response, packet->header,
1540 RCODE_TYPE_ERROR, NULL, 0);
1541 goto out;
1542 }
1543
1544 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1545 reg_write(ohci, OHCI1394_CSRData, lock_data);
1546 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1547 reg_write(ohci, OHCI1394_CSRControl, sel);
1548
1549 for (try = 0; try < 20; try++)
1550 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1551 lock_old = cpu_to_be32(reg_read(ohci,
1552 OHCI1394_CSRData));
1553 fw_fill_response(&response, packet->header,
1554 RCODE_COMPLETE,
1555 &lock_old, sizeof(lock_old));
1556 goto out;
1557 }
1558
1559 dev_err(ohci->card.device, "swap not done (CSR lock timeout)\n");
1560 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1561
1562 out:
1563 fw_core_handle_response(&ohci->card, &response);
1564 }
1565
1566 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1567 {
1568 u64 offset, csr;
1569
1570 if (ctx == &ctx->ohci->at_request_ctx) {
1571 packet->ack = ACK_PENDING;
1572 packet->callback(packet, &ctx->ohci->card, packet->ack);
1573 }
1574
1575 offset =
1576 ((unsigned long long)
1577 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1578 packet->header[2];
1579 csr = offset - CSR_REGISTER_BASE;
1580
1581 /* Handle config rom reads. */
1582 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1583 handle_local_rom(ctx->ohci, packet, csr);
1584 else switch (csr) {
1585 case CSR_BUS_MANAGER_ID:
1586 case CSR_BANDWIDTH_AVAILABLE:
1587 case CSR_CHANNELS_AVAILABLE_HI:
1588 case CSR_CHANNELS_AVAILABLE_LO:
1589 handle_local_lock(ctx->ohci, packet, csr);
1590 break;
1591 default:
1592 if (ctx == &ctx->ohci->at_request_ctx)
1593 fw_core_handle_request(&ctx->ohci->card, packet);
1594 else
1595 fw_core_handle_response(&ctx->ohci->card, packet);
1596 break;
1597 }
1598
1599 if (ctx == &ctx->ohci->at_response_ctx) {
1600 packet->ack = ACK_COMPLETE;
1601 packet->callback(packet, &ctx->ohci->card, packet->ack);
1602 }
1603 }
1604
1605 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1606 {
1607 unsigned long flags;
1608 int ret;
1609
1610 spin_lock_irqsave(&ctx->ohci->lock, flags);
1611
1612 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1613 ctx->ohci->generation == packet->generation) {
1614 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1615 handle_local_request(ctx, packet);
1616 return;
1617 }
1618
1619 ret = at_context_queue_packet(ctx, packet);
1620 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1621
1622 if (ret < 0)
1623 packet->callback(packet, &ctx->ohci->card, packet->ack);
1624
1625 }
1626
1627 static void detect_dead_context(struct fw_ohci *ohci,
1628 const char *name, unsigned int regs)
1629 {
1630 u32 ctl;
1631
1632 ctl = reg_read(ohci, CONTROL_SET(regs));
1633 if (ctl & CONTEXT_DEAD)
1634 dev_err(ohci->card.device,
1635 "DMA context %s has stopped, error code: %s\n",
1636 name, evts[ctl & 0x1f]);
1637 }
1638
1639 static void handle_dead_contexts(struct fw_ohci *ohci)
1640 {
1641 unsigned int i;
1642 char name[8];
1643
1644 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1645 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1646 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1647 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1648 for (i = 0; i < 32; ++i) {
1649 if (!(ohci->it_context_support & (1 << i)))
1650 continue;
1651 sprintf(name, "IT%u", i);
1652 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1653 }
1654 for (i = 0; i < 32; ++i) {
1655 if (!(ohci->ir_context_support & (1 << i)))
1656 continue;
1657 sprintf(name, "IR%u", i);
1658 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1659 }
1660 /* TODO: maybe try to flush and restart the dead contexts */
1661 }
1662
1663 static u32 cycle_timer_ticks(u32 cycle_timer)
1664 {
1665 u32 ticks;
1666
1667 ticks = cycle_timer & 0xfff;
1668 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1669 ticks += (3072 * 8000) * (cycle_timer >> 25);
1670
1671 return ticks;
1672 }
1673
1674 /*
1675 * Some controllers exhibit one or more of the following bugs when updating the
1676 * iso cycle timer register:
1677 * - When the lowest six bits are wrapping around to zero, a read that happens
1678 * at the same time will return garbage in the lowest ten bits.
1679 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1680 * not incremented for about 60 ns.
1681 * - Occasionally, the entire register reads zero.
1682 *
1683 * To catch these, we read the register three times and ensure that the
1684 * difference between each two consecutive reads is approximately the same, i.e.
1685 * less than twice the other. Furthermore, any negative difference indicates an
1686 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1687 * execute, so we have enough precision to compute the ratio of the differences.)
1688 */
1689 static u32 get_cycle_time(struct fw_ohci *ohci)
1690 {
1691 u32 c0, c1, c2;
1692 u32 t0, t1, t2;
1693 s32 diff01, diff12;
1694 int i;
1695
1696 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1697
1698 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1699 i = 0;
1700 c1 = c2;
1701 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1702 do {
1703 c0 = c1;
1704 c1 = c2;
1705 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1706 t0 = cycle_timer_ticks(c0);
1707 t1 = cycle_timer_ticks(c1);
1708 t2 = cycle_timer_ticks(c2);
1709 diff01 = t1 - t0;
1710 diff12 = t2 - t1;
1711 } while ((diff01 <= 0 || diff12 <= 0 ||
1712 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1713 && i++ < 20);
1714 }
1715
1716 return c2;
1717 }
1718
1719 /*
1720 * This function has to be called at least every 64 seconds. The bus_time
1721 * field stores not only the upper 25 bits of the BUS_TIME register but also
1722 * the most significant bit of the cycle timer in bit 6 so that we can detect
1723 * changes in this bit.
1724 */
1725 static u32 update_bus_time(struct fw_ohci *ohci)
1726 {
1727 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1728
1729 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1730 ohci->bus_time += 0x40;
1731
1732 return ohci->bus_time | cycle_time_seconds;
1733 }
1734
1735 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1736 {
1737 int reg;
1738
1739 mutex_lock(&ohci->phy_reg_mutex);
1740 reg = write_phy_reg(ohci, 7, port_index);
1741 if (reg >= 0)
1742 reg = read_phy_reg(ohci, 8);
1743 mutex_unlock(&ohci->phy_reg_mutex);
1744 if (reg < 0)
1745 return reg;
1746
1747 switch (reg & 0x0f) {
1748 case 0x06:
1749 return 2; /* is child node (connected to parent node) */
1750 case 0x0e:
1751 return 3; /* is parent node (connected to child node) */
1752 }
1753 return 1; /* not connected */
1754 }
1755
1756 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1757 int self_id_count)
1758 {
1759 int i;
1760 u32 entry;
1761
1762 for (i = 0; i < self_id_count; i++) {
1763 entry = ohci->self_id_buffer[i];
1764 if ((self_id & 0xff000000) == (entry & 0xff000000))
1765 return -1;
1766 if ((self_id & 0xff000000) < (entry & 0xff000000))
1767 return i;
1768 }
1769 return i;
1770 }
1771
1772 /*
1773 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1774 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1775 * Construct the selfID from phy register contents.
1776 * FIXME: How to determine the selfID.i flag?
1777 */
1778 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1779 {
1780 int reg, i, pos, status;
1781 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1782 u32 self_id = 0x8040c800;
1783
1784 reg = reg_read(ohci, OHCI1394_NodeID);
1785 if (!(reg & OHCI1394_NodeID_idValid)) {
1786 dev_notice(ohci->card.device,
1787 "node ID not valid, new bus reset in progress\n");
1788 return -EBUSY;
1789 }
1790 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1791
1792 reg = ohci_read_phy_reg(&ohci->card, 4);
1793 if (reg < 0)
1794 return reg;
1795 self_id |= ((reg & 0x07) << 8); /* power class */
1796
1797 reg = ohci_read_phy_reg(&ohci->card, 1);
1798 if (reg < 0)
1799 return reg;
1800 self_id |= ((reg & 0x3f) << 16); /* gap count */
1801
1802 for (i = 0; i < 3; i++) {
1803 status = get_status_for_port(ohci, i);
1804 if (status < 0)
1805 return status;
1806 self_id |= ((status & 0x3) << (6 - (i * 2)));
1807 }
1808
1809 pos = get_self_id_pos(ohci, self_id, self_id_count);
1810 if (pos >= 0) {
1811 memmove(&(ohci->self_id_buffer[pos+1]),
1812 &(ohci->self_id_buffer[pos]),
1813 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1814 ohci->self_id_buffer[pos] = self_id;
1815 self_id_count++;
1816 }
1817 return self_id_count;
1818 }
1819
1820 static void bus_reset_work(struct work_struct *work)
1821 {
1822 struct fw_ohci *ohci =
1823 container_of(work, struct fw_ohci, bus_reset_work);
1824 int self_id_count, generation, new_generation, i, j;
1825 u32 reg;
1826 void *free_rom = NULL;
1827 dma_addr_t free_rom_bus = 0;
1828 bool is_new_root;
1829
1830 reg = reg_read(ohci, OHCI1394_NodeID);
1831 if (!(reg & OHCI1394_NodeID_idValid)) {
1832 dev_notice(ohci->card.device,
1833 "node ID not valid, new bus reset in progress\n");
1834 return;
1835 }
1836 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1837 dev_notice(ohci->card.device, "malconfigured bus\n");
1838 return;
1839 }
1840 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1841 OHCI1394_NodeID_nodeNumber);
1842
1843 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1844 if (!(ohci->is_root && is_new_root))
1845 reg_write(ohci, OHCI1394_LinkControlSet,
1846 OHCI1394_LinkControl_cycleMaster);
1847 ohci->is_root = is_new_root;
1848
1849 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1850 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1851 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1852 return;
1853 }
1854 /*
1855 * The count in the SelfIDCount register is the number of
1856 * bytes in the self ID receive buffer. Since we also receive
1857 * the inverted quadlets and a header quadlet, we shift one
1858 * bit extra to get the actual number of self IDs.
1859 */
1860 self_id_count = (reg >> 3) & 0xff;
1861
1862 if (self_id_count > 252) {
1863 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1864 return;
1865 }
1866
1867 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1868 rmb();
1869
1870 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1871 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1872 /*
1873 * If the invalid data looks like a cycle start packet,
1874 * it's likely to be the result of the cycle master
1875 * having a wrong gap count. In this case, the self IDs
1876 * so far are valid and should be processed so that the
1877 * bus manager can then correct the gap count.
1878 */
1879 if (cond_le32_to_cpu(ohci->self_id_cpu[i])
1880 == 0xffff008f) {
1881 dev_notice(ohci->card.device,
1882 "ignoring spurious self IDs\n");
1883 self_id_count = j;
1884 break;
1885 } else {
1886 dev_notice(ohci->card.device,
1887 "inconsistent self IDs\n");
1888 return;
1889 }
1890 }
1891 ohci->self_id_buffer[j] =
1892 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1893 }
1894
1895 if (ohci->quirks & QUIRK_TI_SLLZ059) {
1896 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1897 if (self_id_count < 0) {
1898 dev_notice(ohci->card.device,
1899 "could not construct local self ID\n");
1900 return;
1901 }
1902 }
1903
1904 if (self_id_count == 0) {
1905 dev_notice(ohci->card.device, "inconsistent self IDs\n");
1906 return;
1907 }
1908 rmb();
1909
1910 /*
1911 * Check the consistency of the self IDs we just read. The
1912 * problem we face is that a new bus reset can start while we
1913 * read out the self IDs from the DMA buffer. If this happens,
1914 * the DMA buffer will be overwritten with new self IDs and we
1915 * will read out inconsistent data. The OHCI specification
1916 * (section 11.2) recommends a technique similar to
1917 * linux/seqlock.h, where we remember the generation of the
1918 * self IDs in the buffer before reading them out and compare
1919 * it to the current generation after reading them out. If
1920 * the two generations match we know we have a consistent set
1921 * of self IDs.
1922 */
1923
1924 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1925 if (new_generation != generation) {
1926 dev_notice(ohci->card.device,
1927 "new bus reset, discarding self ids\n");
1928 return;
1929 }
1930
1931 /* FIXME: Document how the locking works. */
1932 spin_lock_irq(&ohci->lock);
1933
1934 ohci->generation = -1; /* prevent AT packet queueing */
1935 context_stop(&ohci->at_request_ctx);
1936 context_stop(&ohci->at_response_ctx);
1937
1938 spin_unlock_irq(&ohci->lock);
1939
1940 /*
1941 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1942 * packets in the AT queues and software needs to drain them.
1943 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1944 */
1945 at_context_flush(&ohci->at_request_ctx);
1946 at_context_flush(&ohci->at_response_ctx);
1947
1948 spin_lock_irq(&ohci->lock);
1949
1950 ohci->generation = generation;
1951 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1952
1953 if (ohci->quirks & QUIRK_RESET_PACKET)
1954 ohci->request_generation = generation;
1955
1956 /*
1957 * This next bit is unrelated to the AT context stuff but we
1958 * have to do it under the spinlock also. If a new config rom
1959 * was set up before this reset, the old one is now no longer
1960 * in use and we can free it. Update the config rom pointers
1961 * to point to the current config rom and clear the
1962 * next_config_rom pointer so a new update can take place.
1963 */
1964
1965 if (ohci->next_config_rom != NULL) {
1966 if (ohci->next_config_rom != ohci->config_rom) {
1967 free_rom = ohci->config_rom;
1968 free_rom_bus = ohci->config_rom_bus;
1969 }
1970 ohci->config_rom = ohci->next_config_rom;
1971 ohci->config_rom_bus = ohci->next_config_rom_bus;
1972 ohci->next_config_rom = NULL;
1973
1974 /*
1975 * Restore config_rom image and manually update
1976 * config_rom registers. Writing the header quadlet
1977 * will indicate that the config rom is ready, so we
1978 * do that last.
1979 */
1980 reg_write(ohci, OHCI1394_BusOptions,
1981 be32_to_cpu(ohci->config_rom[2]));
1982 ohci->config_rom[0] = ohci->next_header;
1983 reg_write(ohci, OHCI1394_ConfigROMhdr,
1984 be32_to_cpu(ohci->next_header));
1985 }
1986
1987 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1988 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1989 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1990 #endif
1991
1992 spin_unlock_irq(&ohci->lock);
1993
1994 if (free_rom)
1995 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1996 free_rom, free_rom_bus);
1997
1998 log_selfids(ohci, generation, self_id_count);
1999
2000 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2001 self_id_count, ohci->self_id_buffer,
2002 ohci->csr_state_setclear_abdicate);
2003 ohci->csr_state_setclear_abdicate = false;
2004 }
2005
2006 static irqreturn_t irq_handler(int irq, void *data)
2007 {
2008 struct fw_ohci *ohci = data;
2009 u32 event, iso_event;
2010 int i;
2011
2012 event = reg_read(ohci, OHCI1394_IntEventClear);
2013
2014 if (!event || !~event)
2015 return IRQ_NONE;
2016
2017 /*
2018 * busReset and postedWriteErr must not be cleared yet
2019 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2020 */
2021 reg_write(ohci, OHCI1394_IntEventClear,
2022 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2023 log_irqs(ohci, event);
2024
2025 if (event & OHCI1394_selfIDComplete)
2026 queue_work(fw_workqueue, &ohci->bus_reset_work);
2027
2028 if (event & OHCI1394_RQPkt)
2029 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2030
2031 if (event & OHCI1394_RSPkt)
2032 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2033
2034 if (event & OHCI1394_reqTxComplete)
2035 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2036
2037 if (event & OHCI1394_respTxComplete)
2038 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2039
2040 if (event & OHCI1394_isochRx) {
2041 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2042 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2043
2044 while (iso_event) {
2045 i = ffs(iso_event) - 1;
2046 tasklet_schedule(
2047 &ohci->ir_context_list[i].context.tasklet);
2048 iso_event &= ~(1 << i);
2049 }
2050 }
2051
2052 if (event & OHCI1394_isochTx) {
2053 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2054 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2055
2056 while (iso_event) {
2057 i = ffs(iso_event) - 1;
2058 tasklet_schedule(
2059 &ohci->it_context_list[i].context.tasklet);
2060 iso_event &= ~(1 << i);
2061 }
2062 }
2063
2064 if (unlikely(event & OHCI1394_regAccessFail))
2065 dev_err(ohci->card.device, "register access failure\n");
2066
2067 if (unlikely(event & OHCI1394_postedWriteErr)) {
2068 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2069 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2070 reg_write(ohci, OHCI1394_IntEventClear,
2071 OHCI1394_postedWriteErr);
2072 if (printk_ratelimit())
2073 dev_err(ohci->card.device, "PCI posted write error\n");
2074 }
2075
2076 if (unlikely(event & OHCI1394_cycleTooLong)) {
2077 if (printk_ratelimit())
2078 dev_notice(ohci->card.device,
2079 "isochronous cycle too long\n");
2080 reg_write(ohci, OHCI1394_LinkControlSet,
2081 OHCI1394_LinkControl_cycleMaster);
2082 }
2083
2084 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2085 /*
2086 * We need to clear this event bit in order to make
2087 * cycleMatch isochronous I/O work. In theory we should
2088 * stop active cycleMatch iso contexts now and restart
2089 * them at least two cycles later. (FIXME?)
2090 */
2091 if (printk_ratelimit())
2092 dev_notice(ohci->card.device,
2093 "isochronous cycle inconsistent\n");
2094 }
2095
2096 if (unlikely(event & OHCI1394_unrecoverableError))
2097 handle_dead_contexts(ohci);
2098
2099 if (event & OHCI1394_cycle64Seconds) {
2100 spin_lock(&ohci->lock);
2101 update_bus_time(ohci);
2102 spin_unlock(&ohci->lock);
2103 } else
2104 flush_writes(ohci);
2105
2106 return IRQ_HANDLED;
2107 }
2108
2109 static int software_reset(struct fw_ohci *ohci)
2110 {
2111 u32 val;
2112 int i;
2113
2114 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2115 for (i = 0; i < 500; i++) {
2116 val = reg_read(ohci, OHCI1394_HCControlSet);
2117 if (!~val)
2118 return -ENODEV; /* Card was ejected. */
2119
2120 if (!(val & OHCI1394_HCControl_softReset))
2121 return 0;
2122
2123 msleep(1);
2124 }
2125
2126 return -EBUSY;
2127 }
2128
2129 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2130 {
2131 size_t size = length * 4;
2132
2133 memcpy(dest, src, size);
2134 if (size < CONFIG_ROM_SIZE)
2135 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2136 }
2137
2138 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2139 {
2140 bool enable_1394a;
2141 int ret, clear, set, offset;
2142
2143 /* Check if the driver should configure link and PHY. */
2144 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2145 OHCI1394_HCControl_programPhyEnable))
2146 return 0;
2147
2148 /* Paranoia: check whether the PHY supports 1394a, too. */
2149 enable_1394a = false;
2150 ret = read_phy_reg(ohci, 2);
2151 if (ret < 0)
2152 return ret;
2153 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2154 ret = read_paged_phy_reg(ohci, 1, 8);
2155 if (ret < 0)
2156 return ret;
2157 if (ret >= 1)
2158 enable_1394a = true;
2159 }
2160
2161 if (ohci->quirks & QUIRK_NO_1394A)
2162 enable_1394a = false;
2163
2164 /* Configure PHY and link consistently. */
2165 if (enable_1394a) {
2166 clear = 0;
2167 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2168 } else {
2169 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2170 set = 0;
2171 }
2172 ret = update_phy_reg(ohci, 5, clear, set);
2173 if (ret < 0)
2174 return ret;
2175
2176 if (enable_1394a)
2177 offset = OHCI1394_HCControlSet;
2178 else
2179 offset = OHCI1394_HCControlClear;
2180 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2181
2182 /* Clean up: configuration has been taken care of. */
2183 reg_write(ohci, OHCI1394_HCControlClear,
2184 OHCI1394_HCControl_programPhyEnable);
2185
2186 return 0;
2187 }
2188
2189 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2190 {
2191 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2192 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2193 int reg, i;
2194
2195 reg = read_phy_reg(ohci, 2);
2196 if (reg < 0)
2197 return reg;
2198 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2199 return 0;
2200
2201 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2202 reg = read_paged_phy_reg(ohci, 1, i + 10);
2203 if (reg < 0)
2204 return reg;
2205 if (reg != id[i])
2206 return 0;
2207 }
2208 return 1;
2209 }
2210
2211 static int ohci_enable(struct fw_card *card,
2212 const __be32 *config_rom, size_t length)
2213 {
2214 struct fw_ohci *ohci = fw_ohci(card);
2215 struct pci_dev *dev = to_pci_dev(card->device);
2216 u32 lps, seconds, version, irqs;
2217 int i, ret;
2218
2219 if (software_reset(ohci)) {
2220 dev_err(card->device, "failed to reset ohci card\n");
2221 return -EBUSY;
2222 }
2223
2224 /*
2225 * Now enable LPS, which we need in order to start accessing
2226 * most of the registers. In fact, on some cards (ALI M5251),
2227 * accessing registers in the SClk domain without LPS enabled
2228 * will lock up the machine. Wait 50msec to make sure we have
2229 * full link enabled. However, with some cards (well, at least
2230 * a JMicron PCIe card), we have to try again sometimes.
2231 */
2232 reg_write(ohci, OHCI1394_HCControlSet,
2233 OHCI1394_HCControl_LPS |
2234 OHCI1394_HCControl_postedWriteEnable);
2235 flush_writes(ohci);
2236
2237 for (lps = 0, i = 0; !lps && i < 3; i++) {
2238 msleep(50);
2239 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2240 OHCI1394_HCControl_LPS;
2241 }
2242
2243 if (!lps) {
2244 dev_err(card->device, "failed to set Link Power Status\n");
2245 return -EIO;
2246 }
2247
2248 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2249 ret = probe_tsb41ba3d(ohci);
2250 if (ret < 0)
2251 return ret;
2252 if (ret)
2253 dev_notice(card->device, "local TSB41BA3D phy\n");
2254 else
2255 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2256 }
2257
2258 reg_write(ohci, OHCI1394_HCControlClear,
2259 OHCI1394_HCControl_noByteSwapData);
2260
2261 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2262 reg_write(ohci, OHCI1394_LinkControlSet,
2263 OHCI1394_LinkControl_cycleTimerEnable |
2264 OHCI1394_LinkControl_cycleMaster);
2265
2266 reg_write(ohci, OHCI1394_ATRetries,
2267 OHCI1394_MAX_AT_REQ_RETRIES |
2268 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2269 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2270 (200 << 16));
2271
2272 seconds = lower_32_bits(get_seconds());
2273 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2274 ohci->bus_time = seconds & ~0x3f;
2275
2276 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2277 if (version >= OHCI_VERSION_1_1) {
2278 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2279 0xfffffffe);
2280 card->broadcast_channel_auto_allocated = true;
2281 }
2282
2283 /* Get implemented bits of the priority arbitration request counter. */
2284 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2285 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2286 reg_write(ohci, OHCI1394_FairnessControl, 0);
2287 card->priority_budget_implemented = ohci->pri_req_max != 0;
2288
2289 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2290 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2291 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2292
2293 ret = configure_1394a_enhancements(ohci);
2294 if (ret < 0)
2295 return ret;
2296
2297 /* Activate link_on bit and contender bit in our self ID packets.*/
2298 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2299 if (ret < 0)
2300 return ret;
2301
2302 /*
2303 * When the link is not yet enabled, the atomic config rom
2304 * update mechanism described below in ohci_set_config_rom()
2305 * is not active. We have to update ConfigRomHeader and
2306 * BusOptions manually, and the write to ConfigROMmap takes
2307 * effect immediately. We tie this to the enabling of the
2308 * link, so we have a valid config rom before enabling - the
2309 * OHCI requires that ConfigROMhdr and BusOptions have valid
2310 * values before enabling.
2311 *
2312 * However, when the ConfigROMmap is written, some controllers
2313 * always read back quadlets 0 and 2 from the config rom to
2314 * the ConfigRomHeader and BusOptions registers on bus reset.
2315 * They shouldn't do that in this initial case where the link
2316 * isn't enabled. This means we have to use the same
2317 * workaround here, setting the bus header to 0 and then write
2318 * the right values in the bus reset tasklet.
2319 */
2320
2321 if (config_rom) {
2322 ohci->next_config_rom =
2323 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2324 &ohci->next_config_rom_bus,
2325 GFP_KERNEL);
2326 if (ohci->next_config_rom == NULL)
2327 return -ENOMEM;
2328
2329 copy_config_rom(ohci->next_config_rom, config_rom, length);
2330 } else {
2331 /*
2332 * In the suspend case, config_rom is NULL, which
2333 * means that we just reuse the old config rom.
2334 */
2335 ohci->next_config_rom = ohci->config_rom;
2336 ohci->next_config_rom_bus = ohci->config_rom_bus;
2337 }
2338
2339 ohci->next_header = ohci->next_config_rom[0];
2340 ohci->next_config_rom[0] = 0;
2341 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2342 reg_write(ohci, OHCI1394_BusOptions,
2343 be32_to_cpu(ohci->next_config_rom[2]));
2344 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2345
2346 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2347
2348 if (!(ohci->quirks & QUIRK_NO_MSI))
2349 pci_enable_msi(dev);
2350 if (request_irq(dev->irq, irq_handler,
2351 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2352 ohci_driver_name, ohci)) {
2353 dev_err(card->device, "failed to allocate interrupt %d\n",
2354 dev->irq);
2355 pci_disable_msi(dev);
2356
2357 if (config_rom) {
2358 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2359 ohci->next_config_rom,
2360 ohci->next_config_rom_bus);
2361 ohci->next_config_rom = NULL;
2362 }
2363 return -EIO;
2364 }
2365
2366 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2367 OHCI1394_RQPkt | OHCI1394_RSPkt |
2368 OHCI1394_isochTx | OHCI1394_isochRx |
2369 OHCI1394_postedWriteErr |
2370 OHCI1394_selfIDComplete |
2371 OHCI1394_regAccessFail |
2372 OHCI1394_cycle64Seconds |
2373 OHCI1394_cycleInconsistent |
2374 OHCI1394_unrecoverableError |
2375 OHCI1394_cycleTooLong |
2376 OHCI1394_masterIntEnable;
2377 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2378 irqs |= OHCI1394_busReset;
2379 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2380
2381 reg_write(ohci, OHCI1394_HCControlSet,
2382 OHCI1394_HCControl_linkEnable |
2383 OHCI1394_HCControl_BIBimageValid);
2384
2385 reg_write(ohci, OHCI1394_LinkControlSet,
2386 OHCI1394_LinkControl_rcvSelfID |
2387 OHCI1394_LinkControl_rcvPhyPkt);
2388
2389 ar_context_run(&ohci->ar_request_ctx);
2390 ar_context_run(&ohci->ar_response_ctx);
2391
2392 flush_writes(ohci);
2393
2394 /* We are ready to go, reset bus to finish initialization. */
2395 fw_schedule_bus_reset(&ohci->card, false, true);
2396
2397 return 0;
2398 }
2399
2400 static int ohci_set_config_rom(struct fw_card *card,
2401 const __be32 *config_rom, size_t length)
2402 {
2403 struct fw_ohci *ohci;
2404 __be32 *next_config_rom;
2405 dma_addr_t uninitialized_var(next_config_rom_bus);
2406
2407 ohci = fw_ohci(card);
2408
2409 /*
2410 * When the OHCI controller is enabled, the config rom update
2411 * mechanism is a bit tricky, but easy enough to use. See
2412 * section 5.5.6 in the OHCI specification.
2413 *
2414 * The OHCI controller caches the new config rom address in a
2415 * shadow register (ConfigROMmapNext) and needs a bus reset
2416 * for the changes to take place. When the bus reset is
2417 * detected, the controller loads the new values for the
2418 * ConfigRomHeader and BusOptions registers from the specified
2419 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2420 * shadow register. All automatically and atomically.
2421 *
2422 * Now, there's a twist to this story. The automatic load of
2423 * ConfigRomHeader and BusOptions doesn't honor the
2424 * noByteSwapData bit, so with a be32 config rom, the
2425 * controller will load be32 values in to these registers
2426 * during the atomic update, even on litte endian
2427 * architectures. The workaround we use is to put a 0 in the
2428 * header quadlet; 0 is endian agnostic and means that the
2429 * config rom isn't ready yet. In the bus reset tasklet we
2430 * then set up the real values for the two registers.
2431 *
2432 * We use ohci->lock to avoid racing with the code that sets
2433 * ohci->next_config_rom to NULL (see bus_reset_work).
2434 */
2435
2436 next_config_rom =
2437 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2438 &next_config_rom_bus, GFP_KERNEL);
2439 if (next_config_rom == NULL)
2440 return -ENOMEM;
2441
2442 spin_lock_irq(&ohci->lock);
2443
2444 /*
2445 * If there is not an already pending config_rom update,
2446 * push our new allocation into the ohci->next_config_rom
2447 * and then mark the local variable as null so that we
2448 * won't deallocate the new buffer.
2449 *
2450 * OTOH, if there is a pending config_rom update, just
2451 * use that buffer with the new config_rom data, and
2452 * let this routine free the unused DMA allocation.
2453 */
2454
2455 if (ohci->next_config_rom == NULL) {
2456 ohci->next_config_rom = next_config_rom;
2457 ohci->next_config_rom_bus = next_config_rom_bus;
2458 next_config_rom = NULL;
2459 }
2460
2461 copy_config_rom(ohci->next_config_rom, config_rom, length);
2462
2463 ohci->next_header = config_rom[0];
2464 ohci->next_config_rom[0] = 0;
2465
2466 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2467
2468 spin_unlock_irq(&ohci->lock);
2469
2470 /* If we didn't use the DMA allocation, delete it. */
2471 if (next_config_rom != NULL)
2472 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2473 next_config_rom, next_config_rom_bus);
2474
2475 /*
2476 * Now initiate a bus reset to have the changes take
2477 * effect. We clean up the old config rom memory and DMA
2478 * mappings in the bus reset tasklet, since the OHCI
2479 * controller could need to access it before the bus reset
2480 * takes effect.
2481 */
2482
2483 fw_schedule_bus_reset(&ohci->card, true, true);
2484
2485 return 0;
2486 }
2487
2488 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2489 {
2490 struct fw_ohci *ohci = fw_ohci(card);
2491
2492 at_context_transmit(&ohci->at_request_ctx, packet);
2493 }
2494
2495 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2496 {
2497 struct fw_ohci *ohci = fw_ohci(card);
2498
2499 at_context_transmit(&ohci->at_response_ctx, packet);
2500 }
2501
2502 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2503 {
2504 struct fw_ohci *ohci = fw_ohci(card);
2505 struct context *ctx = &ohci->at_request_ctx;
2506 struct driver_data *driver_data = packet->driver_data;
2507 int ret = -ENOENT;
2508
2509 tasklet_disable(&ctx->tasklet);
2510
2511 if (packet->ack != 0)
2512 goto out;
2513
2514 if (packet->payload_mapped)
2515 dma_unmap_single(ohci->card.device, packet->payload_bus,
2516 packet->payload_length, DMA_TO_DEVICE);
2517
2518 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2519 driver_data->packet = NULL;
2520 packet->ack = RCODE_CANCELLED;
2521 packet->callback(packet, &ohci->card, packet->ack);
2522 ret = 0;
2523 out:
2524 tasklet_enable(&ctx->tasklet);
2525
2526 return ret;
2527 }
2528
2529 static int ohci_enable_phys_dma(struct fw_card *card,
2530 int node_id, int generation)
2531 {
2532 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2533 return 0;
2534 #else
2535 struct fw_ohci *ohci = fw_ohci(card);
2536 unsigned long flags;
2537 int n, ret = 0;
2538
2539 /*
2540 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2541 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2542 */
2543
2544 spin_lock_irqsave(&ohci->lock, flags);
2545
2546 if (ohci->generation != generation) {
2547 ret = -ESTALE;
2548 goto out;
2549 }
2550
2551 /*
2552 * Note, if the node ID contains a non-local bus ID, physical DMA is
2553 * enabled for _all_ nodes on remote buses.
2554 */
2555
2556 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2557 if (n < 32)
2558 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2559 else
2560 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2561
2562 flush_writes(ohci);
2563 out:
2564 spin_unlock_irqrestore(&ohci->lock, flags);
2565
2566 return ret;
2567 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2568 }
2569
2570 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2571 {
2572 struct fw_ohci *ohci = fw_ohci(card);
2573 unsigned long flags;
2574 u32 value;
2575
2576 switch (csr_offset) {
2577 case CSR_STATE_CLEAR:
2578 case CSR_STATE_SET:
2579 if (ohci->is_root &&
2580 (reg_read(ohci, OHCI1394_LinkControlSet) &
2581 OHCI1394_LinkControl_cycleMaster))
2582 value = CSR_STATE_BIT_CMSTR;
2583 else
2584 value = 0;
2585 if (ohci->csr_state_setclear_abdicate)
2586 value |= CSR_STATE_BIT_ABDICATE;
2587
2588 return value;
2589
2590 case CSR_NODE_IDS:
2591 return reg_read(ohci, OHCI1394_NodeID) << 16;
2592
2593 case CSR_CYCLE_TIME:
2594 return get_cycle_time(ohci);
2595
2596 case CSR_BUS_TIME:
2597 /*
2598 * We might be called just after the cycle timer has wrapped
2599 * around but just before the cycle64Seconds handler, so we
2600 * better check here, too, if the bus time needs to be updated.
2601 */
2602 spin_lock_irqsave(&ohci->lock, flags);
2603 value = update_bus_time(ohci);
2604 spin_unlock_irqrestore(&ohci->lock, flags);
2605 return value;
2606
2607 case CSR_BUSY_TIMEOUT:
2608 value = reg_read(ohci, OHCI1394_ATRetries);
2609 return (value >> 4) & 0x0ffff00f;
2610
2611 case CSR_PRIORITY_BUDGET:
2612 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2613 (ohci->pri_req_max << 8);
2614
2615 default:
2616 WARN_ON(1);
2617 return 0;
2618 }
2619 }
2620
2621 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2622 {
2623 struct fw_ohci *ohci = fw_ohci(card);
2624 unsigned long flags;
2625
2626 switch (csr_offset) {
2627 case CSR_STATE_CLEAR:
2628 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2629 reg_write(ohci, OHCI1394_LinkControlClear,
2630 OHCI1394_LinkControl_cycleMaster);
2631 flush_writes(ohci);
2632 }
2633 if (value & CSR_STATE_BIT_ABDICATE)
2634 ohci->csr_state_setclear_abdicate = false;
2635 break;
2636
2637 case CSR_STATE_SET:
2638 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2639 reg_write(ohci, OHCI1394_LinkControlSet,
2640 OHCI1394_LinkControl_cycleMaster);
2641 flush_writes(ohci);
2642 }
2643 if (value & CSR_STATE_BIT_ABDICATE)
2644 ohci->csr_state_setclear_abdicate = true;
2645 break;
2646
2647 case CSR_NODE_IDS:
2648 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2649 flush_writes(ohci);
2650 break;
2651
2652 case CSR_CYCLE_TIME:
2653 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2654 reg_write(ohci, OHCI1394_IntEventSet,
2655 OHCI1394_cycleInconsistent);
2656 flush_writes(ohci);
2657 break;
2658
2659 case CSR_BUS_TIME:
2660 spin_lock_irqsave(&ohci->lock, flags);
2661 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2662 spin_unlock_irqrestore(&ohci->lock, flags);
2663 break;
2664
2665 case CSR_BUSY_TIMEOUT:
2666 value = (value & 0xf) | ((value & 0xf) << 4) |
2667 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2668 reg_write(ohci, OHCI1394_ATRetries, value);
2669 flush_writes(ohci);
2670 break;
2671
2672 case CSR_PRIORITY_BUDGET:
2673 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2674 flush_writes(ohci);
2675 break;
2676
2677 default:
2678 WARN_ON(1);
2679 break;
2680 }
2681 }
2682
2683 static void flush_iso_completions(struct iso_context *ctx)
2684 {
2685 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2686 ctx->header_length, ctx->header,
2687 ctx->base.callback_data);
2688 ctx->header_length = 0;
2689 }
2690
2691 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2692 {
2693 u32 *ctx_hdr;
2694
2695 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE)
2696 flush_iso_completions(ctx);
2697
2698 ctx_hdr = ctx->header + ctx->header_length;
2699 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2700
2701 /*
2702 * The two iso header quadlets are byteswapped to little
2703 * endian by the controller, but we want to present them
2704 * as big endian for consistency with the bus endianness.
2705 */
2706 if (ctx->base.header_size > 0)
2707 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2708 if (ctx->base.header_size > 4)
2709 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2710 if (ctx->base.header_size > 8)
2711 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2712 ctx->header_length += ctx->base.header_size;
2713 }
2714
2715 static int handle_ir_packet_per_buffer(struct context *context,
2716 struct descriptor *d,
2717 struct descriptor *last)
2718 {
2719 struct iso_context *ctx =
2720 container_of(context, struct iso_context, context);
2721 struct descriptor *pd;
2722 u32 buffer_dma;
2723
2724 for (pd = d; pd <= last; pd++)
2725 if (pd->transfer_status)
2726 break;
2727 if (pd > last)
2728 /* Descriptor(s) not done yet, stop iteration */
2729 return 0;
2730
2731 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2732 d++;
2733 buffer_dma = le32_to_cpu(d->data_address);
2734 dma_sync_single_range_for_cpu(context->ohci->card.device,
2735 buffer_dma & PAGE_MASK,
2736 buffer_dma & ~PAGE_MASK,
2737 le16_to_cpu(d->req_count),
2738 DMA_FROM_DEVICE);
2739 }
2740
2741 copy_iso_headers(ctx, (u32 *) (last + 1));
2742
2743 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2744 flush_iso_completions(ctx);
2745
2746 return 1;
2747 }
2748
2749 /* d == last because each descriptor block is only a single descriptor. */
2750 static int handle_ir_buffer_fill(struct context *context,
2751 struct descriptor *d,
2752 struct descriptor *last)
2753 {
2754 struct iso_context *ctx =
2755 container_of(context, struct iso_context, context);
2756 unsigned int req_count, res_count, completed;
2757 u32 buffer_dma;
2758
2759 req_count = le16_to_cpu(last->req_count);
2760 res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2761 completed = req_count - res_count;
2762 buffer_dma = le32_to_cpu(last->data_address);
2763
2764 if (completed > 0) {
2765 ctx->mc_buffer_bus = buffer_dma;
2766 ctx->mc_completed = completed;
2767 }
2768
2769 if (res_count != 0)
2770 /* Descriptor(s) not done yet, stop iteration */
2771 return 0;
2772
2773 dma_sync_single_range_for_cpu(context->ohci->card.device,
2774 buffer_dma & PAGE_MASK,
2775 buffer_dma & ~PAGE_MASK,
2776 completed, DMA_FROM_DEVICE);
2777
2778 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2779 ctx->base.callback.mc(&ctx->base,
2780 buffer_dma + completed,
2781 ctx->base.callback_data);
2782 ctx->mc_completed = 0;
2783 }
2784
2785 return 1;
2786 }
2787
2788 static void flush_ir_buffer_fill(struct iso_context *ctx)
2789 {
2790 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2791 ctx->mc_buffer_bus & PAGE_MASK,
2792 ctx->mc_buffer_bus & ~PAGE_MASK,
2793 ctx->mc_completed, DMA_FROM_DEVICE);
2794
2795 ctx->base.callback.mc(&ctx->base,
2796 ctx->mc_buffer_bus + ctx->mc_completed,
2797 ctx->base.callback_data);
2798 ctx->mc_completed = 0;
2799 }
2800
2801 static inline void sync_it_packet_for_cpu(struct context *context,
2802 struct descriptor *pd)
2803 {
2804 __le16 control;
2805 u32 buffer_dma;
2806
2807 /* only packets beginning with OUTPUT_MORE* have data buffers */
2808 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2809 return;
2810
2811 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2812 pd += 2;
2813
2814 /*
2815 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2816 * data buffer is in the context program's coherent page and must not
2817 * be synced.
2818 */
2819 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2820 (context->current_bus & PAGE_MASK)) {
2821 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2822 return;
2823 pd++;
2824 }
2825
2826 do {
2827 buffer_dma = le32_to_cpu(pd->data_address);
2828 dma_sync_single_range_for_cpu(context->ohci->card.device,
2829 buffer_dma & PAGE_MASK,
2830 buffer_dma & ~PAGE_MASK,
2831 le16_to_cpu(pd->req_count),
2832 DMA_TO_DEVICE);
2833 control = pd->control;
2834 pd++;
2835 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2836 }
2837
2838 static int handle_it_packet(struct context *context,
2839 struct descriptor *d,
2840 struct descriptor *last)
2841 {
2842 struct iso_context *ctx =
2843 container_of(context, struct iso_context, context);
2844 struct descriptor *pd;
2845 __be32 *ctx_hdr;
2846
2847 for (pd = d; pd <= last; pd++)
2848 if (pd->transfer_status)
2849 break;
2850 if (pd > last)
2851 /* Descriptor(s) not done yet, stop iteration */
2852 return 0;
2853
2854 sync_it_packet_for_cpu(context, d);
2855
2856 if (ctx->header_length + 4 > PAGE_SIZE)
2857 flush_iso_completions(ctx);
2858
2859 ctx_hdr = ctx->header + ctx->header_length;
2860 ctx->last_timestamp = le16_to_cpu(last->res_count);
2861 /* Present this value as big-endian to match the receive code */
2862 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2863 le16_to_cpu(pd->res_count));
2864 ctx->header_length += 4;
2865
2866 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2867 flush_iso_completions(ctx);
2868
2869 return 1;
2870 }
2871
2872 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2873 {
2874 u32 hi = channels >> 32, lo = channels;
2875
2876 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2877 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2878 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2879 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2880 mmiowb();
2881 ohci->mc_channels = channels;
2882 }
2883
2884 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2885 int type, int channel, size_t header_size)
2886 {
2887 struct fw_ohci *ohci = fw_ohci(card);
2888 struct iso_context *uninitialized_var(ctx);
2889 descriptor_callback_t uninitialized_var(callback);
2890 u64 *uninitialized_var(channels);
2891 u32 *uninitialized_var(mask), uninitialized_var(regs);
2892 int index, ret = -EBUSY;
2893
2894 spin_lock_irq(&ohci->lock);
2895
2896 switch (type) {
2897 case FW_ISO_CONTEXT_TRANSMIT:
2898 mask = &ohci->it_context_mask;
2899 callback = handle_it_packet;
2900 index = ffs(*mask) - 1;
2901 if (index >= 0) {
2902 *mask &= ~(1 << index);
2903 regs = OHCI1394_IsoXmitContextBase(index);
2904 ctx = &ohci->it_context_list[index];
2905 }
2906 break;
2907
2908 case FW_ISO_CONTEXT_RECEIVE:
2909 channels = &ohci->ir_context_channels;
2910 mask = &ohci->ir_context_mask;
2911 callback = handle_ir_packet_per_buffer;
2912 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2913 if (index >= 0) {
2914 *channels &= ~(1ULL << channel);
2915 *mask &= ~(1 << index);
2916 regs = OHCI1394_IsoRcvContextBase(index);
2917 ctx = &ohci->ir_context_list[index];
2918 }
2919 break;
2920
2921 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2922 mask = &ohci->ir_context_mask;
2923 callback = handle_ir_buffer_fill;
2924 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2925 if (index >= 0) {
2926 ohci->mc_allocated = true;
2927 *mask &= ~(1 << index);
2928 regs = OHCI1394_IsoRcvContextBase(index);
2929 ctx = &ohci->ir_context_list[index];
2930 }
2931 break;
2932
2933 default:
2934 index = -1;
2935 ret = -ENOSYS;
2936 }
2937
2938 spin_unlock_irq(&ohci->lock);
2939
2940 if (index < 0)
2941 return ERR_PTR(ret);
2942
2943 memset(ctx, 0, sizeof(*ctx));
2944 ctx->header_length = 0;
2945 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2946 if (ctx->header == NULL) {
2947 ret = -ENOMEM;
2948 goto out;
2949 }
2950 ret = context_init(&ctx->context, ohci, regs, callback);
2951 if (ret < 0)
2952 goto out_with_header;
2953
2954 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
2955 set_multichannel_mask(ohci, 0);
2956 ctx->mc_completed = 0;
2957 }
2958
2959 return &ctx->base;
2960
2961 out_with_header:
2962 free_page((unsigned long)ctx->header);
2963 out:
2964 spin_lock_irq(&ohci->lock);
2965
2966 switch (type) {
2967 case FW_ISO_CONTEXT_RECEIVE:
2968 *channels |= 1ULL << channel;
2969 break;
2970
2971 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2972 ohci->mc_allocated = false;
2973 break;
2974 }
2975 *mask |= 1 << index;
2976
2977 spin_unlock_irq(&ohci->lock);
2978
2979 return ERR_PTR(ret);
2980 }
2981
2982 static int ohci_start_iso(struct fw_iso_context *base,
2983 s32 cycle, u32 sync, u32 tags)
2984 {
2985 struct iso_context *ctx = container_of(base, struct iso_context, base);
2986 struct fw_ohci *ohci = ctx->context.ohci;
2987 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2988 int index;
2989
2990 /* the controller cannot start without any queued packets */
2991 if (ctx->context.last->branch_address == 0)
2992 return -ENODATA;
2993
2994 switch (ctx->base.type) {
2995 case FW_ISO_CONTEXT_TRANSMIT:
2996 index = ctx - ohci->it_context_list;
2997 match = 0;
2998 if (cycle >= 0)
2999 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3000 (cycle & 0x7fff) << 16;
3001
3002 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3003 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3004 context_run(&ctx->context, match);
3005 break;
3006
3007 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3008 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3009 /* fall through */
3010 case FW_ISO_CONTEXT_RECEIVE:
3011 index = ctx - ohci->ir_context_list;
3012 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3013 if (cycle >= 0) {
3014 match |= (cycle & 0x07fff) << 12;
3015 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3016 }
3017
3018 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3019 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3020 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3021 context_run(&ctx->context, control);
3022
3023 ctx->sync = sync;
3024 ctx->tags = tags;
3025
3026 break;
3027 }
3028
3029 return 0;
3030 }
3031
3032 static int ohci_stop_iso(struct fw_iso_context *base)
3033 {
3034 struct fw_ohci *ohci = fw_ohci(base->card);
3035 struct iso_context *ctx = container_of(base, struct iso_context, base);
3036 int index;
3037
3038 switch (ctx->base.type) {
3039 case FW_ISO_CONTEXT_TRANSMIT:
3040 index = ctx - ohci->it_context_list;
3041 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3042 break;
3043
3044 case FW_ISO_CONTEXT_RECEIVE:
3045 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3046 index = ctx - ohci->ir_context_list;
3047 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3048 break;
3049 }
3050 flush_writes(ohci);
3051 context_stop(&ctx->context);
3052 tasklet_kill(&ctx->context.tasklet);
3053
3054 return 0;
3055 }
3056
3057 static void ohci_free_iso_context(struct fw_iso_context *base)
3058 {
3059 struct fw_ohci *ohci = fw_ohci(base->card);
3060 struct iso_context *ctx = container_of(base, struct iso_context, base);
3061 unsigned long flags;
3062 int index;
3063
3064 ohci_stop_iso(base);
3065 context_release(&ctx->context);
3066 free_page((unsigned long)ctx->header);
3067
3068 spin_lock_irqsave(&ohci->lock, flags);
3069
3070 switch (base->type) {
3071 case FW_ISO_CONTEXT_TRANSMIT:
3072 index = ctx - ohci->it_context_list;
3073 ohci->it_context_mask |= 1 << index;
3074 break;
3075
3076 case FW_ISO_CONTEXT_RECEIVE:
3077 index = ctx - ohci->ir_context_list;
3078 ohci->ir_context_mask |= 1 << index;
3079 ohci->ir_context_channels |= 1ULL << base->channel;
3080 break;
3081
3082 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3083 index = ctx - ohci->ir_context_list;
3084 ohci->ir_context_mask |= 1 << index;
3085 ohci->ir_context_channels |= ohci->mc_channels;
3086 ohci->mc_channels = 0;
3087 ohci->mc_allocated = false;
3088 break;
3089 }
3090
3091 spin_unlock_irqrestore(&ohci->lock, flags);
3092 }
3093
3094 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3095 {
3096 struct fw_ohci *ohci = fw_ohci(base->card);
3097 unsigned long flags;
3098 int ret;
3099
3100 switch (base->type) {
3101 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3102
3103 spin_lock_irqsave(&ohci->lock, flags);
3104
3105 /* Don't allow multichannel to grab other contexts' channels. */
3106 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3107 *channels = ohci->ir_context_channels;
3108 ret = -EBUSY;
3109 } else {
3110 set_multichannel_mask(ohci, *channels);
3111 ret = 0;
3112 }
3113
3114 spin_unlock_irqrestore(&ohci->lock, flags);
3115
3116 break;
3117 default:
3118 ret = -EINVAL;
3119 }
3120
3121 return ret;
3122 }
3123
3124 #ifdef CONFIG_PM
3125 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3126 {
3127 int i;
3128 struct iso_context *ctx;
3129
3130 for (i = 0 ; i < ohci->n_ir ; i++) {
3131 ctx = &ohci->ir_context_list[i];
3132 if (ctx->context.running)
3133 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3134 }
3135
3136 for (i = 0 ; i < ohci->n_it ; i++) {
3137 ctx = &ohci->it_context_list[i];
3138 if (ctx->context.running)
3139 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3140 }
3141 }
3142 #endif
3143
3144 static int queue_iso_transmit(struct iso_context *ctx,
3145 struct fw_iso_packet *packet,
3146 struct fw_iso_buffer *buffer,
3147 unsigned long payload)
3148 {
3149 struct descriptor *d, *last, *pd;
3150 struct fw_iso_packet *p;
3151 __le32 *header;
3152 dma_addr_t d_bus, page_bus;
3153 u32 z, header_z, payload_z, irq;
3154 u32 payload_index, payload_end_index, next_page_index;
3155 int page, end_page, i, length, offset;
3156
3157 p = packet;
3158 payload_index = payload;
3159
3160 if (p->skip)
3161 z = 1;
3162 else
3163 z = 2;
3164 if (p->header_length > 0)
3165 z++;
3166
3167 /* Determine the first page the payload isn't contained in. */
3168 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3169 if (p->payload_length > 0)
3170 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3171 else
3172 payload_z = 0;
3173
3174 z += payload_z;
3175
3176 /* Get header size in number of descriptors. */
3177 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3178
3179 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3180 if (d == NULL)
3181 return -ENOMEM;
3182
3183 if (!p->skip) {
3184 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3185 d[0].req_count = cpu_to_le16(8);
3186 /*
3187 * Link the skip address to this descriptor itself. This causes
3188 * a context to skip a cycle whenever lost cycles or FIFO
3189 * overruns occur, without dropping the data. The application
3190 * should then decide whether this is an error condition or not.
3191 * FIXME: Make the context's cycle-lost behaviour configurable?
3192 */
3193 d[0].branch_address = cpu_to_le32(d_bus | z);
3194
3195 header = (__le32 *) &d[1];
3196 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3197 IT_HEADER_TAG(p->tag) |
3198 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3199 IT_HEADER_CHANNEL(ctx->base.channel) |
3200 IT_HEADER_SPEED(ctx->base.speed));
3201 header[1] =
3202 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3203 p->payload_length));
3204 }
3205
3206 if (p->header_length > 0) {
3207 d[2].req_count = cpu_to_le16(p->header_length);
3208 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3209 memcpy(&d[z], p->header, p->header_length);
3210 }
3211
3212 pd = d + z - payload_z;
3213 payload_end_index = payload_index + p->payload_length;
3214 for (i = 0; i < payload_z; i++) {
3215 page = payload_index >> PAGE_SHIFT;
3216 offset = payload_index & ~PAGE_MASK;
3217 next_page_index = (page + 1) << PAGE_SHIFT;
3218 length =
3219 min(next_page_index, payload_end_index) - payload_index;
3220 pd[i].req_count = cpu_to_le16(length);
3221
3222 page_bus = page_private(buffer->pages[page]);
3223 pd[i].data_address = cpu_to_le32(page_bus + offset);
3224
3225 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3226 page_bus, offset, length,
3227 DMA_TO_DEVICE);
3228
3229 payload_index += length;
3230 }
3231
3232 if (p->interrupt)
3233 irq = DESCRIPTOR_IRQ_ALWAYS;
3234 else
3235 irq = DESCRIPTOR_NO_IRQ;
3236
3237 last = z == 2 ? d : d + z - 1;
3238 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3239 DESCRIPTOR_STATUS |
3240 DESCRIPTOR_BRANCH_ALWAYS |
3241 irq);
3242
3243 context_append(&ctx->context, d, z, header_z);
3244
3245 return 0;
3246 }
3247
3248 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3249 struct fw_iso_packet *packet,
3250 struct fw_iso_buffer *buffer,
3251 unsigned long payload)
3252 {
3253 struct device *device = ctx->context.ohci->card.device;
3254 struct descriptor *d, *pd;
3255 dma_addr_t d_bus, page_bus;
3256 u32 z, header_z, rest;
3257 int i, j, length;
3258 int page, offset, packet_count, header_size, payload_per_buffer;
3259
3260 /*
3261 * The OHCI controller puts the isochronous header and trailer in the
3262 * buffer, so we need at least 8 bytes.
3263 */
3264 packet_count = packet->header_length / ctx->base.header_size;
3265 header_size = max(ctx->base.header_size, (size_t)8);
3266
3267 /* Get header size in number of descriptors. */
3268 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3269 page = payload >> PAGE_SHIFT;
3270 offset = payload & ~PAGE_MASK;
3271 payload_per_buffer = packet->payload_length / packet_count;
3272
3273 for (i = 0; i < packet_count; i++) {
3274 /* d points to the header descriptor */
3275 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3276 d = context_get_descriptors(&ctx->context,
3277 z + header_z, &d_bus);
3278 if (d == NULL)
3279 return -ENOMEM;
3280
3281 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3282 DESCRIPTOR_INPUT_MORE);
3283 if (packet->skip && i == 0)
3284 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3285 d->req_count = cpu_to_le16(header_size);
3286 d->res_count = d->req_count;
3287 d->transfer_status = 0;
3288 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3289
3290 rest = payload_per_buffer;
3291 pd = d;
3292 for (j = 1; j < z; j++) {
3293 pd++;
3294 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3295 DESCRIPTOR_INPUT_MORE);
3296
3297 if (offset + rest < PAGE_SIZE)
3298 length = rest;
3299 else
3300 length = PAGE_SIZE - offset;
3301 pd->req_count = cpu_to_le16(length);
3302 pd->res_count = pd->req_count;
3303 pd->transfer_status = 0;
3304
3305 page_bus = page_private(buffer->pages[page]);
3306 pd->data_address = cpu_to_le32(page_bus + offset);
3307
3308 dma_sync_single_range_for_device(device, page_bus,
3309 offset, length,
3310 DMA_FROM_DEVICE);
3311
3312 offset = (offset + length) & ~PAGE_MASK;
3313 rest -= length;
3314 if (offset == 0)
3315 page++;
3316 }
3317 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3318 DESCRIPTOR_INPUT_LAST |
3319 DESCRIPTOR_BRANCH_ALWAYS);
3320 if (packet->interrupt && i == packet_count - 1)
3321 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3322
3323 context_append(&ctx->context, d, z, header_z);
3324 }
3325
3326 return 0;
3327 }
3328
3329 static int queue_iso_buffer_fill(struct iso_context *ctx,
3330 struct fw_iso_packet *packet,
3331 struct fw_iso_buffer *buffer,
3332 unsigned long payload)
3333 {
3334 struct descriptor *d;
3335 dma_addr_t d_bus, page_bus;
3336 int page, offset, rest, z, i, length;
3337
3338 page = payload >> PAGE_SHIFT;
3339 offset = payload & ~PAGE_MASK;
3340 rest = packet->payload_length;
3341
3342 /* We need one descriptor for each page in the buffer. */
3343 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3344
3345 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3346 return -EFAULT;
3347
3348 for (i = 0; i < z; i++) {
3349 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3350 if (d == NULL)
3351 return -ENOMEM;
3352
3353 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3354 DESCRIPTOR_BRANCH_ALWAYS);
3355 if (packet->skip && i == 0)
3356 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3357 if (packet->interrupt && i == z - 1)
3358 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3359
3360 if (offset + rest < PAGE_SIZE)
3361 length = rest;
3362 else
3363 length = PAGE_SIZE - offset;
3364 d->req_count = cpu_to_le16(length);
3365 d->res_count = d->req_count;
3366 d->transfer_status = 0;
3367
3368 page_bus = page_private(buffer->pages[page]);
3369 d->data_address = cpu_to_le32(page_bus + offset);
3370
3371 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3372 page_bus, offset, length,
3373 DMA_FROM_DEVICE);
3374
3375 rest -= length;
3376 offset = 0;
3377 page++;
3378
3379 context_append(&ctx->context, d, 1, 0);
3380 }
3381
3382 return 0;
3383 }
3384
3385 static int ohci_queue_iso(struct fw_iso_context *base,
3386 struct fw_iso_packet *packet,
3387 struct fw_iso_buffer *buffer,
3388 unsigned long payload)
3389 {
3390 struct iso_context *ctx = container_of(base, struct iso_context, base);
3391 unsigned long flags;
3392 int ret = -ENOSYS;
3393
3394 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3395 switch (base->type) {
3396 case FW_ISO_CONTEXT_TRANSMIT:
3397 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3398 break;
3399 case FW_ISO_CONTEXT_RECEIVE:
3400 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3401 break;
3402 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3403 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3404 break;
3405 }
3406 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3407
3408 return ret;
3409 }
3410
3411 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3412 {
3413 struct context *ctx =
3414 &container_of(base, struct iso_context, base)->context;
3415
3416 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3417 }
3418
3419 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3420 {
3421 struct iso_context *ctx = container_of(base, struct iso_context, base);
3422 int ret = 0;
3423
3424 tasklet_disable(&ctx->context.tasklet);
3425
3426 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3427 context_tasklet((unsigned long)&ctx->context);
3428
3429 switch (base->type) {
3430 case FW_ISO_CONTEXT_TRANSMIT:
3431 case FW_ISO_CONTEXT_RECEIVE:
3432 if (ctx->header_length != 0)
3433 flush_iso_completions(ctx);
3434 break;
3435 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3436 if (ctx->mc_completed != 0)
3437 flush_ir_buffer_fill(ctx);
3438 break;
3439 default:
3440 ret = -ENOSYS;
3441 }
3442
3443 clear_bit_unlock(0, &ctx->flushing_completions);
3444 smp_mb__after_clear_bit();
3445 }
3446
3447 tasklet_enable(&ctx->context.tasklet);
3448
3449 return ret;
3450 }
3451
3452 static const struct fw_card_driver ohci_driver = {
3453 .enable = ohci_enable,
3454 .read_phy_reg = ohci_read_phy_reg,
3455 .update_phy_reg = ohci_update_phy_reg,
3456 .set_config_rom = ohci_set_config_rom,
3457 .send_request = ohci_send_request,
3458 .send_response = ohci_send_response,
3459 .cancel_packet = ohci_cancel_packet,
3460 .enable_phys_dma = ohci_enable_phys_dma,
3461 .read_csr = ohci_read_csr,
3462 .write_csr = ohci_write_csr,
3463
3464 .allocate_iso_context = ohci_allocate_iso_context,
3465 .free_iso_context = ohci_free_iso_context,
3466 .set_iso_channels = ohci_set_iso_channels,
3467 .queue_iso = ohci_queue_iso,
3468 .flush_queue_iso = ohci_flush_queue_iso,
3469 .flush_iso_completions = ohci_flush_iso_completions,
3470 .start_iso = ohci_start_iso,
3471 .stop_iso = ohci_stop_iso,
3472 };
3473
3474 #ifdef CONFIG_PPC_PMAC
3475 static void pmac_ohci_on(struct pci_dev *dev)
3476 {
3477 if (machine_is(powermac)) {
3478 struct device_node *ofn = pci_device_to_OF_node(dev);
3479
3480 if (ofn) {
3481 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3482 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3483 }
3484 }
3485 }
3486
3487 static void pmac_ohci_off(struct pci_dev *dev)
3488 {
3489 if (machine_is(powermac)) {
3490 struct device_node *ofn = pci_device_to_OF_node(dev);
3491
3492 if (ofn) {
3493 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3494 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3495 }
3496 }
3497 }
3498 #else
3499 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3500 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3501 #endif /* CONFIG_PPC_PMAC */
3502
3503 static int __devinit pci_probe(struct pci_dev *dev,
3504 const struct pci_device_id *ent)
3505 {
3506 struct fw_ohci *ohci;
3507 u32 bus_options, max_receive, link_speed, version;
3508 u64 guid;
3509 int i, err;
3510 size_t size;
3511
3512 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3513 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3514 return -ENOSYS;
3515 }
3516
3517 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3518 if (ohci == NULL) {
3519 err = -ENOMEM;
3520 goto fail;
3521 }
3522
3523 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3524
3525 pmac_ohci_on(dev);
3526
3527 err = pci_enable_device(dev);
3528 if (err) {
3529 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3530 goto fail_free;
3531 }
3532
3533 pci_set_master(dev);
3534 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3535 pci_set_drvdata(dev, ohci);
3536
3537 spin_lock_init(&ohci->lock);
3538 mutex_init(&ohci->phy_reg_mutex);
3539
3540 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3541
3542 err = pci_request_region(dev, 0, ohci_driver_name);
3543 if (err) {
3544 dev_err(&dev->dev, "MMIO resource unavailable\n");
3545 goto fail_disable;
3546 }
3547
3548 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3549 if (ohci->registers == NULL) {
3550 dev_err(&dev->dev, "failed to remap registers\n");
3551 err = -ENXIO;
3552 goto fail_iomem;
3553 }
3554
3555 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3556 if ((ohci_quirks[i].vendor == dev->vendor) &&
3557 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3558 ohci_quirks[i].device == dev->device) &&
3559 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3560 ohci_quirks[i].revision >= dev->revision)) {
3561 ohci->quirks = ohci_quirks[i].flags;
3562 break;
3563 }
3564 if (param_quirks)
3565 ohci->quirks = param_quirks;
3566
3567 /*
3568 * Because dma_alloc_coherent() allocates at least one page,
3569 * we save space by using a common buffer for the AR request/
3570 * response descriptors and the self IDs buffer.
3571 */
3572 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3573 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3574 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3575 PAGE_SIZE,
3576 &ohci->misc_buffer_bus,
3577 GFP_KERNEL);
3578 if (!ohci->misc_buffer) {
3579 err = -ENOMEM;
3580 goto fail_iounmap;
3581 }
3582
3583 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3584 OHCI1394_AsReqRcvContextControlSet);
3585 if (err < 0)
3586 goto fail_misc_buf;
3587
3588 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3589 OHCI1394_AsRspRcvContextControlSet);
3590 if (err < 0)
3591 goto fail_arreq_ctx;
3592
3593 err = context_init(&ohci->at_request_ctx, ohci,
3594 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3595 if (err < 0)
3596 goto fail_arrsp_ctx;
3597
3598 err = context_init(&ohci->at_response_ctx, ohci,
3599 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3600 if (err < 0)
3601 goto fail_atreq_ctx;
3602
3603 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3604 ohci->ir_context_channels = ~0ULL;
3605 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3606 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3607 ohci->ir_context_mask = ohci->ir_context_support;
3608 ohci->n_ir = hweight32(ohci->ir_context_mask);
3609 size = sizeof(struct iso_context) * ohci->n_ir;
3610 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3611
3612 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3613 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3614 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3615 ohci->it_context_mask = ohci->it_context_support;
3616 ohci->n_it = hweight32(ohci->it_context_mask);
3617 size = sizeof(struct iso_context) * ohci->n_it;
3618 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3619
3620 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3621 err = -ENOMEM;
3622 goto fail_contexts;
3623 }
3624
3625 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3626 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3627
3628 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3629 max_receive = (bus_options >> 12) & 0xf;
3630 link_speed = bus_options & 0x7;
3631 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3632 reg_read(ohci, OHCI1394_GUIDLo);
3633
3634 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3635 if (err)
3636 goto fail_contexts;
3637
3638 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3639 dev_notice(&dev->dev,
3640 "added OHCI v%x.%x device as card %d, "
3641 "%d IR + %d IT contexts, quirks 0x%x\n",
3642 version >> 16, version & 0xff, ohci->card.index,
3643 ohci->n_ir, ohci->n_it, ohci->quirks);
3644
3645 return 0;
3646
3647 fail_contexts:
3648 kfree(ohci->ir_context_list);
3649 kfree(ohci->it_context_list);
3650 context_release(&ohci->at_response_ctx);
3651 fail_atreq_ctx:
3652 context_release(&ohci->at_request_ctx);
3653 fail_arrsp_ctx:
3654 ar_context_release(&ohci->ar_response_ctx);
3655 fail_arreq_ctx:
3656 ar_context_release(&ohci->ar_request_ctx);
3657 fail_misc_buf:
3658 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3659 ohci->misc_buffer, ohci->misc_buffer_bus);
3660 fail_iounmap:
3661 pci_iounmap(dev, ohci->registers);
3662 fail_iomem:
3663 pci_release_region(dev, 0);
3664 fail_disable:
3665 pci_disable_device(dev);
3666 fail_free:
3667 kfree(ohci);
3668 pmac_ohci_off(dev);
3669 fail:
3670 if (err == -ENOMEM)
3671 dev_err(&dev->dev, "out of memory\n");
3672
3673 return err;
3674 }
3675
3676 static void pci_remove(struct pci_dev *dev)
3677 {
3678 struct fw_ohci *ohci;
3679
3680 ohci = pci_get_drvdata(dev);
3681 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3682 flush_writes(ohci);
3683 cancel_work_sync(&ohci->bus_reset_work);
3684 fw_core_remove_card(&ohci->card);
3685
3686 /*
3687 * FIXME: Fail all pending packets here, now that the upper
3688 * layers can't queue any more.
3689 */
3690
3691 software_reset(ohci);
3692 free_irq(dev->irq, ohci);
3693
3694 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3695 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3696 ohci->next_config_rom, ohci->next_config_rom_bus);
3697 if (ohci->config_rom)
3698 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3699 ohci->config_rom, ohci->config_rom_bus);
3700 ar_context_release(&ohci->ar_request_ctx);
3701 ar_context_release(&ohci->ar_response_ctx);
3702 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3703 ohci->misc_buffer, ohci->misc_buffer_bus);
3704 context_release(&ohci->at_request_ctx);
3705 context_release(&ohci->at_response_ctx);
3706 kfree(ohci->it_context_list);
3707 kfree(ohci->ir_context_list);
3708 pci_disable_msi(dev);
3709 pci_iounmap(dev, ohci->registers);
3710 pci_release_region(dev, 0);
3711 pci_disable_device(dev);
3712 kfree(ohci);
3713 pmac_ohci_off(dev);
3714
3715 dev_notice(&dev->dev, "removed fw-ohci device\n");
3716 }
3717
3718 #ifdef CONFIG_PM
3719 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3720 {
3721 struct fw_ohci *ohci = pci_get_drvdata(dev);
3722 int err;
3723
3724 software_reset(ohci);
3725 free_irq(dev->irq, ohci);
3726 pci_disable_msi(dev);
3727 err = pci_save_state(dev);
3728 if (err) {
3729 dev_err(&dev->dev, "pci_save_state failed\n");
3730 return err;
3731 }
3732 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3733 if (err)
3734 dev_err(&dev->dev, "pci_set_power_state failed with %d\n", err);
3735 pmac_ohci_off(dev);
3736
3737 return 0;
3738 }
3739
3740 static int pci_resume(struct pci_dev *dev)
3741 {
3742 struct fw_ohci *ohci = pci_get_drvdata(dev);
3743 int err;
3744
3745 pmac_ohci_on(dev);
3746 pci_set_power_state(dev, PCI_D0);
3747 pci_restore_state(dev);
3748 err = pci_enable_device(dev);
3749 if (err) {
3750 dev_err(&dev->dev, "pci_enable_device failed\n");
3751 return err;
3752 }
3753
3754 /* Some systems don't setup GUID register on resume from ram */
3755 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3756 !reg_read(ohci, OHCI1394_GUIDHi)) {
3757 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3758 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3759 }
3760
3761 err = ohci_enable(&ohci->card, NULL, 0);
3762 if (err)
3763 return err;
3764
3765 ohci_resume_iso_dma(ohci);
3766
3767 return 0;
3768 }
3769 #endif
3770
3771 static const struct pci_device_id pci_table[] = {
3772 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3773 { }
3774 };
3775
3776 MODULE_DEVICE_TABLE(pci, pci_table);
3777
3778 static struct pci_driver fw_ohci_pci_driver = {
3779 .name = ohci_driver_name,
3780 .id_table = pci_table,
3781 .probe = pci_probe,
3782 .remove = pci_remove,
3783 #ifdef CONFIG_PM
3784 .resume = pci_resume,
3785 .suspend = pci_suspend,
3786 #endif
3787 };
3788
3789 module_pci_driver(fw_ohci_pci_driver);
3790
3791 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3792 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3793 MODULE_LICENSE("GPL");
3794
3795 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3796 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3797 MODULE_ALIAS("ohci1394");
3798 #endif
This page took 0.168366 seconds and 6 git commands to generate.