MAINTAINERS: Add phy-miphy28lp.c and phy-miphy365x.c to ARCH/STI architecture
[deliverable/linux.git] / drivers / firmware / dmi_scan.c
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12
13 /*
14 * DMI stands for "Desktop Management Interface". It is part
15 * of and an antecedent to, SMBIOS, which stands for System
16 * Management BIOS. See further: http://www.dmtf.org/standards
17 */
18 static const char dmi_empty_string[] = " ";
19
20 static u16 __initdata dmi_ver;
21 /*
22 * Catch too early calls to dmi_check_system():
23 */
24 static int dmi_initialized;
25
26 /* DMI system identification string used during boot */
27 static char dmi_ids_string[128] __initdata;
28
29 static struct dmi_memdev_info {
30 const char *device;
31 const char *bank;
32 u16 handle;
33 } *dmi_memdev;
34 static int dmi_memdev_nr;
35
36 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
37 {
38 const u8 *bp = ((u8 *) dm) + dm->length;
39
40 if (s) {
41 s--;
42 while (s > 0 && *bp) {
43 bp += strlen(bp) + 1;
44 s--;
45 }
46
47 if (*bp != 0) {
48 size_t len = strlen(bp)+1;
49 size_t cmp_len = len > 8 ? 8 : len;
50
51 if (!memcmp(bp, dmi_empty_string, cmp_len))
52 return dmi_empty_string;
53 return bp;
54 }
55 }
56
57 return "";
58 }
59
60 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
61 {
62 const char *bp = dmi_string_nosave(dm, s);
63 char *str;
64 size_t len;
65
66 if (bp == dmi_empty_string)
67 return dmi_empty_string;
68
69 len = strlen(bp) + 1;
70 str = dmi_alloc(len);
71 if (str != NULL)
72 strcpy(str, bp);
73
74 return str;
75 }
76
77 /*
78 * We have to be cautious here. We have seen BIOSes with DMI pointers
79 * pointing to completely the wrong place for example
80 */
81 static void dmi_table(u8 *buf, int len, int num,
82 void (*decode)(const struct dmi_header *, void *),
83 void *private_data)
84 {
85 u8 *data = buf;
86 int i = 0;
87
88 /*
89 * Stop when we see all the items the table claimed to have
90 * OR we run off the end of the table (also happens)
91 */
92 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
93 const struct dmi_header *dm = (const struct dmi_header *)data;
94
95 /*
96 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
97 */
98 if (dm->type == DMI_ENTRY_END_OF_TABLE)
99 break;
100
101 /*
102 * We want to know the total length (formatted area and
103 * strings) before decoding to make sure we won't run off the
104 * table in dmi_decode or dmi_string
105 */
106 data += dm->length;
107 while ((data - buf < len - 1) && (data[0] || data[1]))
108 data++;
109 if (data - buf < len - 1)
110 decode(dm, private_data);
111 data += 2;
112 i++;
113 }
114 }
115
116 static phys_addr_t dmi_base;
117 static u16 dmi_len;
118 static u16 dmi_num;
119
120 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
121 void *))
122 {
123 u8 *buf;
124
125 buf = dmi_early_remap(dmi_base, dmi_len);
126 if (buf == NULL)
127 return -1;
128
129 dmi_table(buf, dmi_len, dmi_num, decode, NULL);
130
131 add_device_randomness(buf, dmi_len);
132
133 dmi_early_unmap(buf, dmi_len);
134 return 0;
135 }
136
137 static int __init dmi_checksum(const u8 *buf, u8 len)
138 {
139 u8 sum = 0;
140 int a;
141
142 for (a = 0; a < len; a++)
143 sum += buf[a];
144
145 return sum == 0;
146 }
147
148 static const char *dmi_ident[DMI_STRING_MAX];
149 static LIST_HEAD(dmi_devices);
150 int dmi_available;
151
152 /*
153 * Save a DMI string
154 */
155 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
156 int string)
157 {
158 const char *d = (const char *) dm;
159 const char *p;
160
161 if (dmi_ident[slot])
162 return;
163
164 p = dmi_string(dm, d[string]);
165 if (p == NULL)
166 return;
167
168 dmi_ident[slot] = p;
169 }
170
171 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
172 int index)
173 {
174 const u8 *d = (u8 *) dm + index;
175 char *s;
176 int is_ff = 1, is_00 = 1, i;
177
178 if (dmi_ident[slot])
179 return;
180
181 for (i = 0; i < 16 && (is_ff || is_00); i++) {
182 if (d[i] != 0x00)
183 is_00 = 0;
184 if (d[i] != 0xFF)
185 is_ff = 0;
186 }
187
188 if (is_ff || is_00)
189 return;
190
191 s = dmi_alloc(16*2+4+1);
192 if (!s)
193 return;
194
195 /*
196 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
197 * the UUID are supposed to be little-endian encoded. The specification
198 * says that this is the defacto standard.
199 */
200 if (dmi_ver >= 0x0206)
201 sprintf(s, "%pUL", d);
202 else
203 sprintf(s, "%pUB", d);
204
205 dmi_ident[slot] = s;
206 }
207
208 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
209 int index)
210 {
211 const u8 *d = (u8 *) dm + index;
212 char *s;
213
214 if (dmi_ident[slot])
215 return;
216
217 s = dmi_alloc(4);
218 if (!s)
219 return;
220
221 sprintf(s, "%u", *d & 0x7F);
222 dmi_ident[slot] = s;
223 }
224
225 static void __init dmi_save_one_device(int type, const char *name)
226 {
227 struct dmi_device *dev;
228
229 /* No duplicate device */
230 if (dmi_find_device(type, name, NULL))
231 return;
232
233 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
234 if (!dev)
235 return;
236
237 dev->type = type;
238 strcpy((char *)(dev + 1), name);
239 dev->name = (char *)(dev + 1);
240 dev->device_data = NULL;
241 list_add(&dev->list, &dmi_devices);
242 }
243
244 static void __init dmi_save_devices(const struct dmi_header *dm)
245 {
246 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
247
248 for (i = 0; i < count; i++) {
249 const char *d = (char *)(dm + 1) + (i * 2);
250
251 /* Skip disabled device */
252 if ((*d & 0x80) == 0)
253 continue;
254
255 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
256 }
257 }
258
259 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
260 {
261 int i, count = *(u8 *)(dm + 1);
262 struct dmi_device *dev;
263
264 for (i = 1; i <= count; i++) {
265 const char *devname = dmi_string(dm, i);
266
267 if (devname == dmi_empty_string)
268 continue;
269
270 dev = dmi_alloc(sizeof(*dev));
271 if (!dev)
272 break;
273
274 dev->type = DMI_DEV_TYPE_OEM_STRING;
275 dev->name = devname;
276 dev->device_data = NULL;
277
278 list_add(&dev->list, &dmi_devices);
279 }
280 }
281
282 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
283 {
284 struct dmi_device *dev;
285 void *data;
286
287 data = dmi_alloc(dm->length);
288 if (data == NULL)
289 return;
290
291 memcpy(data, dm, dm->length);
292
293 dev = dmi_alloc(sizeof(*dev));
294 if (!dev)
295 return;
296
297 dev->type = DMI_DEV_TYPE_IPMI;
298 dev->name = "IPMI controller";
299 dev->device_data = data;
300
301 list_add_tail(&dev->list, &dmi_devices);
302 }
303
304 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
305 int devfn, const char *name)
306 {
307 struct dmi_dev_onboard *onboard_dev;
308
309 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
310 if (!onboard_dev)
311 return;
312
313 onboard_dev->instance = instance;
314 onboard_dev->segment = segment;
315 onboard_dev->bus = bus;
316 onboard_dev->devfn = devfn;
317
318 strcpy((char *)&onboard_dev[1], name);
319 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
320 onboard_dev->dev.name = (char *)&onboard_dev[1];
321 onboard_dev->dev.device_data = onboard_dev;
322
323 list_add(&onboard_dev->dev.list, &dmi_devices);
324 }
325
326 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
327 {
328 const u8 *d = (u8 *) dm + 5;
329
330 /* Skip disabled device */
331 if ((*d & 0x80) == 0)
332 return;
333
334 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
335 dmi_string_nosave(dm, *(d-1)));
336 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
337 }
338
339 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
340 {
341 if (dm->type != DMI_ENTRY_MEM_DEVICE)
342 return;
343 dmi_memdev_nr++;
344 }
345
346 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
347 {
348 const char *d = (const char *)dm;
349 static int nr;
350
351 if (dm->type != DMI_ENTRY_MEM_DEVICE)
352 return;
353 if (nr >= dmi_memdev_nr) {
354 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
355 return;
356 }
357 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
358 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
359 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
360 nr++;
361 }
362
363 void __init dmi_memdev_walk(void)
364 {
365 if (!dmi_available)
366 return;
367
368 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
369 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
370 if (dmi_memdev)
371 dmi_walk_early(save_mem_devices);
372 }
373 }
374
375 /*
376 * Process a DMI table entry. Right now all we care about are the BIOS
377 * and machine entries. For 2.5 we should pull the smbus controller info
378 * out of here.
379 */
380 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
381 {
382 switch (dm->type) {
383 case 0: /* BIOS Information */
384 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
385 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
386 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
387 break;
388 case 1: /* System Information */
389 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
390 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
391 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
392 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
393 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
394 break;
395 case 2: /* Base Board Information */
396 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
397 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
398 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
399 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
400 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
401 break;
402 case 3: /* Chassis Information */
403 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
404 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
405 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
406 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
407 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
408 break;
409 case 10: /* Onboard Devices Information */
410 dmi_save_devices(dm);
411 break;
412 case 11: /* OEM Strings */
413 dmi_save_oem_strings_devices(dm);
414 break;
415 case 38: /* IPMI Device Information */
416 dmi_save_ipmi_device(dm);
417 break;
418 case 41: /* Onboard Devices Extended Information */
419 dmi_save_extended_devices(dm);
420 }
421 }
422
423 static int __init print_filtered(char *buf, size_t len, const char *info)
424 {
425 int c = 0;
426 const char *p;
427
428 if (!info)
429 return c;
430
431 for (p = info; *p; p++)
432 if (isprint(*p))
433 c += scnprintf(buf + c, len - c, "%c", *p);
434 else
435 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
436 return c;
437 }
438
439 static void __init dmi_format_ids(char *buf, size_t len)
440 {
441 int c = 0;
442 const char *board; /* Board Name is optional */
443
444 c += print_filtered(buf + c, len - c,
445 dmi_get_system_info(DMI_SYS_VENDOR));
446 c += scnprintf(buf + c, len - c, " ");
447 c += print_filtered(buf + c, len - c,
448 dmi_get_system_info(DMI_PRODUCT_NAME));
449
450 board = dmi_get_system_info(DMI_BOARD_NAME);
451 if (board) {
452 c += scnprintf(buf + c, len - c, "/");
453 c += print_filtered(buf + c, len - c, board);
454 }
455 c += scnprintf(buf + c, len - c, ", BIOS ");
456 c += print_filtered(buf + c, len - c,
457 dmi_get_system_info(DMI_BIOS_VERSION));
458 c += scnprintf(buf + c, len - c, " ");
459 c += print_filtered(buf + c, len - c,
460 dmi_get_system_info(DMI_BIOS_DATE));
461 }
462
463 /*
464 * Check for DMI/SMBIOS headers in the system firmware image. Any
465 * SMBIOS header must start 16 bytes before the DMI header, so take a
466 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
467 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
468 * takes precedence) and return 0. Otherwise return 1.
469 */
470 static int __init dmi_present(const u8 *buf)
471 {
472 int smbios_ver;
473
474 if (memcmp(buf, "_SM_", 4) == 0 &&
475 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
476 smbios_ver = get_unaligned_be16(buf + 6);
477
478 /* Some BIOS report weird SMBIOS version, fix that up */
479 switch (smbios_ver) {
480 case 0x021F:
481 case 0x0221:
482 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
483 smbios_ver & 0xFF, 3);
484 smbios_ver = 0x0203;
485 break;
486 case 0x0233:
487 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
488 smbios_ver = 0x0206;
489 break;
490 }
491 } else {
492 smbios_ver = 0;
493 }
494
495 buf += 16;
496
497 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
498 dmi_num = get_unaligned_le16(buf + 12);
499 dmi_len = get_unaligned_le16(buf + 6);
500 dmi_base = get_unaligned_le32(buf + 8);
501
502 if (dmi_walk_early(dmi_decode) == 0) {
503 if (smbios_ver) {
504 dmi_ver = smbios_ver;
505 pr_info("SMBIOS %d.%d present.\n",
506 dmi_ver >> 8, dmi_ver & 0xFF);
507 } else {
508 dmi_ver = (buf[14] & 0xF0) << 4 |
509 (buf[14] & 0x0F);
510 pr_info("Legacy DMI %d.%d present.\n",
511 dmi_ver >> 8, dmi_ver & 0xFF);
512 }
513 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
514 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
515 return 0;
516 }
517 }
518
519 return 1;
520 }
521
522 /*
523 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
524 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
525 */
526 static int __init dmi_smbios3_present(const u8 *buf)
527 {
528 if (memcmp(buf, "_SM3_", 5) == 0 &&
529 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
530 dmi_ver = get_unaligned_be16(buf + 7);
531 dmi_len = get_unaligned_le32(buf + 12);
532 dmi_base = get_unaligned_le64(buf + 16);
533
534 /*
535 * The 64-bit SMBIOS 3.0 entry point no longer has a field
536 * containing the number of structures present in the table.
537 * Instead, it defines the table size as a maximum size, and
538 * relies on the end-of-table structure type (#127) to be used
539 * to signal the end of the table.
540 * So let's define dmi_num as an upper bound as well: each
541 * structure has a 4 byte header, so dmi_len / 4 is an upper
542 * bound for the number of structures in the table.
543 */
544 dmi_num = dmi_len / 4;
545
546 if (dmi_walk_early(dmi_decode) == 0) {
547 pr_info("SMBIOS %d.%d present.\n",
548 dmi_ver >> 8, dmi_ver & 0xFF);
549 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
550 pr_debug("DMI: %s\n", dmi_ids_string);
551 return 0;
552 }
553 }
554 return 1;
555 }
556
557 void __init dmi_scan_machine(void)
558 {
559 char __iomem *p, *q;
560 char buf[32];
561
562 if (efi_enabled(EFI_CONFIG_TABLES)) {
563 /*
564 * According to the DMTF SMBIOS reference spec v3.0.0, it is
565 * allowed to define both the 64-bit entry point (smbios3) and
566 * the 32-bit entry point (smbios), in which case they should
567 * either both point to the same SMBIOS structure table, or the
568 * table pointed to by the 64-bit entry point should contain a
569 * superset of the table contents pointed to by the 32-bit entry
570 * point (section 5.2)
571 * This implies that the 64-bit entry point should have
572 * precedence if it is defined and supported by the OS. If we
573 * have the 64-bit entry point, but fail to decode it, fall
574 * back to the legacy one (if available)
575 */
576 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
577 p = dmi_early_remap(efi.smbios3, 32);
578 if (p == NULL)
579 goto error;
580 memcpy_fromio(buf, p, 32);
581 dmi_early_unmap(p, 32);
582
583 if (!dmi_smbios3_present(buf)) {
584 dmi_available = 1;
585 goto out;
586 }
587 }
588 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
589 goto error;
590
591 /* This is called as a core_initcall() because it isn't
592 * needed during early boot. This also means we can
593 * iounmap the space when we're done with it.
594 */
595 p = dmi_early_remap(efi.smbios, 32);
596 if (p == NULL)
597 goto error;
598 memcpy_fromio(buf, p, 32);
599 dmi_early_unmap(p, 32);
600
601 if (!dmi_present(buf)) {
602 dmi_available = 1;
603 goto out;
604 }
605 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
606 p = dmi_early_remap(0xF0000, 0x10000);
607 if (p == NULL)
608 goto error;
609
610 /*
611 * Iterate over all possible DMI header addresses q.
612 * Maintain the 32 bytes around q in buf. On the
613 * first iteration, substitute zero for the
614 * out-of-range bytes so there is no chance of falsely
615 * detecting an SMBIOS header.
616 */
617 memset(buf, 0, 16);
618 for (q = p; q < p + 0x10000; q += 16) {
619 memcpy_fromio(buf + 16, q, 16);
620 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
621 dmi_available = 1;
622 dmi_early_unmap(p, 0x10000);
623 goto out;
624 }
625 memcpy(buf, buf + 16, 16);
626 }
627 dmi_early_unmap(p, 0x10000);
628 }
629 error:
630 pr_info("DMI not present or invalid.\n");
631 out:
632 dmi_initialized = 1;
633 }
634
635 /**
636 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
637 *
638 * Invoke dump_stack_set_arch_desc() with DMI system information so that
639 * DMI identifiers are printed out on task dumps. Arch boot code should
640 * call this function after dmi_scan_machine() if it wants to print out DMI
641 * identifiers on task dumps.
642 */
643 void __init dmi_set_dump_stack_arch_desc(void)
644 {
645 dump_stack_set_arch_desc("%s", dmi_ids_string);
646 }
647
648 /**
649 * dmi_matches - check if dmi_system_id structure matches system DMI data
650 * @dmi: pointer to the dmi_system_id structure to check
651 */
652 static bool dmi_matches(const struct dmi_system_id *dmi)
653 {
654 int i;
655
656 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
657
658 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
659 int s = dmi->matches[i].slot;
660 if (s == DMI_NONE)
661 break;
662 if (dmi_ident[s]) {
663 if (!dmi->matches[i].exact_match &&
664 strstr(dmi_ident[s], dmi->matches[i].substr))
665 continue;
666 else if (dmi->matches[i].exact_match &&
667 !strcmp(dmi_ident[s], dmi->matches[i].substr))
668 continue;
669 }
670
671 /* No match */
672 return false;
673 }
674 return true;
675 }
676
677 /**
678 * dmi_is_end_of_table - check for end-of-table marker
679 * @dmi: pointer to the dmi_system_id structure to check
680 */
681 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
682 {
683 return dmi->matches[0].slot == DMI_NONE;
684 }
685
686 /**
687 * dmi_check_system - check system DMI data
688 * @list: array of dmi_system_id structures to match against
689 * All non-null elements of the list must match
690 * their slot's (field index's) data (i.e., each
691 * list string must be a substring of the specified
692 * DMI slot's string data) to be considered a
693 * successful match.
694 *
695 * Walk the blacklist table running matching functions until someone
696 * returns non zero or we hit the end. Callback function is called for
697 * each successful match. Returns the number of matches.
698 */
699 int dmi_check_system(const struct dmi_system_id *list)
700 {
701 int count = 0;
702 const struct dmi_system_id *d;
703
704 for (d = list; !dmi_is_end_of_table(d); d++)
705 if (dmi_matches(d)) {
706 count++;
707 if (d->callback && d->callback(d))
708 break;
709 }
710
711 return count;
712 }
713 EXPORT_SYMBOL(dmi_check_system);
714
715 /**
716 * dmi_first_match - find dmi_system_id structure matching system DMI data
717 * @list: array of dmi_system_id structures to match against
718 * All non-null elements of the list must match
719 * their slot's (field index's) data (i.e., each
720 * list string must be a substring of the specified
721 * DMI slot's string data) to be considered a
722 * successful match.
723 *
724 * Walk the blacklist table until the first match is found. Return the
725 * pointer to the matching entry or NULL if there's no match.
726 */
727 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
728 {
729 const struct dmi_system_id *d;
730
731 for (d = list; !dmi_is_end_of_table(d); d++)
732 if (dmi_matches(d))
733 return d;
734
735 return NULL;
736 }
737 EXPORT_SYMBOL(dmi_first_match);
738
739 /**
740 * dmi_get_system_info - return DMI data value
741 * @field: data index (see enum dmi_field)
742 *
743 * Returns one DMI data value, can be used to perform
744 * complex DMI data checks.
745 */
746 const char *dmi_get_system_info(int field)
747 {
748 return dmi_ident[field];
749 }
750 EXPORT_SYMBOL(dmi_get_system_info);
751
752 /**
753 * dmi_name_in_serial - Check if string is in the DMI product serial information
754 * @str: string to check for
755 */
756 int dmi_name_in_serial(const char *str)
757 {
758 int f = DMI_PRODUCT_SERIAL;
759 if (dmi_ident[f] && strstr(dmi_ident[f], str))
760 return 1;
761 return 0;
762 }
763
764 /**
765 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
766 * @str: Case sensitive Name
767 */
768 int dmi_name_in_vendors(const char *str)
769 {
770 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
771 int i;
772 for (i = 0; fields[i] != DMI_NONE; i++) {
773 int f = fields[i];
774 if (dmi_ident[f] && strstr(dmi_ident[f], str))
775 return 1;
776 }
777 return 0;
778 }
779 EXPORT_SYMBOL(dmi_name_in_vendors);
780
781 /**
782 * dmi_find_device - find onboard device by type/name
783 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
784 * @name: device name string or %NULL to match all
785 * @from: previous device found in search, or %NULL for new search.
786 *
787 * Iterates through the list of known onboard devices. If a device is
788 * found with a matching @vendor and @device, a pointer to its device
789 * structure is returned. Otherwise, %NULL is returned.
790 * A new search is initiated by passing %NULL as the @from argument.
791 * If @from is not %NULL, searches continue from next device.
792 */
793 const struct dmi_device *dmi_find_device(int type, const char *name,
794 const struct dmi_device *from)
795 {
796 const struct list_head *head = from ? &from->list : &dmi_devices;
797 struct list_head *d;
798
799 for (d = head->next; d != &dmi_devices; d = d->next) {
800 const struct dmi_device *dev =
801 list_entry(d, struct dmi_device, list);
802
803 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
804 ((name == NULL) || (strcmp(dev->name, name) == 0)))
805 return dev;
806 }
807
808 return NULL;
809 }
810 EXPORT_SYMBOL(dmi_find_device);
811
812 /**
813 * dmi_get_date - parse a DMI date
814 * @field: data index (see enum dmi_field)
815 * @yearp: optional out parameter for the year
816 * @monthp: optional out parameter for the month
817 * @dayp: optional out parameter for the day
818 *
819 * The date field is assumed to be in the form resembling
820 * [mm[/dd]]/yy[yy] and the result is stored in the out
821 * parameters any or all of which can be omitted.
822 *
823 * If the field doesn't exist, all out parameters are set to zero
824 * and false is returned. Otherwise, true is returned with any
825 * invalid part of date set to zero.
826 *
827 * On return, year, month and day are guaranteed to be in the
828 * range of [0,9999], [0,12] and [0,31] respectively.
829 */
830 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
831 {
832 int year = 0, month = 0, day = 0;
833 bool exists;
834 const char *s, *y;
835 char *e;
836
837 s = dmi_get_system_info(field);
838 exists = s;
839 if (!exists)
840 goto out;
841
842 /*
843 * Determine year first. We assume the date string resembles
844 * mm/dd/yy[yy] but the original code extracted only the year
845 * from the end. Keep the behavior in the spirit of no
846 * surprises.
847 */
848 y = strrchr(s, '/');
849 if (!y)
850 goto out;
851
852 y++;
853 year = simple_strtoul(y, &e, 10);
854 if (y != e && year < 100) { /* 2-digit year */
855 year += 1900;
856 if (year < 1996) /* no dates < spec 1.0 */
857 year += 100;
858 }
859 if (year > 9999) /* year should fit in %04d */
860 year = 0;
861
862 /* parse the mm and dd */
863 month = simple_strtoul(s, &e, 10);
864 if (s == e || *e != '/' || !month || month > 12) {
865 month = 0;
866 goto out;
867 }
868
869 s = e + 1;
870 day = simple_strtoul(s, &e, 10);
871 if (s == y || s == e || *e != '/' || day > 31)
872 day = 0;
873 out:
874 if (yearp)
875 *yearp = year;
876 if (monthp)
877 *monthp = month;
878 if (dayp)
879 *dayp = day;
880 return exists;
881 }
882 EXPORT_SYMBOL(dmi_get_date);
883
884 /**
885 * dmi_walk - Walk the DMI table and get called back for every record
886 * @decode: Callback function
887 * @private_data: Private data to be passed to the callback function
888 *
889 * Returns -1 when the DMI table can't be reached, 0 on success.
890 */
891 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
892 void *private_data)
893 {
894 u8 *buf;
895
896 if (!dmi_available)
897 return -1;
898
899 buf = dmi_remap(dmi_base, dmi_len);
900 if (buf == NULL)
901 return -1;
902
903 dmi_table(buf, dmi_len, dmi_num, decode, private_data);
904
905 dmi_unmap(buf);
906 return 0;
907 }
908 EXPORT_SYMBOL_GPL(dmi_walk);
909
910 /**
911 * dmi_match - compare a string to the dmi field (if exists)
912 * @f: DMI field identifier
913 * @str: string to compare the DMI field to
914 *
915 * Returns true if the requested field equals to the str (including NULL).
916 */
917 bool dmi_match(enum dmi_field f, const char *str)
918 {
919 const char *info = dmi_get_system_info(f);
920
921 if (info == NULL || str == NULL)
922 return info == str;
923
924 return !strcmp(info, str);
925 }
926 EXPORT_SYMBOL_GPL(dmi_match);
927
928 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
929 {
930 int n;
931
932 if (dmi_memdev == NULL)
933 return;
934
935 for (n = 0; n < dmi_memdev_nr; n++) {
936 if (handle == dmi_memdev[n].handle) {
937 *bank = dmi_memdev[n].bank;
938 *device = dmi_memdev[n].device;
939 break;
940 }
941 }
942 }
943 EXPORT_SYMBOL_GPL(dmi_memdev_name);
This page took 0.049514 seconds and 5 git commands to generate.