Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[deliverable/linux.git] / drivers / firmware / memmap.c
1 /*
2 * linux/drivers/firmware/memmap.c
3 * Copyright (C) 2008 SUSE LINUX Products GmbH
4 * by Bernhard Walle <bernhard.walle@gmx.de>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License v2.0 as published by
8 * the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 */
16
17 #include <linux/string.h>
18 #include <linux/firmware-map.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/bootmem.h>
23 #include <linux/slab.h>
24 #include <linux/mm.h>
25
26 /*
27 * Data types ------------------------------------------------------------------
28 */
29
30 /*
31 * Firmware map entry. Because firmware memory maps are flat and not
32 * hierarchical, it's ok to organise them in a linked list. No parent
33 * information is necessary as for the resource tree.
34 */
35 struct firmware_map_entry {
36 /*
37 * start and end must be u64 rather than resource_size_t, because e820
38 * resources can lie at addresses above 4G.
39 */
40 u64 start; /* start of the memory range */
41 u64 end; /* end of the memory range (incl.) */
42 const char *type; /* type of the memory range */
43 struct list_head list; /* entry for the linked list */
44 struct kobject kobj; /* kobject for each entry */
45 };
46
47 /*
48 * Forward declarations --------------------------------------------------------
49 */
50 static ssize_t memmap_attr_show(struct kobject *kobj,
51 struct attribute *attr, char *buf);
52 static ssize_t start_show(struct firmware_map_entry *entry, char *buf);
53 static ssize_t end_show(struct firmware_map_entry *entry, char *buf);
54 static ssize_t type_show(struct firmware_map_entry *entry, char *buf);
55
56 static struct firmware_map_entry * __meminit
57 firmware_map_find_entry(u64 start, u64 end, const char *type);
58
59 /*
60 * Static data -----------------------------------------------------------------
61 */
62
63 struct memmap_attribute {
64 struct attribute attr;
65 ssize_t (*show)(struct firmware_map_entry *entry, char *buf);
66 };
67
68 static struct memmap_attribute memmap_start_attr = __ATTR_RO(start);
69 static struct memmap_attribute memmap_end_attr = __ATTR_RO(end);
70 static struct memmap_attribute memmap_type_attr = __ATTR_RO(type);
71
72 /*
73 * These are default attributes that are added for every memmap entry.
74 */
75 static struct attribute *def_attrs[] = {
76 &memmap_start_attr.attr,
77 &memmap_end_attr.attr,
78 &memmap_type_attr.attr,
79 NULL
80 };
81
82 static const struct sysfs_ops memmap_attr_ops = {
83 .show = memmap_attr_show,
84 };
85
86 /* Firmware memory map entries. */
87 static LIST_HEAD(map_entries);
88 static DEFINE_SPINLOCK(map_entries_lock);
89
90 /*
91 * For memory hotplug, there is no way to free memory map entries allocated
92 * by boot mem after the system is up. So when we hot-remove memory whose
93 * map entry is allocated by bootmem, we need to remember the storage and
94 * reuse it when the memory is hot-added again.
95 */
96 static LIST_HEAD(map_entries_bootmem);
97 static DEFINE_SPINLOCK(map_entries_bootmem_lock);
98
99
100 static inline struct firmware_map_entry *
101 to_memmap_entry(struct kobject *kobj)
102 {
103 return container_of(kobj, struct firmware_map_entry, kobj);
104 }
105
106 static void __meminit release_firmware_map_entry(struct kobject *kobj)
107 {
108 struct firmware_map_entry *entry = to_memmap_entry(kobj);
109
110 if (PageReserved(virt_to_page(entry))) {
111 /*
112 * Remember the storage allocated by bootmem, and reuse it when
113 * the memory is hot-added again. The entry will be added to
114 * map_entries_bootmem here, and deleted from &map_entries in
115 * firmware_map_remove_entry().
116 */
117 spin_lock(&map_entries_bootmem_lock);
118 list_add(&entry->list, &map_entries_bootmem);
119 spin_unlock(&map_entries_bootmem_lock);
120
121 return;
122 }
123
124 kfree(entry);
125 }
126
127 static struct kobj_type __refdata memmap_ktype = {
128 .release = release_firmware_map_entry,
129 .sysfs_ops = &memmap_attr_ops,
130 .default_attrs = def_attrs,
131 };
132
133 /*
134 * Registration functions ------------------------------------------------------
135 */
136
137 /**
138 * firmware_map_add_entry() - Does the real work to add a firmware memmap entry.
139 * @start: Start of the memory range.
140 * @end: End of the memory range (exclusive).
141 * @type: Type of the memory range.
142 * @entry: Pre-allocated (either kmalloc() or bootmem allocator), uninitialised
143 * entry.
144 *
145 * Common implementation of firmware_map_add() and firmware_map_add_early()
146 * which expects a pre-allocated struct firmware_map_entry.
147 **/
148 static int firmware_map_add_entry(u64 start, u64 end,
149 const char *type,
150 struct firmware_map_entry *entry)
151 {
152 BUG_ON(start > end);
153
154 entry->start = start;
155 entry->end = end - 1;
156 entry->type = type;
157 INIT_LIST_HEAD(&entry->list);
158 kobject_init(&entry->kobj, &memmap_ktype);
159
160 spin_lock(&map_entries_lock);
161 list_add_tail(&entry->list, &map_entries);
162 spin_unlock(&map_entries_lock);
163
164 return 0;
165 }
166
167 /**
168 * firmware_map_remove_entry() - Does the real work to remove a firmware
169 * memmap entry.
170 * @entry: removed entry.
171 *
172 * The caller must hold map_entries_lock, and release it properly.
173 **/
174 static inline void firmware_map_remove_entry(struct firmware_map_entry *entry)
175 {
176 list_del(&entry->list);
177 }
178
179 /*
180 * Add memmap entry on sysfs
181 */
182 static int add_sysfs_fw_map_entry(struct firmware_map_entry *entry)
183 {
184 static int map_entries_nr;
185 static struct kset *mmap_kset;
186
187 if (!mmap_kset) {
188 mmap_kset = kset_create_and_add("memmap", NULL, firmware_kobj);
189 if (!mmap_kset)
190 return -ENOMEM;
191 }
192
193 entry->kobj.kset = mmap_kset;
194 if (kobject_add(&entry->kobj, NULL, "%d", map_entries_nr++))
195 kobject_put(&entry->kobj);
196
197 return 0;
198 }
199
200 /*
201 * Remove memmap entry on sysfs
202 */
203 static inline void remove_sysfs_fw_map_entry(struct firmware_map_entry *entry)
204 {
205 kobject_put(&entry->kobj);
206 }
207
208 /*
209 * firmware_map_find_entry_in_list() - Search memmap entry in a given list.
210 * @start: Start of the memory range.
211 * @end: End of the memory range (exclusive).
212 * @type: Type of the memory range.
213 * @list: In which to find the entry.
214 *
215 * This function is to find the memmap entey of a given memory range in a
216 * given list. The caller must hold map_entries_lock, and must not release
217 * the lock until the processing of the returned entry has completed.
218 *
219 * Return: Pointer to the entry to be found on success, or NULL on failure.
220 */
221 static struct firmware_map_entry * __meminit
222 firmware_map_find_entry_in_list(u64 start, u64 end, const char *type,
223 struct list_head *list)
224 {
225 struct firmware_map_entry *entry;
226
227 list_for_each_entry(entry, list, list)
228 if ((entry->start == start) && (entry->end == end) &&
229 (!strcmp(entry->type, type))) {
230 return entry;
231 }
232
233 return NULL;
234 }
235
236 /*
237 * firmware_map_find_entry() - Search memmap entry in map_entries.
238 * @start: Start of the memory range.
239 * @end: End of the memory range (exclusive).
240 * @type: Type of the memory range.
241 *
242 * This function is to find the memmap entey of a given memory range.
243 * The caller must hold map_entries_lock, and must not release the lock
244 * until the processing of the returned entry has completed.
245 *
246 * Return: Pointer to the entry to be found on success, or NULL on failure.
247 */
248 static struct firmware_map_entry * __meminit
249 firmware_map_find_entry(u64 start, u64 end, const char *type)
250 {
251 return firmware_map_find_entry_in_list(start, end, type, &map_entries);
252 }
253
254 /*
255 * firmware_map_find_entry_bootmem() - Search memmap entry in map_entries_bootmem.
256 * @start: Start of the memory range.
257 * @end: End of the memory range (exclusive).
258 * @type: Type of the memory range.
259 *
260 * This function is similar to firmware_map_find_entry except that it find the
261 * given entry in map_entries_bootmem.
262 *
263 * Return: Pointer to the entry to be found on success, or NULL on failure.
264 */
265 static struct firmware_map_entry * __meminit
266 firmware_map_find_entry_bootmem(u64 start, u64 end, const char *type)
267 {
268 return firmware_map_find_entry_in_list(start, end, type,
269 &map_entries_bootmem);
270 }
271
272 /**
273 * firmware_map_add_hotplug() - Adds a firmware mapping entry when we do
274 * memory hotplug.
275 * @start: Start of the memory range.
276 * @end: End of the memory range (exclusive)
277 * @type: Type of the memory range.
278 *
279 * Adds a firmware mapping entry. This function is for memory hotplug, it is
280 * similar to function firmware_map_add_early(). The only difference is that
281 * it will create the syfs entry dynamically.
282 *
283 * Returns 0 on success, or -ENOMEM if no memory could be allocated.
284 **/
285 int __meminit firmware_map_add_hotplug(u64 start, u64 end, const char *type)
286 {
287 struct firmware_map_entry *entry;
288
289 entry = firmware_map_find_entry_bootmem(start, end, type);
290 if (!entry) {
291 entry = kzalloc(sizeof(struct firmware_map_entry), GFP_ATOMIC);
292 if (!entry)
293 return -ENOMEM;
294 } else {
295 /* Reuse storage allocated by bootmem. */
296 spin_lock(&map_entries_bootmem_lock);
297 list_del(&entry->list);
298 spin_unlock(&map_entries_bootmem_lock);
299
300 memset(entry, 0, sizeof(*entry));
301 }
302
303 firmware_map_add_entry(start, end, type, entry);
304 /* create the memmap entry */
305 add_sysfs_fw_map_entry(entry);
306
307 return 0;
308 }
309
310 /**
311 * firmware_map_add_early() - Adds a firmware mapping entry.
312 * @start: Start of the memory range.
313 * @end: End of the memory range.
314 * @type: Type of the memory range.
315 *
316 * Adds a firmware mapping entry. This function uses the bootmem allocator
317 * for memory allocation.
318 *
319 * That function must be called before late_initcall.
320 *
321 * Returns 0 on success, or -ENOMEM if no memory could be allocated.
322 **/
323 int __init firmware_map_add_early(u64 start, u64 end, const char *type)
324 {
325 struct firmware_map_entry *entry;
326
327 entry = alloc_bootmem(sizeof(struct firmware_map_entry));
328 if (WARN_ON(!entry))
329 return -ENOMEM;
330
331 return firmware_map_add_entry(start, end, type, entry);
332 }
333
334 /**
335 * firmware_map_remove() - remove a firmware mapping entry
336 * @start: Start of the memory range.
337 * @end: End of the memory range.
338 * @type: Type of the memory range.
339 *
340 * removes a firmware mapping entry.
341 *
342 * Returns 0 on success, or -EINVAL if no entry.
343 **/
344 int __meminit firmware_map_remove(u64 start, u64 end, const char *type)
345 {
346 struct firmware_map_entry *entry;
347
348 spin_lock(&map_entries_lock);
349 entry = firmware_map_find_entry(start, end - 1, type);
350 if (!entry) {
351 spin_unlock(&map_entries_lock);
352 return -EINVAL;
353 }
354
355 firmware_map_remove_entry(entry);
356 spin_unlock(&map_entries_lock);
357
358 /* remove the memmap entry */
359 remove_sysfs_fw_map_entry(entry);
360
361 return 0;
362 }
363
364 /*
365 * Sysfs functions -------------------------------------------------------------
366 */
367
368 static ssize_t start_show(struct firmware_map_entry *entry, char *buf)
369 {
370 return snprintf(buf, PAGE_SIZE, "0x%llx\n",
371 (unsigned long long)entry->start);
372 }
373
374 static ssize_t end_show(struct firmware_map_entry *entry, char *buf)
375 {
376 return snprintf(buf, PAGE_SIZE, "0x%llx\n",
377 (unsigned long long)entry->end);
378 }
379
380 static ssize_t type_show(struct firmware_map_entry *entry, char *buf)
381 {
382 return snprintf(buf, PAGE_SIZE, "%s\n", entry->type);
383 }
384
385 static inline struct memmap_attribute *to_memmap_attr(struct attribute *attr)
386 {
387 return container_of(attr, struct memmap_attribute, attr);
388 }
389
390 static ssize_t memmap_attr_show(struct kobject *kobj,
391 struct attribute *attr, char *buf)
392 {
393 struct firmware_map_entry *entry = to_memmap_entry(kobj);
394 struct memmap_attribute *memmap_attr = to_memmap_attr(attr);
395
396 return memmap_attr->show(entry, buf);
397 }
398
399 /*
400 * Initialises stuff and adds the entries in the map_entries list to
401 * sysfs. Important is that firmware_map_add() and firmware_map_add_early()
402 * must be called before late_initcall. That's just because that function
403 * is called as late_initcall() function, which means that if you call
404 * firmware_map_add() or firmware_map_add_early() afterwards, the entries
405 * are not added to sysfs.
406 */
407 static int __init firmware_memmap_init(void)
408 {
409 struct firmware_map_entry *entry;
410
411 list_for_each_entry(entry, &map_entries, list)
412 add_sysfs_fw_map_entry(entry);
413
414 return 0;
415 }
416 late_initcall(firmware_memmap_init);
417
This page took 0.043418 seconds and 5 git commands to generate.