drm/amdgpu: keep the owner for VMIDs
[deliverable/linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <drm/drmP.h>
29 #include <drm/amdgpu_drm.h>
30 #include "amdgpu.h"
31 #include "amdgpu_trace.h"
32
33 /*
34 * GPUVM
35 * GPUVM is similar to the legacy gart on older asics, however
36 * rather than there being a single global gart table
37 * for the entire GPU, there are multiple VM page tables active
38 * at any given time. The VM page tables can contain a mix
39 * vram pages and system memory pages and system memory pages
40 * can be mapped as snooped (cached system pages) or unsnooped
41 * (uncached system pages).
42 * Each VM has an ID associated with it and there is a page table
43 * associated with each VMID. When execting a command buffer,
44 * the kernel tells the the ring what VMID to use for that command
45 * buffer. VMIDs are allocated dynamically as commands are submitted.
46 * The userspace drivers maintain their own address space and the kernel
47 * sets up their pages tables accordingly when they submit their
48 * command buffers and a VMID is assigned.
49 * Cayman/Trinity support up to 8 active VMs at any given time;
50 * SI supports 16.
51 */
52
53 /**
54 * amdgpu_vm_num_pde - return the number of page directory entries
55 *
56 * @adev: amdgpu_device pointer
57 *
58 * Calculate the number of page directory entries (cayman+).
59 */
60 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
61 {
62 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
63 }
64
65 /**
66 * amdgpu_vm_directory_size - returns the size of the page directory in bytes
67 *
68 * @adev: amdgpu_device pointer
69 *
70 * Calculate the size of the page directory in bytes (cayman+).
71 */
72 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
73 {
74 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
75 }
76
77 /**
78 * amdgpu_vm_get_bos - add the vm BOs to a validation list
79 *
80 * @vm: vm providing the BOs
81 * @head: head of validation list
82 *
83 * Add the page directory to the list of BOs to
84 * validate for command submission (cayman+).
85 */
86 struct amdgpu_bo_list_entry *amdgpu_vm_get_bos(struct amdgpu_device *adev,
87 struct amdgpu_vm *vm,
88 struct list_head *head)
89 {
90 struct amdgpu_bo_list_entry *list;
91 unsigned i, idx;
92
93 list = drm_malloc_ab(vm->max_pde_used + 2,
94 sizeof(struct amdgpu_bo_list_entry));
95 if (!list) {
96 return NULL;
97 }
98
99 /* add the vm page table to the list */
100 list[0].robj = vm->page_directory;
101 list[0].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
102 list[0].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
103 list[0].priority = 0;
104 list[0].tv.bo = &vm->page_directory->tbo;
105 list[0].tv.shared = true;
106 list_add(&list[0].tv.head, head);
107
108 for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
109 if (!vm->page_tables[i].bo)
110 continue;
111
112 list[idx].robj = vm->page_tables[i].bo;
113 list[idx].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
114 list[idx].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
115 list[idx].priority = 0;
116 list[idx].tv.bo = &list[idx].robj->tbo;
117 list[idx].tv.shared = true;
118 list_add(&list[idx++].tv.head, head);
119 }
120
121 return list;
122 }
123
124 /**
125 * amdgpu_vm_grab_id - allocate the next free VMID
126 *
127 * @vm: vm to allocate id for
128 * @ring: ring we want to submit job to
129 * @sync: sync object where we add dependencies
130 *
131 * Allocate an id for the vm, adding fences to the sync obj as necessary.
132 *
133 * Global mutex must be locked!
134 */
135 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
136 struct amdgpu_sync *sync)
137 {
138 struct fence *best[AMDGPU_MAX_RINGS] = {};
139 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
140 struct amdgpu_device *adev = ring->adev;
141
142 unsigned choices[2] = {};
143 unsigned i;
144
145 /* check if the id is still valid */
146 if (vm_id->id) {
147 unsigned id = vm_id->id;
148 long owner;
149
150 owner = atomic_long_read(&adev->vm_manager.ids[id].owner);
151 if (owner == (long)vm) {
152 trace_amdgpu_vm_grab_id(vm_id->id, ring->idx);
153 return 0;
154 }
155 }
156
157 /* we definately need to flush */
158 vm_id->pd_gpu_addr = ~0ll;
159
160 /* skip over VMID 0, since it is the system VM */
161 for (i = 1; i < adev->vm_manager.nvm; ++i) {
162 struct fence *fence = adev->vm_manager.ids[i].active;
163 struct amdgpu_ring *fring;
164
165 if (fence == NULL) {
166 /* found a free one */
167 vm_id->id = i;
168 trace_amdgpu_vm_grab_id(i, ring->idx);
169 return 0;
170 }
171
172 fring = amdgpu_ring_from_fence(fence);
173 if (best[fring->idx] == NULL ||
174 fence_is_later(best[fring->idx], fence)) {
175 best[fring->idx] = fence;
176 choices[fring == ring ? 0 : 1] = i;
177 }
178 }
179
180 for (i = 0; i < 2; ++i) {
181 if (choices[i]) {
182 struct fence *fence;
183
184 fence = adev->vm_manager.ids[choices[i]].active;
185 vm_id->id = choices[i];
186
187 trace_amdgpu_vm_grab_id(choices[i], ring->idx);
188 return amdgpu_sync_fence(ring->adev, sync, fence);
189 }
190 }
191
192 /* should never happen */
193 BUG();
194 return -EINVAL;
195 }
196
197 /**
198 * amdgpu_vm_flush - hardware flush the vm
199 *
200 * @ring: ring to use for flush
201 * @vm: vm we want to flush
202 * @updates: last vm update that we waited for
203 *
204 * Flush the vm (cayman+).
205 *
206 * Global and local mutex must be locked!
207 */
208 void amdgpu_vm_flush(struct amdgpu_ring *ring,
209 struct amdgpu_vm *vm,
210 struct fence *updates)
211 {
212 uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
213 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
214 struct fence *flushed_updates = vm_id->flushed_updates;
215 bool is_later;
216
217 if (!flushed_updates)
218 is_later = true;
219 else if (!updates)
220 is_later = false;
221 else
222 is_later = fence_is_later(updates, flushed_updates);
223
224 if (pd_addr != vm_id->pd_gpu_addr || is_later) {
225 trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id->id);
226 if (is_later) {
227 vm_id->flushed_updates = fence_get(updates);
228 fence_put(flushed_updates);
229 }
230 vm_id->pd_gpu_addr = pd_addr;
231 amdgpu_ring_emit_vm_flush(ring, vm_id->id, vm_id->pd_gpu_addr);
232 }
233 }
234
235 /**
236 * amdgpu_vm_fence - remember fence for vm
237 *
238 * @adev: amdgpu_device pointer
239 * @vm: vm we want to fence
240 * @fence: fence to remember
241 *
242 * Fence the vm (cayman+).
243 * Set the fence used to protect page table and id.
244 *
245 * Global and local mutex must be locked!
246 */
247 void amdgpu_vm_fence(struct amdgpu_device *adev,
248 struct amdgpu_vm *vm,
249 struct fence *fence)
250 {
251 struct amdgpu_ring *ring = amdgpu_ring_from_fence(fence);
252 unsigned vm_id = vm->ids[ring->idx].id;
253
254 fence_put(adev->vm_manager.ids[vm_id].active);
255 adev->vm_manager.ids[vm_id].active = fence_get(fence);
256 atomic_long_set(&adev->vm_manager.ids[vm_id].owner, (long)vm);
257 }
258
259 /**
260 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
261 *
262 * @vm: requested vm
263 * @bo: requested buffer object
264 *
265 * Find @bo inside the requested vm (cayman+).
266 * Search inside the @bos vm list for the requested vm
267 * Returns the found bo_va or NULL if none is found
268 *
269 * Object has to be reserved!
270 */
271 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
272 struct amdgpu_bo *bo)
273 {
274 struct amdgpu_bo_va *bo_va;
275
276 list_for_each_entry(bo_va, &bo->va, bo_list) {
277 if (bo_va->vm == vm) {
278 return bo_va;
279 }
280 }
281 return NULL;
282 }
283
284 /**
285 * amdgpu_vm_update_pages - helper to call the right asic function
286 *
287 * @adev: amdgpu_device pointer
288 * @ib: indirect buffer to fill with commands
289 * @pe: addr of the page entry
290 * @addr: dst addr to write into pe
291 * @count: number of page entries to update
292 * @incr: increase next addr by incr bytes
293 * @flags: hw access flags
294 * @gtt_flags: GTT hw access flags
295 *
296 * Traces the parameters and calls the right asic functions
297 * to setup the page table using the DMA.
298 */
299 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
300 struct amdgpu_ib *ib,
301 uint64_t pe, uint64_t addr,
302 unsigned count, uint32_t incr,
303 uint32_t flags, uint32_t gtt_flags)
304 {
305 trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
306
307 if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
308 uint64_t src = adev->gart.table_addr + (addr >> 12) * 8;
309 amdgpu_vm_copy_pte(adev, ib, pe, src, count);
310
311 } else if ((flags & AMDGPU_PTE_SYSTEM) || (count < 3)) {
312 amdgpu_vm_write_pte(adev, ib, pe, addr,
313 count, incr, flags);
314
315 } else {
316 amdgpu_vm_set_pte_pde(adev, ib, pe, addr,
317 count, incr, flags);
318 }
319 }
320
321 int amdgpu_vm_free_job(struct amdgpu_job *job)
322 {
323 int i;
324 for (i = 0; i < job->num_ibs; i++)
325 amdgpu_ib_free(job->adev, &job->ibs[i]);
326 kfree(job->ibs);
327 return 0;
328 }
329
330 /**
331 * amdgpu_vm_clear_bo - initially clear the page dir/table
332 *
333 * @adev: amdgpu_device pointer
334 * @bo: bo to clear
335 */
336 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
337 struct amdgpu_bo *bo)
338 {
339 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
340 struct fence *fence = NULL;
341 struct amdgpu_ib *ib;
342 unsigned entries;
343 uint64_t addr;
344 int r;
345
346 r = amdgpu_bo_reserve(bo, false);
347 if (r)
348 return r;
349
350 r = reservation_object_reserve_shared(bo->tbo.resv);
351 if (r)
352 return r;
353
354 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
355 if (r)
356 goto error_unreserve;
357
358 addr = amdgpu_bo_gpu_offset(bo);
359 entries = amdgpu_bo_size(bo) / 8;
360
361 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
362 if (!ib)
363 goto error_unreserve;
364
365 r = amdgpu_ib_get(ring, NULL, entries * 2 + 64, ib);
366 if (r)
367 goto error_free;
368
369 ib->length_dw = 0;
370
371 amdgpu_vm_update_pages(adev, ib, addr, 0, entries, 0, 0, 0);
372 amdgpu_vm_pad_ib(adev, ib);
373 WARN_ON(ib->length_dw > 64);
374 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
375 &amdgpu_vm_free_job,
376 AMDGPU_FENCE_OWNER_VM,
377 &fence);
378 if (!r)
379 amdgpu_bo_fence(bo, fence, true);
380 fence_put(fence);
381 if (amdgpu_enable_scheduler) {
382 amdgpu_bo_unreserve(bo);
383 return 0;
384 }
385 error_free:
386 amdgpu_ib_free(adev, ib);
387 kfree(ib);
388
389 error_unreserve:
390 amdgpu_bo_unreserve(bo);
391 return r;
392 }
393
394 /**
395 * amdgpu_vm_map_gart - get the physical address of a gart page
396 *
397 * @adev: amdgpu_device pointer
398 * @addr: the unmapped addr
399 *
400 * Look up the physical address of the page that the pte resolves
401 * to (cayman+).
402 * Returns the physical address of the page.
403 */
404 uint64_t amdgpu_vm_map_gart(struct amdgpu_device *adev, uint64_t addr)
405 {
406 uint64_t result;
407
408 /* page table offset */
409 result = adev->gart.pages_addr[addr >> PAGE_SHIFT];
410
411 /* in case cpu page size != gpu page size*/
412 result |= addr & (~PAGE_MASK);
413
414 return result;
415 }
416
417 /**
418 * amdgpu_vm_update_pdes - make sure that page directory is valid
419 *
420 * @adev: amdgpu_device pointer
421 * @vm: requested vm
422 * @start: start of GPU address range
423 * @end: end of GPU address range
424 *
425 * Allocates new page tables if necessary
426 * and updates the page directory (cayman+).
427 * Returns 0 for success, error for failure.
428 *
429 * Global and local mutex must be locked!
430 */
431 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
432 struct amdgpu_vm *vm)
433 {
434 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
435 struct amdgpu_bo *pd = vm->page_directory;
436 uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
437 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
438 uint64_t last_pde = ~0, last_pt = ~0;
439 unsigned count = 0, pt_idx, ndw;
440 struct amdgpu_ib *ib;
441 struct fence *fence = NULL;
442
443 int r;
444
445 /* padding, etc. */
446 ndw = 64;
447
448 /* assume the worst case */
449 ndw += vm->max_pde_used * 6;
450
451 /* update too big for an IB */
452 if (ndw > 0xfffff)
453 return -ENOMEM;
454
455 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
456 if (!ib)
457 return -ENOMEM;
458
459 r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
460 if (r) {
461 kfree(ib);
462 return r;
463 }
464 ib->length_dw = 0;
465
466 /* walk over the address space and update the page directory */
467 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
468 struct amdgpu_bo *bo = vm->page_tables[pt_idx].bo;
469 uint64_t pde, pt;
470
471 if (bo == NULL)
472 continue;
473
474 pt = amdgpu_bo_gpu_offset(bo);
475 if (vm->page_tables[pt_idx].addr == pt)
476 continue;
477 vm->page_tables[pt_idx].addr = pt;
478
479 pde = pd_addr + pt_idx * 8;
480 if (((last_pde + 8 * count) != pde) ||
481 ((last_pt + incr * count) != pt)) {
482
483 if (count) {
484 amdgpu_vm_update_pages(adev, ib, last_pde,
485 last_pt, count, incr,
486 AMDGPU_PTE_VALID, 0);
487 }
488
489 count = 1;
490 last_pde = pde;
491 last_pt = pt;
492 } else {
493 ++count;
494 }
495 }
496
497 if (count)
498 amdgpu_vm_update_pages(adev, ib, last_pde, last_pt, count,
499 incr, AMDGPU_PTE_VALID, 0);
500
501 if (ib->length_dw != 0) {
502 amdgpu_vm_pad_ib(adev, ib);
503 amdgpu_sync_resv(adev, &ib->sync, pd->tbo.resv, AMDGPU_FENCE_OWNER_VM);
504 WARN_ON(ib->length_dw > ndw);
505 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
506 &amdgpu_vm_free_job,
507 AMDGPU_FENCE_OWNER_VM,
508 &fence);
509 if (r)
510 goto error_free;
511
512 amdgpu_bo_fence(pd, fence, true);
513 fence_put(vm->page_directory_fence);
514 vm->page_directory_fence = fence_get(fence);
515 fence_put(fence);
516 }
517
518 if (!amdgpu_enable_scheduler || ib->length_dw == 0) {
519 amdgpu_ib_free(adev, ib);
520 kfree(ib);
521 }
522
523 return 0;
524
525 error_free:
526 amdgpu_ib_free(adev, ib);
527 kfree(ib);
528 return r;
529 }
530
531 /**
532 * amdgpu_vm_frag_ptes - add fragment information to PTEs
533 *
534 * @adev: amdgpu_device pointer
535 * @ib: IB for the update
536 * @pe_start: first PTE to handle
537 * @pe_end: last PTE to handle
538 * @addr: addr those PTEs should point to
539 * @flags: hw mapping flags
540 * @gtt_flags: GTT hw mapping flags
541 *
542 * Global and local mutex must be locked!
543 */
544 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
545 struct amdgpu_ib *ib,
546 uint64_t pe_start, uint64_t pe_end,
547 uint64_t addr, uint32_t flags,
548 uint32_t gtt_flags)
549 {
550 /**
551 * The MC L1 TLB supports variable sized pages, based on a fragment
552 * field in the PTE. When this field is set to a non-zero value, page
553 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
554 * flags are considered valid for all PTEs within the fragment range
555 * and corresponding mappings are assumed to be physically contiguous.
556 *
557 * The L1 TLB can store a single PTE for the whole fragment,
558 * significantly increasing the space available for translation
559 * caching. This leads to large improvements in throughput when the
560 * TLB is under pressure.
561 *
562 * The L2 TLB distributes small and large fragments into two
563 * asymmetric partitions. The large fragment cache is significantly
564 * larger. Thus, we try to use large fragments wherever possible.
565 * Userspace can support this by aligning virtual base address and
566 * allocation size to the fragment size.
567 */
568
569 /* SI and newer are optimized for 64KB */
570 uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
571 uint64_t frag_align = 0x80;
572
573 uint64_t frag_start = ALIGN(pe_start, frag_align);
574 uint64_t frag_end = pe_end & ~(frag_align - 1);
575
576 unsigned count;
577
578 /* system pages are non continuously */
579 if ((flags & AMDGPU_PTE_SYSTEM) || !(flags & AMDGPU_PTE_VALID) ||
580 (frag_start >= frag_end)) {
581
582 count = (pe_end - pe_start) / 8;
583 amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
584 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
585 return;
586 }
587
588 /* handle the 4K area at the beginning */
589 if (pe_start != frag_start) {
590 count = (frag_start - pe_start) / 8;
591 amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
592 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
593 addr += AMDGPU_GPU_PAGE_SIZE * count;
594 }
595
596 /* handle the area in the middle */
597 count = (frag_end - frag_start) / 8;
598 amdgpu_vm_update_pages(adev, ib, frag_start, addr, count,
599 AMDGPU_GPU_PAGE_SIZE, flags | frag_flags,
600 gtt_flags);
601
602 /* handle the 4K area at the end */
603 if (frag_end != pe_end) {
604 addr += AMDGPU_GPU_PAGE_SIZE * count;
605 count = (pe_end - frag_end) / 8;
606 amdgpu_vm_update_pages(adev, ib, frag_end, addr, count,
607 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
608 }
609 }
610
611 /**
612 * amdgpu_vm_update_ptes - make sure that page tables are valid
613 *
614 * @adev: amdgpu_device pointer
615 * @vm: requested vm
616 * @start: start of GPU address range
617 * @end: end of GPU address range
618 * @dst: destination address to map to
619 * @flags: mapping flags
620 *
621 * Update the page tables in the range @start - @end (cayman+).
622 *
623 * Global and local mutex must be locked!
624 */
625 static int amdgpu_vm_update_ptes(struct amdgpu_device *adev,
626 struct amdgpu_vm *vm,
627 struct amdgpu_ib *ib,
628 uint64_t start, uint64_t end,
629 uint64_t dst, uint32_t flags,
630 uint32_t gtt_flags)
631 {
632 uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
633 uint64_t last_pte = ~0, last_dst = ~0;
634 void *owner = AMDGPU_FENCE_OWNER_VM;
635 unsigned count = 0;
636 uint64_t addr;
637
638 /* sync to everything on unmapping */
639 if (!(flags & AMDGPU_PTE_VALID))
640 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
641
642 /* walk over the address space and update the page tables */
643 for (addr = start; addr < end; ) {
644 uint64_t pt_idx = addr >> amdgpu_vm_block_size;
645 struct amdgpu_bo *pt = vm->page_tables[pt_idx].bo;
646 unsigned nptes;
647 uint64_t pte;
648 int r;
649
650 amdgpu_sync_resv(adev, &ib->sync, pt->tbo.resv, owner);
651 r = reservation_object_reserve_shared(pt->tbo.resv);
652 if (r)
653 return r;
654
655 if ((addr & ~mask) == (end & ~mask))
656 nptes = end - addr;
657 else
658 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
659
660 pte = amdgpu_bo_gpu_offset(pt);
661 pte += (addr & mask) * 8;
662
663 if ((last_pte + 8 * count) != pte) {
664
665 if (count) {
666 amdgpu_vm_frag_ptes(adev, ib, last_pte,
667 last_pte + 8 * count,
668 last_dst, flags,
669 gtt_flags);
670 }
671
672 count = nptes;
673 last_pte = pte;
674 last_dst = dst;
675 } else {
676 count += nptes;
677 }
678
679 addr += nptes;
680 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
681 }
682
683 if (count) {
684 amdgpu_vm_frag_ptes(adev, ib, last_pte,
685 last_pte + 8 * count,
686 last_dst, flags, gtt_flags);
687 }
688
689 return 0;
690 }
691
692 /**
693 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
694 *
695 * @adev: amdgpu_device pointer
696 * @vm: requested vm
697 * @mapping: mapped range and flags to use for the update
698 * @addr: addr to set the area to
699 * @gtt_flags: flags as they are used for GTT
700 * @fence: optional resulting fence
701 *
702 * Fill in the page table entries for @mapping.
703 * Returns 0 for success, -EINVAL for failure.
704 *
705 * Object have to be reserved and mutex must be locked!
706 */
707 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
708 struct amdgpu_vm *vm,
709 struct amdgpu_bo_va_mapping *mapping,
710 uint64_t addr, uint32_t gtt_flags,
711 struct fence **fence)
712 {
713 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
714 unsigned nptes, ncmds, ndw;
715 uint32_t flags = gtt_flags;
716 struct amdgpu_ib *ib;
717 struct fence *f = NULL;
718 int r;
719
720 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
721 * but in case of something, we filter the flags in first place
722 */
723 if (!(mapping->flags & AMDGPU_PTE_READABLE))
724 flags &= ~AMDGPU_PTE_READABLE;
725 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
726 flags &= ~AMDGPU_PTE_WRITEABLE;
727
728 trace_amdgpu_vm_bo_update(mapping);
729
730 nptes = mapping->it.last - mapping->it.start + 1;
731
732 /*
733 * reserve space for one command every (1 << BLOCK_SIZE)
734 * entries or 2k dwords (whatever is smaller)
735 */
736 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
737
738 /* padding, etc. */
739 ndw = 64;
740
741 if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
742 /* only copy commands needed */
743 ndw += ncmds * 7;
744
745 } else if (flags & AMDGPU_PTE_SYSTEM) {
746 /* header for write data commands */
747 ndw += ncmds * 4;
748
749 /* body of write data command */
750 ndw += nptes * 2;
751
752 } else {
753 /* set page commands needed */
754 ndw += ncmds * 10;
755
756 /* two extra commands for begin/end of fragment */
757 ndw += 2 * 10;
758 }
759
760 /* update too big for an IB */
761 if (ndw > 0xfffff)
762 return -ENOMEM;
763
764 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
765 if (!ib)
766 return -ENOMEM;
767
768 r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
769 if (r) {
770 kfree(ib);
771 return r;
772 }
773
774 ib->length_dw = 0;
775
776 r = amdgpu_vm_update_ptes(adev, vm, ib, mapping->it.start,
777 mapping->it.last + 1, addr + mapping->offset,
778 flags, gtt_flags);
779
780 if (r) {
781 amdgpu_ib_free(adev, ib);
782 kfree(ib);
783 return r;
784 }
785
786 amdgpu_vm_pad_ib(adev, ib);
787 WARN_ON(ib->length_dw > ndw);
788 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
789 &amdgpu_vm_free_job,
790 AMDGPU_FENCE_OWNER_VM,
791 &f);
792 if (r)
793 goto error_free;
794
795 amdgpu_bo_fence(vm->page_directory, f, true);
796 if (fence) {
797 fence_put(*fence);
798 *fence = fence_get(f);
799 }
800 fence_put(f);
801 if (!amdgpu_enable_scheduler) {
802 amdgpu_ib_free(adev, ib);
803 kfree(ib);
804 }
805 return 0;
806
807 error_free:
808 amdgpu_ib_free(adev, ib);
809 kfree(ib);
810 return r;
811 }
812
813 /**
814 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
815 *
816 * @adev: amdgpu_device pointer
817 * @bo_va: requested BO and VM object
818 * @mem: ttm mem
819 *
820 * Fill in the page table entries for @bo_va.
821 * Returns 0 for success, -EINVAL for failure.
822 *
823 * Object have to be reserved and mutex must be locked!
824 */
825 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
826 struct amdgpu_bo_va *bo_va,
827 struct ttm_mem_reg *mem)
828 {
829 struct amdgpu_vm *vm = bo_va->vm;
830 struct amdgpu_bo_va_mapping *mapping;
831 uint32_t flags;
832 uint64_t addr;
833 int r;
834
835 if (mem) {
836 addr = (u64)mem->start << PAGE_SHIFT;
837 if (mem->mem_type != TTM_PL_TT)
838 addr += adev->vm_manager.vram_base_offset;
839 } else {
840 addr = 0;
841 }
842
843 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
844
845 spin_lock(&vm->status_lock);
846 if (!list_empty(&bo_va->vm_status))
847 list_splice_init(&bo_va->valids, &bo_va->invalids);
848 spin_unlock(&vm->status_lock);
849
850 list_for_each_entry(mapping, &bo_va->invalids, list) {
851 r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, addr,
852 flags, &bo_va->last_pt_update);
853 if (r)
854 return r;
855 }
856
857 if (trace_amdgpu_vm_bo_mapping_enabled()) {
858 list_for_each_entry(mapping, &bo_va->valids, list)
859 trace_amdgpu_vm_bo_mapping(mapping);
860
861 list_for_each_entry(mapping, &bo_va->invalids, list)
862 trace_amdgpu_vm_bo_mapping(mapping);
863 }
864
865 spin_lock(&vm->status_lock);
866 list_splice_init(&bo_va->invalids, &bo_va->valids);
867 list_del_init(&bo_va->vm_status);
868 if (!mem)
869 list_add(&bo_va->vm_status, &vm->cleared);
870 spin_unlock(&vm->status_lock);
871
872 return 0;
873 }
874
875 /**
876 * amdgpu_vm_clear_freed - clear freed BOs in the PT
877 *
878 * @adev: amdgpu_device pointer
879 * @vm: requested vm
880 *
881 * Make sure all freed BOs are cleared in the PT.
882 * Returns 0 for success.
883 *
884 * PTs have to be reserved and mutex must be locked!
885 */
886 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
887 struct amdgpu_vm *vm)
888 {
889 struct amdgpu_bo_va_mapping *mapping;
890 int r;
891
892 while (!list_empty(&vm->freed)) {
893 mapping = list_first_entry(&vm->freed,
894 struct amdgpu_bo_va_mapping, list);
895 list_del(&mapping->list);
896
897 r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, 0, 0, NULL);
898 kfree(mapping);
899 if (r)
900 return r;
901
902 }
903 return 0;
904
905 }
906
907 /**
908 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
909 *
910 * @adev: amdgpu_device pointer
911 * @vm: requested vm
912 *
913 * Make sure all invalidated BOs are cleared in the PT.
914 * Returns 0 for success.
915 *
916 * PTs have to be reserved and mutex must be locked!
917 */
918 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
919 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
920 {
921 struct amdgpu_bo_va *bo_va = NULL;
922 int r = 0;
923
924 spin_lock(&vm->status_lock);
925 while (!list_empty(&vm->invalidated)) {
926 bo_va = list_first_entry(&vm->invalidated,
927 struct amdgpu_bo_va, vm_status);
928 spin_unlock(&vm->status_lock);
929
930 r = amdgpu_vm_bo_update(adev, bo_va, NULL);
931 if (r)
932 return r;
933
934 spin_lock(&vm->status_lock);
935 }
936 spin_unlock(&vm->status_lock);
937
938 if (bo_va)
939 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
940
941 return r;
942 }
943
944 /**
945 * amdgpu_vm_bo_add - add a bo to a specific vm
946 *
947 * @adev: amdgpu_device pointer
948 * @vm: requested vm
949 * @bo: amdgpu buffer object
950 *
951 * Add @bo into the requested vm (cayman+).
952 * Add @bo to the list of bos associated with the vm
953 * Returns newly added bo_va or NULL for failure
954 *
955 * Object has to be reserved!
956 */
957 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
958 struct amdgpu_vm *vm,
959 struct amdgpu_bo *bo)
960 {
961 struct amdgpu_bo_va *bo_va;
962
963 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
964 if (bo_va == NULL) {
965 return NULL;
966 }
967 bo_va->vm = vm;
968 bo_va->bo = bo;
969 bo_va->ref_count = 1;
970 INIT_LIST_HEAD(&bo_va->bo_list);
971 INIT_LIST_HEAD(&bo_va->valids);
972 INIT_LIST_HEAD(&bo_va->invalids);
973 INIT_LIST_HEAD(&bo_va->vm_status);
974
975 list_add_tail(&bo_va->bo_list, &bo->va);
976
977 return bo_va;
978 }
979
980 /**
981 * amdgpu_vm_bo_map - map bo inside a vm
982 *
983 * @adev: amdgpu_device pointer
984 * @bo_va: bo_va to store the address
985 * @saddr: where to map the BO
986 * @offset: requested offset in the BO
987 * @flags: attributes of pages (read/write/valid/etc.)
988 *
989 * Add a mapping of the BO at the specefied addr into the VM.
990 * Returns 0 for success, error for failure.
991 *
992 * Object has to be reserved and gets unreserved by this function!
993 */
994 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
995 struct amdgpu_bo_va *bo_va,
996 uint64_t saddr, uint64_t offset,
997 uint64_t size, uint32_t flags)
998 {
999 struct amdgpu_bo_va_mapping *mapping;
1000 struct amdgpu_vm *vm = bo_va->vm;
1001 struct interval_tree_node *it;
1002 unsigned last_pfn, pt_idx;
1003 uint64_t eaddr;
1004 int r;
1005
1006 /* validate the parameters */
1007 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1008 size == 0 || size & AMDGPU_GPU_PAGE_MASK) {
1009 amdgpu_bo_unreserve(bo_va->bo);
1010 return -EINVAL;
1011 }
1012
1013 /* make sure object fit at this offset */
1014 eaddr = saddr + size;
1015 if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo))) {
1016 amdgpu_bo_unreserve(bo_va->bo);
1017 return -EINVAL;
1018 }
1019
1020 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1021 if (last_pfn > adev->vm_manager.max_pfn) {
1022 dev_err(adev->dev, "va above limit (0x%08X > 0x%08X)\n",
1023 last_pfn, adev->vm_manager.max_pfn);
1024 amdgpu_bo_unreserve(bo_va->bo);
1025 return -EINVAL;
1026 }
1027
1028 saddr /= AMDGPU_GPU_PAGE_SIZE;
1029 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1030
1031 it = interval_tree_iter_first(&vm->va, saddr, eaddr - 1);
1032 if (it) {
1033 struct amdgpu_bo_va_mapping *tmp;
1034 tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1035 /* bo and tmp overlap, invalid addr */
1036 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1037 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1038 tmp->it.start, tmp->it.last + 1);
1039 amdgpu_bo_unreserve(bo_va->bo);
1040 r = -EINVAL;
1041 goto error;
1042 }
1043
1044 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1045 if (!mapping) {
1046 amdgpu_bo_unreserve(bo_va->bo);
1047 r = -ENOMEM;
1048 goto error;
1049 }
1050
1051 INIT_LIST_HEAD(&mapping->list);
1052 mapping->it.start = saddr;
1053 mapping->it.last = eaddr - 1;
1054 mapping->offset = offset;
1055 mapping->flags = flags;
1056
1057 list_add(&mapping->list, &bo_va->invalids);
1058 interval_tree_insert(&mapping->it, &vm->va);
1059 trace_amdgpu_vm_bo_map(bo_va, mapping);
1060
1061 /* Make sure the page tables are allocated */
1062 saddr >>= amdgpu_vm_block_size;
1063 eaddr >>= amdgpu_vm_block_size;
1064
1065 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1066
1067 if (eaddr > vm->max_pde_used)
1068 vm->max_pde_used = eaddr;
1069
1070 amdgpu_bo_unreserve(bo_va->bo);
1071
1072 /* walk over the address space and allocate the page tables */
1073 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1074 struct reservation_object *resv = vm->page_directory->tbo.resv;
1075 struct amdgpu_bo *pt;
1076
1077 if (vm->page_tables[pt_idx].bo)
1078 continue;
1079
1080 ww_mutex_lock(&resv->lock, NULL);
1081 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1082 AMDGPU_GPU_PAGE_SIZE, true,
1083 AMDGPU_GEM_DOMAIN_VRAM,
1084 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1085 NULL, resv, &pt);
1086 ww_mutex_unlock(&resv->lock);
1087 if (r)
1088 goto error_free;
1089
1090 r = amdgpu_vm_clear_bo(adev, pt);
1091 if (r) {
1092 amdgpu_bo_unref(&pt);
1093 goto error_free;
1094 }
1095
1096 vm->page_tables[pt_idx].addr = 0;
1097 vm->page_tables[pt_idx].bo = pt;
1098 }
1099
1100 return 0;
1101
1102 error_free:
1103 list_del(&mapping->list);
1104 interval_tree_remove(&mapping->it, &vm->va);
1105 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1106 kfree(mapping);
1107
1108 error:
1109 return r;
1110 }
1111
1112 /**
1113 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1114 *
1115 * @adev: amdgpu_device pointer
1116 * @bo_va: bo_va to remove the address from
1117 * @saddr: where to the BO is mapped
1118 *
1119 * Remove a mapping of the BO at the specefied addr from the VM.
1120 * Returns 0 for success, error for failure.
1121 *
1122 * Object has to be reserved and gets unreserved by this function!
1123 */
1124 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1125 struct amdgpu_bo_va *bo_va,
1126 uint64_t saddr)
1127 {
1128 struct amdgpu_bo_va_mapping *mapping;
1129 struct amdgpu_vm *vm = bo_va->vm;
1130 bool valid = true;
1131
1132 saddr /= AMDGPU_GPU_PAGE_SIZE;
1133
1134 list_for_each_entry(mapping, &bo_va->valids, list) {
1135 if (mapping->it.start == saddr)
1136 break;
1137 }
1138
1139 if (&mapping->list == &bo_va->valids) {
1140 valid = false;
1141
1142 list_for_each_entry(mapping, &bo_va->invalids, list) {
1143 if (mapping->it.start == saddr)
1144 break;
1145 }
1146
1147 if (&mapping->list == &bo_va->invalids) {
1148 amdgpu_bo_unreserve(bo_va->bo);
1149 return -ENOENT;
1150 }
1151 }
1152
1153 list_del(&mapping->list);
1154 interval_tree_remove(&mapping->it, &vm->va);
1155 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1156
1157 if (valid)
1158 list_add(&mapping->list, &vm->freed);
1159 else
1160 kfree(mapping);
1161 amdgpu_bo_unreserve(bo_va->bo);
1162
1163 return 0;
1164 }
1165
1166 /**
1167 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1168 *
1169 * @adev: amdgpu_device pointer
1170 * @bo_va: requested bo_va
1171 *
1172 * Remove @bo_va->bo from the requested vm (cayman+).
1173 *
1174 * Object have to be reserved!
1175 */
1176 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1177 struct amdgpu_bo_va *bo_va)
1178 {
1179 struct amdgpu_bo_va_mapping *mapping, *next;
1180 struct amdgpu_vm *vm = bo_va->vm;
1181
1182 list_del(&bo_va->bo_list);
1183
1184 spin_lock(&vm->status_lock);
1185 list_del(&bo_va->vm_status);
1186 spin_unlock(&vm->status_lock);
1187
1188 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1189 list_del(&mapping->list);
1190 interval_tree_remove(&mapping->it, &vm->va);
1191 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1192 list_add(&mapping->list, &vm->freed);
1193 }
1194 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1195 list_del(&mapping->list);
1196 interval_tree_remove(&mapping->it, &vm->va);
1197 kfree(mapping);
1198 }
1199
1200 fence_put(bo_va->last_pt_update);
1201 kfree(bo_va);
1202 }
1203
1204 /**
1205 * amdgpu_vm_bo_invalidate - mark the bo as invalid
1206 *
1207 * @adev: amdgpu_device pointer
1208 * @vm: requested vm
1209 * @bo: amdgpu buffer object
1210 *
1211 * Mark @bo as invalid (cayman+).
1212 */
1213 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1214 struct amdgpu_bo *bo)
1215 {
1216 struct amdgpu_bo_va *bo_va;
1217
1218 list_for_each_entry(bo_va, &bo->va, bo_list) {
1219 spin_lock(&bo_va->vm->status_lock);
1220 if (list_empty(&bo_va->vm_status))
1221 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1222 spin_unlock(&bo_va->vm->status_lock);
1223 }
1224 }
1225
1226 /**
1227 * amdgpu_vm_init - initialize a vm instance
1228 *
1229 * @adev: amdgpu_device pointer
1230 * @vm: requested vm
1231 *
1232 * Init @vm fields (cayman+).
1233 */
1234 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1235 {
1236 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1237 AMDGPU_VM_PTE_COUNT * 8);
1238 unsigned pd_size, pd_entries, pts_size;
1239 int i, r;
1240
1241 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1242 vm->ids[i].id = 0;
1243 vm->ids[i].flushed_updates = NULL;
1244 }
1245 mutex_init(&vm->mutex);
1246 vm->va = RB_ROOT;
1247 spin_lock_init(&vm->status_lock);
1248 INIT_LIST_HEAD(&vm->invalidated);
1249 INIT_LIST_HEAD(&vm->cleared);
1250 INIT_LIST_HEAD(&vm->freed);
1251
1252 pd_size = amdgpu_vm_directory_size(adev);
1253 pd_entries = amdgpu_vm_num_pdes(adev);
1254
1255 /* allocate page table array */
1256 pts_size = pd_entries * sizeof(struct amdgpu_vm_pt);
1257 vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
1258 if (vm->page_tables == NULL) {
1259 DRM_ERROR("Cannot allocate memory for page table array\n");
1260 return -ENOMEM;
1261 }
1262
1263 vm->page_directory_fence = NULL;
1264
1265 r = amdgpu_bo_create(adev, pd_size, align, true,
1266 AMDGPU_GEM_DOMAIN_VRAM,
1267 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1268 NULL, NULL, &vm->page_directory);
1269 if (r)
1270 return r;
1271
1272 r = amdgpu_vm_clear_bo(adev, vm->page_directory);
1273 if (r) {
1274 amdgpu_bo_unref(&vm->page_directory);
1275 vm->page_directory = NULL;
1276 return r;
1277 }
1278
1279 return 0;
1280 }
1281
1282 /**
1283 * amdgpu_vm_fini - tear down a vm instance
1284 *
1285 * @adev: amdgpu_device pointer
1286 * @vm: requested vm
1287 *
1288 * Tear down @vm (cayman+).
1289 * Unbind the VM and remove all bos from the vm bo list
1290 */
1291 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1292 {
1293 struct amdgpu_bo_va_mapping *mapping, *tmp;
1294 int i;
1295
1296 if (!RB_EMPTY_ROOT(&vm->va)) {
1297 dev_err(adev->dev, "still active bo inside vm\n");
1298 }
1299 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1300 list_del(&mapping->list);
1301 interval_tree_remove(&mapping->it, &vm->va);
1302 kfree(mapping);
1303 }
1304 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1305 list_del(&mapping->list);
1306 kfree(mapping);
1307 }
1308
1309 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1310 amdgpu_bo_unref(&vm->page_tables[i].bo);
1311 kfree(vm->page_tables);
1312
1313 amdgpu_bo_unref(&vm->page_directory);
1314 fence_put(vm->page_directory_fence);
1315
1316 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1317 unsigned id = vm->ids[i].id;
1318
1319 atomic_long_cmpxchg(&adev->vm_manager.ids[id].owner,
1320 (long)vm, 0);
1321 fence_put(vm->ids[i].flushed_updates);
1322 }
1323
1324 mutex_destroy(&vm->mutex);
1325 }
1326
1327 /**
1328 * amdgpu_vm_manager_fini - cleanup VM manager
1329 *
1330 * @adev: amdgpu_device pointer
1331 *
1332 * Cleanup the VM manager and free resources.
1333 */
1334 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1335 {
1336 unsigned i;
1337
1338 for (i = 0; i < AMDGPU_NUM_VM; ++i)
1339 fence_put(adev->vm_manager.ids[i].active);
1340 }
This page took 0.095415 seconds and 5 git commands to generate.