Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / drivers / firmware / dmi_scan.c
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11
12 /*
13 * DMI stands for "Desktop Management Interface". It is part
14 * of and an antecedent to, SMBIOS, which stands for System
15 * Management BIOS. See further: http://www.dmtf.org/standards
16 */
17 static char dmi_empty_string[] = " ";
18
19 /*
20 * Catch too early calls to dmi_check_system():
21 */
22 static int dmi_initialized;
23
24 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
25 {
26 const u8 *bp = ((u8 *) dm) + dm->length;
27
28 if (s) {
29 s--;
30 while (s > 0 && *bp) {
31 bp += strlen(bp) + 1;
32 s--;
33 }
34
35 if (*bp != 0) {
36 size_t len = strlen(bp)+1;
37 size_t cmp_len = len > 8 ? 8 : len;
38
39 if (!memcmp(bp, dmi_empty_string, cmp_len))
40 return dmi_empty_string;
41 return bp;
42 }
43 }
44
45 return "";
46 }
47
48 static char * __init dmi_string(const struct dmi_header *dm, u8 s)
49 {
50 const char *bp = dmi_string_nosave(dm, s);
51 char *str;
52 size_t len;
53
54 if (bp == dmi_empty_string)
55 return dmi_empty_string;
56
57 len = strlen(bp) + 1;
58 str = dmi_alloc(len);
59 if (str != NULL)
60 strcpy(str, bp);
61 else
62 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
63
64 return str;
65 }
66
67 /*
68 * We have to be cautious here. We have seen BIOSes with DMI pointers
69 * pointing to completely the wrong place for example
70 */
71 static void dmi_table(u8 *buf, int len, int num,
72 void (*decode)(const struct dmi_header *, void *),
73 void *private_data)
74 {
75 u8 *data = buf;
76 int i = 0;
77
78 /*
79 * Stop when we see all the items the table claimed to have
80 * OR we run off the end of the table (also happens)
81 */
82 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
83 const struct dmi_header *dm = (const struct dmi_header *)data;
84
85 /*
86 * We want to know the total length (formatted area and
87 * strings) before decoding to make sure we won't run off the
88 * table in dmi_decode or dmi_string
89 */
90 data += dm->length;
91 while ((data - buf < len - 1) && (data[0] || data[1]))
92 data++;
93 if (data - buf < len - 1)
94 decode(dm, private_data);
95 data += 2;
96 i++;
97 }
98 }
99
100 static u32 dmi_base;
101 static u16 dmi_len;
102 static u16 dmi_num;
103
104 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
105 void *))
106 {
107 u8 *buf;
108
109 buf = dmi_ioremap(dmi_base, dmi_len);
110 if (buf == NULL)
111 return -1;
112
113 dmi_table(buf, dmi_len, dmi_num, decode, NULL);
114
115 add_device_randomness(buf, dmi_len);
116
117 dmi_iounmap(buf, dmi_len);
118 return 0;
119 }
120
121 static int __init dmi_checksum(const u8 *buf)
122 {
123 u8 sum = 0;
124 int a;
125
126 for (a = 0; a < 15; a++)
127 sum += buf[a];
128
129 return sum == 0;
130 }
131
132 static char *dmi_ident[DMI_STRING_MAX];
133 static LIST_HEAD(dmi_devices);
134 int dmi_available;
135
136 /*
137 * Save a DMI string
138 */
139 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
140 {
141 const char *d = (const char*) dm;
142 char *p;
143
144 if (dmi_ident[slot])
145 return;
146
147 p = dmi_string(dm, d[string]);
148 if (p == NULL)
149 return;
150
151 dmi_ident[slot] = p;
152 }
153
154 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
155 {
156 const u8 *d = (u8*) dm + index;
157 char *s;
158 int is_ff = 1, is_00 = 1, i;
159
160 if (dmi_ident[slot])
161 return;
162
163 for (i = 0; i < 16 && (is_ff || is_00); i++) {
164 if(d[i] != 0x00) is_ff = 0;
165 if(d[i] != 0xFF) is_00 = 0;
166 }
167
168 if (is_ff || is_00)
169 return;
170
171 s = dmi_alloc(16*2+4+1);
172 if (!s)
173 return;
174
175 sprintf(s, "%pUB", d);
176
177 dmi_ident[slot] = s;
178 }
179
180 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
181 {
182 const u8 *d = (u8*) dm + index;
183 char *s;
184
185 if (dmi_ident[slot])
186 return;
187
188 s = dmi_alloc(4);
189 if (!s)
190 return;
191
192 sprintf(s, "%u", *d & 0x7F);
193 dmi_ident[slot] = s;
194 }
195
196 static void __init dmi_save_one_device(int type, const char *name)
197 {
198 struct dmi_device *dev;
199
200 /* No duplicate device */
201 if (dmi_find_device(type, name, NULL))
202 return;
203
204 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
205 if (!dev) {
206 printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
207 return;
208 }
209
210 dev->type = type;
211 strcpy((char *)(dev + 1), name);
212 dev->name = (char *)(dev + 1);
213 dev->device_data = NULL;
214 list_add(&dev->list, &dmi_devices);
215 }
216
217 static void __init dmi_save_devices(const struct dmi_header *dm)
218 {
219 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
220
221 for (i = 0; i < count; i++) {
222 const char *d = (char *)(dm + 1) + (i * 2);
223
224 /* Skip disabled device */
225 if ((*d & 0x80) == 0)
226 continue;
227
228 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
229 }
230 }
231
232 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
233 {
234 int i, count = *(u8 *)(dm + 1);
235 struct dmi_device *dev;
236
237 for (i = 1; i <= count; i++) {
238 char *devname = dmi_string(dm, i);
239
240 if (devname == dmi_empty_string)
241 continue;
242
243 dev = dmi_alloc(sizeof(*dev));
244 if (!dev) {
245 printk(KERN_ERR
246 "dmi_save_oem_strings_devices: out of memory.\n");
247 break;
248 }
249
250 dev->type = DMI_DEV_TYPE_OEM_STRING;
251 dev->name = devname;
252 dev->device_data = NULL;
253
254 list_add(&dev->list, &dmi_devices);
255 }
256 }
257
258 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
259 {
260 struct dmi_device *dev;
261 void * data;
262
263 data = dmi_alloc(dm->length);
264 if (data == NULL) {
265 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
266 return;
267 }
268
269 memcpy(data, dm, dm->length);
270
271 dev = dmi_alloc(sizeof(*dev));
272 if (!dev) {
273 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
274 return;
275 }
276
277 dev->type = DMI_DEV_TYPE_IPMI;
278 dev->name = "IPMI controller";
279 dev->device_data = data;
280
281 list_add_tail(&dev->list, &dmi_devices);
282 }
283
284 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
285 int devfn, const char *name)
286 {
287 struct dmi_dev_onboard *onboard_dev;
288
289 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
290 if (!onboard_dev) {
291 printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
292 return;
293 }
294 onboard_dev->instance = instance;
295 onboard_dev->segment = segment;
296 onboard_dev->bus = bus;
297 onboard_dev->devfn = devfn;
298
299 strcpy((char *)&onboard_dev[1], name);
300 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
301 onboard_dev->dev.name = (char *)&onboard_dev[1];
302 onboard_dev->dev.device_data = onboard_dev;
303
304 list_add(&onboard_dev->dev.list, &dmi_devices);
305 }
306
307 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
308 {
309 const u8 *d = (u8*) dm + 5;
310
311 /* Skip disabled device */
312 if ((*d & 0x80) == 0)
313 return;
314
315 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
316 dmi_string_nosave(dm, *(d-1)));
317 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
318 }
319
320 /*
321 * Process a DMI table entry. Right now all we care about are the BIOS
322 * and machine entries. For 2.5 we should pull the smbus controller info
323 * out of here.
324 */
325 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
326 {
327 switch(dm->type) {
328 case 0: /* BIOS Information */
329 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
330 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
331 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
332 break;
333 case 1: /* System Information */
334 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
335 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
336 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
337 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
338 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
339 break;
340 case 2: /* Base Board Information */
341 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
342 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
343 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
344 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
345 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
346 break;
347 case 3: /* Chassis Information */
348 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
349 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
350 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
351 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
352 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
353 break;
354 case 10: /* Onboard Devices Information */
355 dmi_save_devices(dm);
356 break;
357 case 11: /* OEM Strings */
358 dmi_save_oem_strings_devices(dm);
359 break;
360 case 38: /* IPMI Device Information */
361 dmi_save_ipmi_device(dm);
362 break;
363 case 41: /* Onboard Devices Extended Information */
364 dmi_save_extended_devices(dm);
365 }
366 }
367
368 static void __init print_filtered(const char *info)
369 {
370 const char *p;
371
372 if (!info)
373 return;
374
375 for (p = info; *p; p++)
376 if (isprint(*p))
377 printk(KERN_CONT "%c", *p);
378 else
379 printk(KERN_CONT "\\x%02x", *p & 0xff);
380 }
381
382 static void __init dmi_dump_ids(void)
383 {
384 const char *board; /* Board Name is optional */
385
386 printk(KERN_DEBUG "DMI: ");
387 print_filtered(dmi_get_system_info(DMI_SYS_VENDOR));
388 printk(KERN_CONT " ");
389 print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME));
390 board = dmi_get_system_info(DMI_BOARD_NAME);
391 if (board) {
392 printk(KERN_CONT "/");
393 print_filtered(board);
394 }
395 printk(KERN_CONT ", BIOS ");
396 print_filtered(dmi_get_system_info(DMI_BIOS_VERSION));
397 printk(KERN_CONT " ");
398 print_filtered(dmi_get_system_info(DMI_BIOS_DATE));
399 printk(KERN_CONT "\n");
400 }
401
402 static int __init dmi_present(const char __iomem *p)
403 {
404 u8 buf[15];
405
406 memcpy_fromio(buf, p, 15);
407 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
408 dmi_num = (buf[13] << 8) | buf[12];
409 dmi_len = (buf[7] << 8) | buf[6];
410 dmi_base = (buf[11] << 24) | (buf[10] << 16) |
411 (buf[9] << 8) | buf[8];
412
413 /*
414 * DMI version 0.0 means that the real version is taken from
415 * the SMBIOS version, which we don't know at this point.
416 */
417 if (buf[14] != 0)
418 printk(KERN_INFO "DMI %d.%d present.\n",
419 buf[14] >> 4, buf[14] & 0xF);
420 else
421 printk(KERN_INFO "DMI present.\n");
422 if (dmi_walk_early(dmi_decode) == 0) {
423 dmi_dump_ids();
424 return 0;
425 }
426 }
427 return 1;
428 }
429
430 void __init dmi_scan_machine(void)
431 {
432 char __iomem *p, *q;
433 int rc;
434
435 if (efi_enabled) {
436 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
437 goto error;
438
439 /* This is called as a core_initcall() because it isn't
440 * needed during early boot. This also means we can
441 * iounmap the space when we're done with it.
442 */
443 p = dmi_ioremap(efi.smbios, 32);
444 if (p == NULL)
445 goto error;
446
447 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
448 dmi_iounmap(p, 32);
449 if (!rc) {
450 dmi_available = 1;
451 goto out;
452 }
453 }
454 else {
455 /*
456 * no iounmap() for that ioremap(); it would be a no-op, but
457 * it's so early in setup that sucker gets confused into doing
458 * what it shouldn't if we actually call it.
459 */
460 p = dmi_ioremap(0xF0000, 0x10000);
461 if (p == NULL)
462 goto error;
463
464 for (q = p; q < p + 0x10000; q += 16) {
465 rc = dmi_present(q);
466 if (!rc) {
467 dmi_available = 1;
468 dmi_iounmap(p, 0x10000);
469 goto out;
470 }
471 }
472 dmi_iounmap(p, 0x10000);
473 }
474 error:
475 printk(KERN_INFO "DMI not present or invalid.\n");
476 out:
477 dmi_initialized = 1;
478 }
479
480 /**
481 * dmi_matches - check if dmi_system_id structure matches system DMI data
482 * @dmi: pointer to the dmi_system_id structure to check
483 */
484 static bool dmi_matches(const struct dmi_system_id *dmi)
485 {
486 int i;
487
488 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
489
490 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
491 int s = dmi->matches[i].slot;
492 if (s == DMI_NONE)
493 break;
494 if (dmi_ident[s]
495 && strstr(dmi_ident[s], dmi->matches[i].substr))
496 continue;
497 /* No match */
498 return false;
499 }
500 return true;
501 }
502
503 /**
504 * dmi_is_end_of_table - check for end-of-table marker
505 * @dmi: pointer to the dmi_system_id structure to check
506 */
507 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
508 {
509 return dmi->matches[0].slot == DMI_NONE;
510 }
511
512 /**
513 * dmi_check_system - check system DMI data
514 * @list: array of dmi_system_id structures to match against
515 * All non-null elements of the list must match
516 * their slot's (field index's) data (i.e., each
517 * list string must be a substring of the specified
518 * DMI slot's string data) to be considered a
519 * successful match.
520 *
521 * Walk the blacklist table running matching functions until someone
522 * returns non zero or we hit the end. Callback function is called for
523 * each successful match. Returns the number of matches.
524 */
525 int dmi_check_system(const struct dmi_system_id *list)
526 {
527 int count = 0;
528 const struct dmi_system_id *d;
529
530 for (d = list; !dmi_is_end_of_table(d); d++)
531 if (dmi_matches(d)) {
532 count++;
533 if (d->callback && d->callback(d))
534 break;
535 }
536
537 return count;
538 }
539 EXPORT_SYMBOL(dmi_check_system);
540
541 /**
542 * dmi_first_match - find dmi_system_id structure matching system DMI data
543 * @list: array of dmi_system_id structures to match against
544 * All non-null elements of the list must match
545 * their slot's (field index's) data (i.e., each
546 * list string must be a substring of the specified
547 * DMI slot's string data) to be considered a
548 * successful match.
549 *
550 * Walk the blacklist table until the first match is found. Return the
551 * pointer to the matching entry or NULL if there's no match.
552 */
553 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
554 {
555 const struct dmi_system_id *d;
556
557 for (d = list; !dmi_is_end_of_table(d); d++)
558 if (dmi_matches(d))
559 return d;
560
561 return NULL;
562 }
563 EXPORT_SYMBOL(dmi_first_match);
564
565 /**
566 * dmi_get_system_info - return DMI data value
567 * @field: data index (see enum dmi_field)
568 *
569 * Returns one DMI data value, can be used to perform
570 * complex DMI data checks.
571 */
572 const char *dmi_get_system_info(int field)
573 {
574 return dmi_ident[field];
575 }
576 EXPORT_SYMBOL(dmi_get_system_info);
577
578 /**
579 * dmi_name_in_serial - Check if string is in the DMI product serial information
580 * @str: string to check for
581 */
582 int dmi_name_in_serial(const char *str)
583 {
584 int f = DMI_PRODUCT_SERIAL;
585 if (dmi_ident[f] && strstr(dmi_ident[f], str))
586 return 1;
587 return 0;
588 }
589
590 /**
591 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
592 * @str: Case sensitive Name
593 */
594 int dmi_name_in_vendors(const char *str)
595 {
596 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
597 int i;
598 for (i = 0; fields[i] != DMI_NONE; i++) {
599 int f = fields[i];
600 if (dmi_ident[f] && strstr(dmi_ident[f], str))
601 return 1;
602 }
603 return 0;
604 }
605 EXPORT_SYMBOL(dmi_name_in_vendors);
606
607 /**
608 * dmi_find_device - find onboard device by type/name
609 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
610 * @name: device name string or %NULL to match all
611 * @from: previous device found in search, or %NULL for new search.
612 *
613 * Iterates through the list of known onboard devices. If a device is
614 * found with a matching @vendor and @device, a pointer to its device
615 * structure is returned. Otherwise, %NULL is returned.
616 * A new search is initiated by passing %NULL as the @from argument.
617 * If @from is not %NULL, searches continue from next device.
618 */
619 const struct dmi_device * dmi_find_device(int type, const char *name,
620 const struct dmi_device *from)
621 {
622 const struct list_head *head = from ? &from->list : &dmi_devices;
623 struct list_head *d;
624
625 for(d = head->next; d != &dmi_devices; d = d->next) {
626 const struct dmi_device *dev =
627 list_entry(d, struct dmi_device, list);
628
629 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
630 ((name == NULL) || (strcmp(dev->name, name) == 0)))
631 return dev;
632 }
633
634 return NULL;
635 }
636 EXPORT_SYMBOL(dmi_find_device);
637
638 /**
639 * dmi_get_date - parse a DMI date
640 * @field: data index (see enum dmi_field)
641 * @yearp: optional out parameter for the year
642 * @monthp: optional out parameter for the month
643 * @dayp: optional out parameter for the day
644 *
645 * The date field is assumed to be in the form resembling
646 * [mm[/dd]]/yy[yy] and the result is stored in the out
647 * parameters any or all of which can be omitted.
648 *
649 * If the field doesn't exist, all out parameters are set to zero
650 * and false is returned. Otherwise, true is returned with any
651 * invalid part of date set to zero.
652 *
653 * On return, year, month and day are guaranteed to be in the
654 * range of [0,9999], [0,12] and [0,31] respectively.
655 */
656 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
657 {
658 int year = 0, month = 0, day = 0;
659 bool exists;
660 const char *s, *y;
661 char *e;
662
663 s = dmi_get_system_info(field);
664 exists = s;
665 if (!exists)
666 goto out;
667
668 /*
669 * Determine year first. We assume the date string resembles
670 * mm/dd/yy[yy] but the original code extracted only the year
671 * from the end. Keep the behavior in the spirit of no
672 * surprises.
673 */
674 y = strrchr(s, '/');
675 if (!y)
676 goto out;
677
678 y++;
679 year = simple_strtoul(y, &e, 10);
680 if (y != e && year < 100) { /* 2-digit year */
681 year += 1900;
682 if (year < 1996) /* no dates < spec 1.0 */
683 year += 100;
684 }
685 if (year > 9999) /* year should fit in %04d */
686 year = 0;
687
688 /* parse the mm and dd */
689 month = simple_strtoul(s, &e, 10);
690 if (s == e || *e != '/' || !month || month > 12) {
691 month = 0;
692 goto out;
693 }
694
695 s = e + 1;
696 day = simple_strtoul(s, &e, 10);
697 if (s == y || s == e || *e != '/' || day > 31)
698 day = 0;
699 out:
700 if (yearp)
701 *yearp = year;
702 if (monthp)
703 *monthp = month;
704 if (dayp)
705 *dayp = day;
706 return exists;
707 }
708 EXPORT_SYMBOL(dmi_get_date);
709
710 /**
711 * dmi_walk - Walk the DMI table and get called back for every record
712 * @decode: Callback function
713 * @private_data: Private data to be passed to the callback function
714 *
715 * Returns -1 when the DMI table can't be reached, 0 on success.
716 */
717 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
718 void *private_data)
719 {
720 u8 *buf;
721
722 if (!dmi_available)
723 return -1;
724
725 buf = ioremap(dmi_base, dmi_len);
726 if (buf == NULL)
727 return -1;
728
729 dmi_table(buf, dmi_len, dmi_num, decode, private_data);
730
731 iounmap(buf);
732 return 0;
733 }
734 EXPORT_SYMBOL_GPL(dmi_walk);
735
736 /**
737 * dmi_match - compare a string to the dmi field (if exists)
738 * @f: DMI field identifier
739 * @str: string to compare the DMI field to
740 *
741 * Returns true if the requested field equals to the str (including NULL).
742 */
743 bool dmi_match(enum dmi_field f, const char *str)
744 {
745 const char *info = dmi_get_system_info(f);
746
747 if (info == NULL || str == NULL)
748 return info == str;
749
750 return !strcmp(info, str);
751 }
752 EXPORT_SYMBOL_GPL(dmi_match);
This page took 0.046809 seconds and 5 git commands to generate.