2e15f2db06bf9dd8e25c84959c3956bcc393c717
[deliverable/linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <drm/drmP.h>
29 #include <drm/amdgpu_drm.h>
30 #include "amdgpu.h"
31 #include "amdgpu_trace.h"
32
33 /*
34 * GPUVM
35 * GPUVM is similar to the legacy gart on older asics, however
36 * rather than there being a single global gart table
37 * for the entire GPU, there are multiple VM page tables active
38 * at any given time. The VM page tables can contain a mix
39 * vram pages and system memory pages and system memory pages
40 * can be mapped as snooped (cached system pages) or unsnooped
41 * (uncached system pages).
42 * Each VM has an ID associated with it and there is a page table
43 * associated with each VMID. When execting a command buffer,
44 * the kernel tells the the ring what VMID to use for that command
45 * buffer. VMIDs are allocated dynamically as commands are submitted.
46 * The userspace drivers maintain their own address space and the kernel
47 * sets up their pages tables accordingly when they submit their
48 * command buffers and a VMID is assigned.
49 * Cayman/Trinity support up to 8 active VMs at any given time;
50 * SI supports 16.
51 */
52
53 /**
54 * amdgpu_vm_num_pde - return the number of page directory entries
55 *
56 * @adev: amdgpu_device pointer
57 *
58 * Calculate the number of page directory entries (cayman+).
59 */
60 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
61 {
62 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
63 }
64
65 /**
66 * amdgpu_vm_directory_size - returns the size of the page directory in bytes
67 *
68 * @adev: amdgpu_device pointer
69 *
70 * Calculate the size of the page directory in bytes (cayman+).
71 */
72 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
73 {
74 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
75 }
76
77 /**
78 * amdgpu_vm_get_bos - add the vm BOs to a validation list
79 *
80 * @vm: vm providing the BOs
81 * @head: head of validation list
82 *
83 * Add the page directory to the list of BOs to
84 * validate for command submission (cayman+).
85 */
86 struct amdgpu_bo_list_entry *amdgpu_vm_get_bos(struct amdgpu_device *adev,
87 struct amdgpu_vm *vm,
88 struct list_head *head)
89 {
90 struct amdgpu_bo_list_entry *list;
91 unsigned i, idx;
92
93 mutex_lock(&vm->mutex);
94 list = drm_malloc_ab(vm->max_pde_used + 2,
95 sizeof(struct amdgpu_bo_list_entry));
96 if (!list) {
97 mutex_unlock(&vm->mutex);
98 return NULL;
99 }
100
101 /* add the vm page table to the list */
102 list[0].robj = vm->page_directory;
103 list[0].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
104 list[0].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
105 list[0].priority = 0;
106 list[0].tv.bo = &vm->page_directory->tbo;
107 list[0].tv.shared = true;
108 list_add(&list[0].tv.head, head);
109
110 for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
111 if (!vm->page_tables[i].bo)
112 continue;
113
114 list[idx].robj = vm->page_tables[i].bo;
115 list[idx].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
116 list[idx].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
117 list[idx].priority = 0;
118 list[idx].tv.bo = &list[idx].robj->tbo;
119 list[idx].tv.shared = true;
120 list_add(&list[idx++].tv.head, head);
121 }
122 mutex_unlock(&vm->mutex);
123
124 return list;
125 }
126
127 /**
128 * amdgpu_vm_grab_id - allocate the next free VMID
129 *
130 * @vm: vm to allocate id for
131 * @ring: ring we want to submit job to
132 * @sync: sync object where we add dependencies
133 *
134 * Allocate an id for the vm, adding fences to the sync obj as necessary.
135 *
136 * Global mutex must be locked!
137 */
138 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
139 struct amdgpu_sync *sync)
140 {
141 struct amdgpu_fence *best[AMDGPU_MAX_RINGS] = {};
142 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
143 struct amdgpu_device *adev = ring->adev;
144
145 unsigned choices[2] = {};
146 unsigned i;
147
148 /* check if the id is still valid */
149 if (vm_id->id && vm_id->last_id_use &&
150 vm_id->last_id_use == adev->vm_manager.active[vm_id->id]) {
151 trace_amdgpu_vm_grab_id(vm_id->id, ring->idx);
152 return 0;
153 }
154
155 /* we definately need to flush */
156 vm_id->pd_gpu_addr = ~0ll;
157
158 /* skip over VMID 0, since it is the system VM */
159 for (i = 1; i < adev->vm_manager.nvm; ++i) {
160 struct amdgpu_fence *fence = adev->vm_manager.active[i];
161
162 if (fence == NULL) {
163 /* found a free one */
164 vm_id->id = i;
165 trace_amdgpu_vm_grab_id(i, ring->idx);
166 return 0;
167 }
168
169 if (amdgpu_fence_is_earlier(fence, best[fence->ring->idx])) {
170 best[fence->ring->idx] = fence;
171 choices[fence->ring == ring ? 0 : 1] = i;
172 }
173 }
174
175 for (i = 0; i < 2; ++i) {
176 if (choices[i]) {
177 struct amdgpu_fence *fence;
178
179 fence = adev->vm_manager.active[choices[i]];
180 vm_id->id = choices[i];
181
182 trace_amdgpu_vm_grab_id(choices[i], ring->idx);
183 return amdgpu_sync_fence(ring->adev, sync, &fence->base);
184 }
185 }
186
187 /* should never happen */
188 BUG();
189 return -EINVAL;
190 }
191
192 /**
193 * amdgpu_vm_flush - hardware flush the vm
194 *
195 * @ring: ring to use for flush
196 * @vm: vm we want to flush
197 * @updates: last vm update that we waited for
198 *
199 * Flush the vm (cayman+).
200 *
201 * Global and local mutex must be locked!
202 */
203 void amdgpu_vm_flush(struct amdgpu_ring *ring,
204 struct amdgpu_vm *vm,
205 struct fence *updates)
206 {
207 uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
208 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
209 struct fence *flushed_updates = vm_id->flushed_updates;
210 bool is_earlier = false;
211
212 if (flushed_updates && updates) {
213 BUG_ON(flushed_updates->context != updates->context);
214 is_earlier = (updates->seqno - flushed_updates->seqno <=
215 INT_MAX) ? true : false;
216 }
217
218 if (pd_addr != vm_id->pd_gpu_addr || !flushed_updates ||
219 is_earlier) {
220
221 trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id->id);
222 if (is_earlier) {
223 vm_id->flushed_updates = fence_get(updates);
224 fence_put(flushed_updates);
225 }
226 if (!flushed_updates)
227 vm_id->flushed_updates = fence_get(updates);
228 vm_id->pd_gpu_addr = pd_addr;
229 amdgpu_ring_emit_vm_flush(ring, vm_id->id, vm_id->pd_gpu_addr);
230 }
231 }
232
233 /**
234 * amdgpu_vm_fence - remember fence for vm
235 *
236 * @adev: amdgpu_device pointer
237 * @vm: vm we want to fence
238 * @fence: fence to remember
239 *
240 * Fence the vm (cayman+).
241 * Set the fence used to protect page table and id.
242 *
243 * Global and local mutex must be locked!
244 */
245 void amdgpu_vm_fence(struct amdgpu_device *adev,
246 struct amdgpu_vm *vm,
247 struct amdgpu_fence *fence)
248 {
249 unsigned ridx = fence->ring->idx;
250 unsigned vm_id = vm->ids[ridx].id;
251
252 amdgpu_fence_unref(&adev->vm_manager.active[vm_id]);
253 adev->vm_manager.active[vm_id] = amdgpu_fence_ref(fence);
254
255 amdgpu_fence_unref(&vm->ids[ridx].last_id_use);
256 vm->ids[ridx].last_id_use = amdgpu_fence_ref(fence);
257 }
258
259 /**
260 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
261 *
262 * @vm: requested vm
263 * @bo: requested buffer object
264 *
265 * Find @bo inside the requested vm (cayman+).
266 * Search inside the @bos vm list for the requested vm
267 * Returns the found bo_va or NULL if none is found
268 *
269 * Object has to be reserved!
270 */
271 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
272 struct amdgpu_bo *bo)
273 {
274 struct amdgpu_bo_va *bo_va;
275
276 list_for_each_entry(bo_va, &bo->va, bo_list) {
277 if (bo_va->vm == vm) {
278 return bo_va;
279 }
280 }
281 return NULL;
282 }
283
284 /**
285 * amdgpu_vm_update_pages - helper to call the right asic function
286 *
287 * @adev: amdgpu_device pointer
288 * @ib: indirect buffer to fill with commands
289 * @pe: addr of the page entry
290 * @addr: dst addr to write into pe
291 * @count: number of page entries to update
292 * @incr: increase next addr by incr bytes
293 * @flags: hw access flags
294 * @gtt_flags: GTT hw access flags
295 *
296 * Traces the parameters and calls the right asic functions
297 * to setup the page table using the DMA.
298 */
299 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
300 struct amdgpu_ib *ib,
301 uint64_t pe, uint64_t addr,
302 unsigned count, uint32_t incr,
303 uint32_t flags, uint32_t gtt_flags)
304 {
305 trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
306
307 if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
308 uint64_t src = adev->gart.table_addr + (addr >> 12) * 8;
309 amdgpu_vm_copy_pte(adev, ib, pe, src, count);
310
311 } else if ((flags & AMDGPU_PTE_SYSTEM) || (count < 3)) {
312 amdgpu_vm_write_pte(adev, ib, pe, addr,
313 count, incr, flags);
314
315 } else {
316 amdgpu_vm_set_pte_pde(adev, ib, pe, addr,
317 count, incr, flags);
318 }
319 }
320
321 int amdgpu_vm_free_job(struct amdgpu_job *job)
322 {
323 int i;
324 for (i = 0; i < job->num_ibs; i++)
325 amdgpu_ib_free(job->adev, &job->ibs[i]);
326 kfree(job->ibs);
327 return 0;
328 }
329
330 /**
331 * amdgpu_vm_clear_bo - initially clear the page dir/table
332 *
333 * @adev: amdgpu_device pointer
334 * @bo: bo to clear
335 */
336 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
337 struct amdgpu_bo *bo)
338 {
339 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
340 struct fence *fence = NULL;
341 struct amdgpu_ib *ib;
342 unsigned entries;
343 uint64_t addr;
344 int r;
345
346 r = amdgpu_bo_reserve(bo, false);
347 if (r)
348 return r;
349
350 r = reservation_object_reserve_shared(bo->tbo.resv);
351 if (r)
352 return r;
353
354 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
355 if (r)
356 goto error_unreserve;
357
358 addr = amdgpu_bo_gpu_offset(bo);
359 entries = amdgpu_bo_size(bo) / 8;
360
361 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
362 if (!ib)
363 goto error_unreserve;
364
365 r = amdgpu_ib_get(ring, NULL, entries * 2 + 64, ib);
366 if (r)
367 goto error_free;
368
369 ib->length_dw = 0;
370
371 amdgpu_vm_update_pages(adev, ib, addr, 0, entries, 0, 0, 0);
372 amdgpu_vm_pad_ib(adev, ib);
373 WARN_ON(ib->length_dw > 64);
374 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
375 &amdgpu_vm_free_job,
376 AMDGPU_FENCE_OWNER_VM,
377 &fence);
378 if (!r)
379 amdgpu_bo_fence(bo, fence, true);
380 fence_put(fence);
381 if (amdgpu_enable_scheduler) {
382 amdgpu_bo_unreserve(bo);
383 return 0;
384 }
385 error_free:
386 amdgpu_ib_free(adev, ib);
387 kfree(ib);
388
389 error_unreserve:
390 amdgpu_bo_unreserve(bo);
391 return r;
392 }
393
394 /**
395 * amdgpu_vm_map_gart - get the physical address of a gart page
396 *
397 * @adev: amdgpu_device pointer
398 * @addr: the unmapped addr
399 *
400 * Look up the physical address of the page that the pte resolves
401 * to (cayman+).
402 * Returns the physical address of the page.
403 */
404 uint64_t amdgpu_vm_map_gart(struct amdgpu_device *adev, uint64_t addr)
405 {
406 uint64_t result;
407
408 /* page table offset */
409 result = adev->gart.pages_addr[addr >> PAGE_SHIFT];
410
411 /* in case cpu page size != gpu page size*/
412 result |= addr & (~PAGE_MASK);
413
414 return result;
415 }
416
417 /**
418 * amdgpu_vm_update_pdes - make sure that page directory is valid
419 *
420 * @adev: amdgpu_device pointer
421 * @vm: requested vm
422 * @start: start of GPU address range
423 * @end: end of GPU address range
424 *
425 * Allocates new page tables if necessary
426 * and updates the page directory (cayman+).
427 * Returns 0 for success, error for failure.
428 *
429 * Global and local mutex must be locked!
430 */
431 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
432 struct amdgpu_vm *vm)
433 {
434 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
435 struct amdgpu_bo *pd = vm->page_directory;
436 uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
437 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
438 uint64_t last_pde = ~0, last_pt = ~0;
439 unsigned count = 0, pt_idx, ndw;
440 struct amdgpu_ib *ib;
441 struct fence *fence = NULL;
442
443 int r;
444
445 /* padding, etc. */
446 ndw = 64;
447
448 /* assume the worst case */
449 ndw += vm->max_pde_used * 6;
450
451 /* update too big for an IB */
452 if (ndw > 0xfffff)
453 return -ENOMEM;
454
455 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
456 if (!ib)
457 return -ENOMEM;
458
459 r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
460 if (r)
461 return r;
462 ib->length_dw = 0;
463
464 /* walk over the address space and update the page directory */
465 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
466 struct amdgpu_bo *bo = vm->page_tables[pt_idx].bo;
467 uint64_t pde, pt;
468
469 if (bo == NULL)
470 continue;
471
472 pt = amdgpu_bo_gpu_offset(bo);
473 if (vm->page_tables[pt_idx].addr == pt)
474 continue;
475 vm->page_tables[pt_idx].addr = pt;
476
477 pde = pd_addr + pt_idx * 8;
478 if (((last_pde + 8 * count) != pde) ||
479 ((last_pt + incr * count) != pt)) {
480
481 if (count) {
482 amdgpu_vm_update_pages(adev, ib, last_pde,
483 last_pt, count, incr,
484 AMDGPU_PTE_VALID, 0);
485 }
486
487 count = 1;
488 last_pde = pde;
489 last_pt = pt;
490 } else {
491 ++count;
492 }
493 }
494
495 if (count)
496 amdgpu_vm_update_pages(adev, ib, last_pde, last_pt, count,
497 incr, AMDGPU_PTE_VALID, 0);
498
499 if (ib->length_dw != 0) {
500 amdgpu_vm_pad_ib(adev, ib);
501 amdgpu_sync_resv(adev, &ib->sync, pd->tbo.resv, AMDGPU_FENCE_OWNER_VM);
502 WARN_ON(ib->length_dw > ndw);
503 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
504 &amdgpu_vm_free_job,
505 AMDGPU_FENCE_OWNER_VM,
506 &fence);
507 if (r)
508 goto error_free;
509
510 amdgpu_bo_fence(pd, fence, true);
511 fence_put(vm->page_directory_fence);
512 vm->page_directory_fence = fence_get(fence);
513 fence_put(fence);
514 }
515
516 if (!amdgpu_enable_scheduler || ib->length_dw == 0) {
517 amdgpu_ib_free(adev, ib);
518 kfree(ib);
519 }
520
521 return 0;
522
523 error_free:
524 amdgpu_ib_free(adev, ib);
525 kfree(ib);
526 return r;
527 }
528
529 /**
530 * amdgpu_vm_frag_ptes - add fragment information to PTEs
531 *
532 * @adev: amdgpu_device pointer
533 * @ib: IB for the update
534 * @pe_start: first PTE to handle
535 * @pe_end: last PTE to handle
536 * @addr: addr those PTEs should point to
537 * @flags: hw mapping flags
538 * @gtt_flags: GTT hw mapping flags
539 *
540 * Global and local mutex must be locked!
541 */
542 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
543 struct amdgpu_ib *ib,
544 uint64_t pe_start, uint64_t pe_end,
545 uint64_t addr, uint32_t flags,
546 uint32_t gtt_flags)
547 {
548 /**
549 * The MC L1 TLB supports variable sized pages, based on a fragment
550 * field in the PTE. When this field is set to a non-zero value, page
551 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
552 * flags are considered valid for all PTEs within the fragment range
553 * and corresponding mappings are assumed to be physically contiguous.
554 *
555 * The L1 TLB can store a single PTE for the whole fragment,
556 * significantly increasing the space available for translation
557 * caching. This leads to large improvements in throughput when the
558 * TLB is under pressure.
559 *
560 * The L2 TLB distributes small and large fragments into two
561 * asymmetric partitions. The large fragment cache is significantly
562 * larger. Thus, we try to use large fragments wherever possible.
563 * Userspace can support this by aligning virtual base address and
564 * allocation size to the fragment size.
565 */
566
567 /* SI and newer are optimized for 64KB */
568 uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
569 uint64_t frag_align = 0x80;
570
571 uint64_t frag_start = ALIGN(pe_start, frag_align);
572 uint64_t frag_end = pe_end & ~(frag_align - 1);
573
574 unsigned count;
575
576 /* system pages are non continuously */
577 if ((flags & AMDGPU_PTE_SYSTEM) || !(flags & AMDGPU_PTE_VALID) ||
578 (frag_start >= frag_end)) {
579
580 count = (pe_end - pe_start) / 8;
581 amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
582 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
583 return;
584 }
585
586 /* handle the 4K area at the beginning */
587 if (pe_start != frag_start) {
588 count = (frag_start - pe_start) / 8;
589 amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
590 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
591 addr += AMDGPU_GPU_PAGE_SIZE * count;
592 }
593
594 /* handle the area in the middle */
595 count = (frag_end - frag_start) / 8;
596 amdgpu_vm_update_pages(adev, ib, frag_start, addr, count,
597 AMDGPU_GPU_PAGE_SIZE, flags | frag_flags,
598 gtt_flags);
599
600 /* handle the 4K area at the end */
601 if (frag_end != pe_end) {
602 addr += AMDGPU_GPU_PAGE_SIZE * count;
603 count = (pe_end - frag_end) / 8;
604 amdgpu_vm_update_pages(adev, ib, frag_end, addr, count,
605 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
606 }
607 }
608
609 /**
610 * amdgpu_vm_update_ptes - make sure that page tables are valid
611 *
612 * @adev: amdgpu_device pointer
613 * @vm: requested vm
614 * @start: start of GPU address range
615 * @end: end of GPU address range
616 * @dst: destination address to map to
617 * @flags: mapping flags
618 *
619 * Update the page tables in the range @start - @end (cayman+).
620 *
621 * Global and local mutex must be locked!
622 */
623 static int amdgpu_vm_update_ptes(struct amdgpu_device *adev,
624 struct amdgpu_vm *vm,
625 struct amdgpu_ib *ib,
626 uint64_t start, uint64_t end,
627 uint64_t dst, uint32_t flags,
628 uint32_t gtt_flags)
629 {
630 uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
631 uint64_t last_pte = ~0, last_dst = ~0;
632 void *owner = AMDGPU_FENCE_OWNER_VM;
633 unsigned count = 0;
634 uint64_t addr;
635
636 /* sync to everything on unmapping */
637 if (!(flags & AMDGPU_PTE_VALID))
638 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
639
640 /* walk over the address space and update the page tables */
641 for (addr = start; addr < end; ) {
642 uint64_t pt_idx = addr >> amdgpu_vm_block_size;
643 struct amdgpu_bo *pt = vm->page_tables[pt_idx].bo;
644 unsigned nptes;
645 uint64_t pte;
646 int r;
647
648 amdgpu_sync_resv(adev, &ib->sync, pt->tbo.resv, owner);
649 r = reservation_object_reserve_shared(pt->tbo.resv);
650 if (r)
651 return r;
652
653 if ((addr & ~mask) == (end & ~mask))
654 nptes = end - addr;
655 else
656 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
657
658 pte = amdgpu_bo_gpu_offset(pt);
659 pte += (addr & mask) * 8;
660
661 if ((last_pte + 8 * count) != pte) {
662
663 if (count) {
664 amdgpu_vm_frag_ptes(adev, ib, last_pte,
665 last_pte + 8 * count,
666 last_dst, flags,
667 gtt_flags);
668 }
669
670 count = nptes;
671 last_pte = pte;
672 last_dst = dst;
673 } else {
674 count += nptes;
675 }
676
677 addr += nptes;
678 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
679 }
680
681 if (count) {
682 amdgpu_vm_frag_ptes(adev, ib, last_pte,
683 last_pte + 8 * count,
684 last_dst, flags, gtt_flags);
685 }
686
687 return 0;
688 }
689
690 /**
691 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
692 *
693 * @adev: amdgpu_device pointer
694 * @vm: requested vm
695 * @mapping: mapped range and flags to use for the update
696 * @addr: addr to set the area to
697 * @gtt_flags: flags as they are used for GTT
698 * @fence: optional resulting fence
699 *
700 * Fill in the page table entries for @mapping.
701 * Returns 0 for success, -EINVAL for failure.
702 *
703 * Object have to be reserved and mutex must be locked!
704 */
705 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
706 struct amdgpu_vm *vm,
707 struct amdgpu_bo_va_mapping *mapping,
708 uint64_t addr, uint32_t gtt_flags,
709 struct fence **fence)
710 {
711 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
712 unsigned nptes, ncmds, ndw;
713 uint32_t flags = gtt_flags;
714 struct amdgpu_ib *ib;
715 struct fence *f = NULL;
716 int r;
717
718 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
719 * but in case of something, we filter the flags in first place
720 */
721 if (!(mapping->flags & AMDGPU_PTE_READABLE))
722 flags &= ~AMDGPU_PTE_READABLE;
723 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
724 flags &= ~AMDGPU_PTE_WRITEABLE;
725
726 trace_amdgpu_vm_bo_update(mapping);
727
728 nptes = mapping->it.last - mapping->it.start + 1;
729
730 /*
731 * reserve space for one command every (1 << BLOCK_SIZE)
732 * entries or 2k dwords (whatever is smaller)
733 */
734 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
735
736 /* padding, etc. */
737 ndw = 64;
738
739 if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
740 /* only copy commands needed */
741 ndw += ncmds * 7;
742
743 } else if (flags & AMDGPU_PTE_SYSTEM) {
744 /* header for write data commands */
745 ndw += ncmds * 4;
746
747 /* body of write data command */
748 ndw += nptes * 2;
749
750 } else {
751 /* set page commands needed */
752 ndw += ncmds * 10;
753
754 /* two extra commands for begin/end of fragment */
755 ndw += 2 * 10;
756 }
757
758 /* update too big for an IB */
759 if (ndw > 0xfffff)
760 return -ENOMEM;
761
762 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
763 if (!ib)
764 return -ENOMEM;
765
766 r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
767 if (r) {
768 kfree(ib);
769 return r;
770 }
771
772 ib->length_dw = 0;
773
774 r = amdgpu_vm_update_ptes(adev, vm, ib, mapping->it.start,
775 mapping->it.last + 1, addr + mapping->offset,
776 flags, gtt_flags);
777
778 if (r) {
779 amdgpu_ib_free(adev, ib);
780 kfree(ib);
781 return r;
782 }
783
784 amdgpu_vm_pad_ib(adev, ib);
785 WARN_ON(ib->length_dw > ndw);
786 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
787 &amdgpu_vm_free_job,
788 AMDGPU_FENCE_OWNER_VM,
789 &f);
790 if (r)
791 goto error_free;
792
793 amdgpu_bo_fence(vm->page_directory, f, true);
794 if (fence) {
795 fence_put(*fence);
796 *fence = fence_get(f);
797 }
798 fence_put(f);
799 if (!amdgpu_enable_scheduler) {
800 amdgpu_ib_free(adev, ib);
801 kfree(ib);
802 }
803 return 0;
804
805 error_free:
806 amdgpu_ib_free(adev, ib);
807 kfree(ib);
808 return r;
809 }
810
811 /**
812 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
813 *
814 * @adev: amdgpu_device pointer
815 * @bo_va: requested BO and VM object
816 * @mem: ttm mem
817 *
818 * Fill in the page table entries for @bo_va.
819 * Returns 0 for success, -EINVAL for failure.
820 *
821 * Object have to be reserved and mutex must be locked!
822 */
823 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
824 struct amdgpu_bo_va *bo_va,
825 struct ttm_mem_reg *mem)
826 {
827 struct amdgpu_vm *vm = bo_va->vm;
828 struct amdgpu_bo_va_mapping *mapping;
829 uint32_t flags;
830 uint64_t addr;
831 int r;
832
833 if (mem) {
834 addr = (u64)mem->start << PAGE_SHIFT;
835 if (mem->mem_type != TTM_PL_TT)
836 addr += adev->vm_manager.vram_base_offset;
837 } else {
838 addr = 0;
839 }
840
841 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
842
843 spin_lock(&vm->status_lock);
844 if (!list_empty(&bo_va->vm_status))
845 list_splice_init(&bo_va->valids, &bo_va->invalids);
846 spin_unlock(&vm->status_lock);
847
848 list_for_each_entry(mapping, &bo_va->invalids, list) {
849 r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, addr,
850 flags, &bo_va->last_pt_update);
851 if (r)
852 return r;
853 }
854
855 spin_lock(&vm->status_lock);
856 list_splice_init(&bo_va->invalids, &bo_va->valids);
857 list_del_init(&bo_va->vm_status);
858 if (!mem)
859 list_add(&bo_va->vm_status, &vm->cleared);
860 spin_unlock(&vm->status_lock);
861
862 return 0;
863 }
864
865 /**
866 * amdgpu_vm_clear_freed - clear freed BOs in the PT
867 *
868 * @adev: amdgpu_device pointer
869 * @vm: requested vm
870 *
871 * Make sure all freed BOs are cleared in the PT.
872 * Returns 0 for success.
873 *
874 * PTs have to be reserved and mutex must be locked!
875 */
876 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
877 struct amdgpu_vm *vm)
878 {
879 struct amdgpu_bo_va_mapping *mapping;
880 int r;
881
882 while (!list_empty(&vm->freed)) {
883 mapping = list_first_entry(&vm->freed,
884 struct amdgpu_bo_va_mapping, list);
885 list_del(&mapping->list);
886
887 r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, 0, 0, NULL);
888 kfree(mapping);
889 if (r)
890 return r;
891
892 }
893 return 0;
894
895 }
896
897 /**
898 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
899 *
900 * @adev: amdgpu_device pointer
901 * @vm: requested vm
902 *
903 * Make sure all invalidated BOs are cleared in the PT.
904 * Returns 0 for success.
905 *
906 * PTs have to be reserved and mutex must be locked!
907 */
908 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
909 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
910 {
911 struct amdgpu_bo_va *bo_va = NULL;
912 int r = 0;
913
914 spin_lock(&vm->status_lock);
915 while (!list_empty(&vm->invalidated)) {
916 bo_va = list_first_entry(&vm->invalidated,
917 struct amdgpu_bo_va, vm_status);
918 spin_unlock(&vm->status_lock);
919
920 r = amdgpu_vm_bo_update(adev, bo_va, NULL);
921 if (r)
922 return r;
923
924 spin_lock(&vm->status_lock);
925 }
926 spin_unlock(&vm->status_lock);
927
928 if (bo_va)
929 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
930
931 return r;
932 }
933
934 /**
935 * amdgpu_vm_bo_add - add a bo to a specific vm
936 *
937 * @adev: amdgpu_device pointer
938 * @vm: requested vm
939 * @bo: amdgpu buffer object
940 *
941 * Add @bo into the requested vm (cayman+).
942 * Add @bo to the list of bos associated with the vm
943 * Returns newly added bo_va or NULL for failure
944 *
945 * Object has to be reserved!
946 */
947 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
948 struct amdgpu_vm *vm,
949 struct amdgpu_bo *bo)
950 {
951 struct amdgpu_bo_va *bo_va;
952
953 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
954 if (bo_va == NULL) {
955 return NULL;
956 }
957 bo_va->vm = vm;
958 bo_va->bo = bo;
959 bo_va->ref_count = 1;
960 INIT_LIST_HEAD(&bo_va->bo_list);
961 INIT_LIST_HEAD(&bo_va->valids);
962 INIT_LIST_HEAD(&bo_va->invalids);
963 INIT_LIST_HEAD(&bo_va->vm_status);
964
965 mutex_lock(&vm->mutex);
966 list_add_tail(&bo_va->bo_list, &bo->va);
967 mutex_unlock(&vm->mutex);
968
969 return bo_va;
970 }
971
972 /**
973 * amdgpu_vm_bo_map - map bo inside a vm
974 *
975 * @adev: amdgpu_device pointer
976 * @bo_va: bo_va to store the address
977 * @saddr: where to map the BO
978 * @offset: requested offset in the BO
979 * @flags: attributes of pages (read/write/valid/etc.)
980 *
981 * Add a mapping of the BO at the specefied addr into the VM.
982 * Returns 0 for success, error for failure.
983 *
984 * Object has to be reserved and gets unreserved by this function!
985 */
986 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
987 struct amdgpu_bo_va *bo_va,
988 uint64_t saddr, uint64_t offset,
989 uint64_t size, uint32_t flags)
990 {
991 struct amdgpu_bo_va_mapping *mapping;
992 struct amdgpu_vm *vm = bo_va->vm;
993 struct interval_tree_node *it;
994 unsigned last_pfn, pt_idx;
995 uint64_t eaddr;
996 int r;
997
998 /* validate the parameters */
999 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1000 size == 0 || size & AMDGPU_GPU_PAGE_MASK) {
1001 amdgpu_bo_unreserve(bo_va->bo);
1002 return -EINVAL;
1003 }
1004
1005 /* make sure object fit at this offset */
1006 eaddr = saddr + size;
1007 if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo))) {
1008 amdgpu_bo_unreserve(bo_va->bo);
1009 return -EINVAL;
1010 }
1011
1012 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1013 if (last_pfn > adev->vm_manager.max_pfn) {
1014 dev_err(adev->dev, "va above limit (0x%08X > 0x%08X)\n",
1015 last_pfn, adev->vm_manager.max_pfn);
1016 amdgpu_bo_unreserve(bo_va->bo);
1017 return -EINVAL;
1018 }
1019
1020 mutex_lock(&vm->mutex);
1021
1022 saddr /= AMDGPU_GPU_PAGE_SIZE;
1023 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1024
1025 it = interval_tree_iter_first(&vm->va, saddr, eaddr - 1);
1026 if (it) {
1027 struct amdgpu_bo_va_mapping *tmp;
1028 tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1029 /* bo and tmp overlap, invalid addr */
1030 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1031 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1032 tmp->it.start, tmp->it.last + 1);
1033 amdgpu_bo_unreserve(bo_va->bo);
1034 r = -EINVAL;
1035 goto error_unlock;
1036 }
1037
1038 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1039 if (!mapping) {
1040 amdgpu_bo_unreserve(bo_va->bo);
1041 r = -ENOMEM;
1042 goto error_unlock;
1043 }
1044
1045 INIT_LIST_HEAD(&mapping->list);
1046 mapping->it.start = saddr;
1047 mapping->it.last = eaddr - 1;
1048 mapping->offset = offset;
1049 mapping->flags = flags;
1050
1051 list_add(&mapping->list, &bo_va->invalids);
1052 interval_tree_insert(&mapping->it, &vm->va);
1053 trace_amdgpu_vm_bo_map(bo_va, mapping);
1054
1055 /* Make sure the page tables are allocated */
1056 saddr >>= amdgpu_vm_block_size;
1057 eaddr >>= amdgpu_vm_block_size;
1058
1059 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1060
1061 if (eaddr > vm->max_pde_used)
1062 vm->max_pde_used = eaddr;
1063
1064 amdgpu_bo_unreserve(bo_va->bo);
1065
1066 /* walk over the address space and allocate the page tables */
1067 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1068 struct reservation_object *resv = vm->page_directory->tbo.resv;
1069 struct amdgpu_bo *pt;
1070
1071 if (vm->page_tables[pt_idx].bo)
1072 continue;
1073
1074 /* drop mutex to allocate and clear page table */
1075 mutex_unlock(&vm->mutex);
1076
1077 ww_mutex_lock(&resv->lock, NULL);
1078 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1079 AMDGPU_GPU_PAGE_SIZE, true,
1080 AMDGPU_GEM_DOMAIN_VRAM,
1081 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1082 NULL, resv, &pt);
1083 ww_mutex_unlock(&resv->lock);
1084 if (r)
1085 goto error_free;
1086
1087 r = amdgpu_vm_clear_bo(adev, pt);
1088 if (r) {
1089 amdgpu_bo_unref(&pt);
1090 goto error_free;
1091 }
1092
1093 /* aquire mutex again */
1094 mutex_lock(&vm->mutex);
1095 if (vm->page_tables[pt_idx].bo) {
1096 /* someone else allocated the pt in the meantime */
1097 mutex_unlock(&vm->mutex);
1098 amdgpu_bo_unref(&pt);
1099 mutex_lock(&vm->mutex);
1100 continue;
1101 }
1102
1103 vm->page_tables[pt_idx].addr = 0;
1104 vm->page_tables[pt_idx].bo = pt;
1105 }
1106
1107 mutex_unlock(&vm->mutex);
1108 return 0;
1109
1110 error_free:
1111 mutex_lock(&vm->mutex);
1112 list_del(&mapping->list);
1113 interval_tree_remove(&mapping->it, &vm->va);
1114 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1115 kfree(mapping);
1116
1117 error_unlock:
1118 mutex_unlock(&vm->mutex);
1119 return r;
1120 }
1121
1122 /**
1123 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1124 *
1125 * @adev: amdgpu_device pointer
1126 * @bo_va: bo_va to remove the address from
1127 * @saddr: where to the BO is mapped
1128 *
1129 * Remove a mapping of the BO at the specefied addr from the VM.
1130 * Returns 0 for success, error for failure.
1131 *
1132 * Object has to be reserved and gets unreserved by this function!
1133 */
1134 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1135 struct amdgpu_bo_va *bo_va,
1136 uint64_t saddr)
1137 {
1138 struct amdgpu_bo_va_mapping *mapping;
1139 struct amdgpu_vm *vm = bo_va->vm;
1140 bool valid = true;
1141
1142 saddr /= AMDGPU_GPU_PAGE_SIZE;
1143
1144 list_for_each_entry(mapping, &bo_va->valids, list) {
1145 if (mapping->it.start == saddr)
1146 break;
1147 }
1148
1149 if (&mapping->list == &bo_va->valids) {
1150 valid = false;
1151
1152 list_for_each_entry(mapping, &bo_va->invalids, list) {
1153 if (mapping->it.start == saddr)
1154 break;
1155 }
1156
1157 if (&mapping->list == &bo_va->invalids) {
1158 amdgpu_bo_unreserve(bo_va->bo);
1159 return -ENOENT;
1160 }
1161 }
1162
1163 mutex_lock(&vm->mutex);
1164 list_del(&mapping->list);
1165 interval_tree_remove(&mapping->it, &vm->va);
1166 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1167
1168 if (valid)
1169 list_add(&mapping->list, &vm->freed);
1170 else
1171 kfree(mapping);
1172 mutex_unlock(&vm->mutex);
1173 amdgpu_bo_unreserve(bo_va->bo);
1174
1175 return 0;
1176 }
1177
1178 /**
1179 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1180 *
1181 * @adev: amdgpu_device pointer
1182 * @bo_va: requested bo_va
1183 *
1184 * Remove @bo_va->bo from the requested vm (cayman+).
1185 *
1186 * Object have to be reserved!
1187 */
1188 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1189 struct amdgpu_bo_va *bo_va)
1190 {
1191 struct amdgpu_bo_va_mapping *mapping, *next;
1192 struct amdgpu_vm *vm = bo_va->vm;
1193
1194 list_del(&bo_va->bo_list);
1195
1196 mutex_lock(&vm->mutex);
1197
1198 spin_lock(&vm->status_lock);
1199 list_del(&bo_va->vm_status);
1200 spin_unlock(&vm->status_lock);
1201
1202 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1203 list_del(&mapping->list);
1204 interval_tree_remove(&mapping->it, &vm->va);
1205 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1206 list_add(&mapping->list, &vm->freed);
1207 }
1208 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1209 list_del(&mapping->list);
1210 interval_tree_remove(&mapping->it, &vm->va);
1211 kfree(mapping);
1212 }
1213
1214 fence_put(bo_va->last_pt_update);
1215 kfree(bo_va);
1216
1217 mutex_unlock(&vm->mutex);
1218 }
1219
1220 /**
1221 * amdgpu_vm_bo_invalidate - mark the bo as invalid
1222 *
1223 * @adev: amdgpu_device pointer
1224 * @vm: requested vm
1225 * @bo: amdgpu buffer object
1226 *
1227 * Mark @bo as invalid (cayman+).
1228 */
1229 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1230 struct amdgpu_bo *bo)
1231 {
1232 struct amdgpu_bo_va *bo_va;
1233
1234 list_for_each_entry(bo_va, &bo->va, bo_list) {
1235 spin_lock(&bo_va->vm->status_lock);
1236 if (list_empty(&bo_va->vm_status))
1237 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1238 spin_unlock(&bo_va->vm->status_lock);
1239 }
1240 }
1241
1242 /**
1243 * amdgpu_vm_init - initialize a vm instance
1244 *
1245 * @adev: amdgpu_device pointer
1246 * @vm: requested vm
1247 *
1248 * Init @vm fields (cayman+).
1249 */
1250 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1251 {
1252 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1253 AMDGPU_VM_PTE_COUNT * 8);
1254 unsigned pd_size, pd_entries, pts_size;
1255 int i, r;
1256
1257 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1258 vm->ids[i].id = 0;
1259 vm->ids[i].flushed_updates = NULL;
1260 vm->ids[i].last_id_use = NULL;
1261 }
1262 mutex_init(&vm->mutex);
1263 vm->va = RB_ROOT;
1264 spin_lock_init(&vm->status_lock);
1265 INIT_LIST_HEAD(&vm->invalidated);
1266 INIT_LIST_HEAD(&vm->cleared);
1267 INIT_LIST_HEAD(&vm->freed);
1268
1269 pd_size = amdgpu_vm_directory_size(adev);
1270 pd_entries = amdgpu_vm_num_pdes(adev);
1271
1272 /* allocate page table array */
1273 pts_size = pd_entries * sizeof(struct amdgpu_vm_pt);
1274 vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
1275 if (vm->page_tables == NULL) {
1276 DRM_ERROR("Cannot allocate memory for page table array\n");
1277 return -ENOMEM;
1278 }
1279
1280 vm->page_directory_fence = NULL;
1281
1282 r = amdgpu_bo_create(adev, pd_size, align, true,
1283 AMDGPU_GEM_DOMAIN_VRAM,
1284 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1285 NULL, NULL, &vm->page_directory);
1286 if (r)
1287 return r;
1288
1289 r = amdgpu_vm_clear_bo(adev, vm->page_directory);
1290 if (r) {
1291 amdgpu_bo_unref(&vm->page_directory);
1292 vm->page_directory = NULL;
1293 return r;
1294 }
1295
1296 return 0;
1297 }
1298
1299 /**
1300 * amdgpu_vm_fini - tear down a vm instance
1301 *
1302 * @adev: amdgpu_device pointer
1303 * @vm: requested vm
1304 *
1305 * Tear down @vm (cayman+).
1306 * Unbind the VM and remove all bos from the vm bo list
1307 */
1308 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1309 {
1310 struct amdgpu_bo_va_mapping *mapping, *tmp;
1311 int i;
1312
1313 if (!RB_EMPTY_ROOT(&vm->va)) {
1314 dev_err(adev->dev, "still active bo inside vm\n");
1315 }
1316 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1317 list_del(&mapping->list);
1318 interval_tree_remove(&mapping->it, &vm->va);
1319 kfree(mapping);
1320 }
1321 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1322 list_del(&mapping->list);
1323 kfree(mapping);
1324 }
1325
1326 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1327 amdgpu_bo_unref(&vm->page_tables[i].bo);
1328 kfree(vm->page_tables);
1329
1330 amdgpu_bo_unref(&vm->page_directory);
1331 fence_put(vm->page_directory_fence);
1332
1333 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1334 fence_put(vm->ids[i].flushed_updates);
1335 amdgpu_fence_unref(&vm->ids[i].last_id_use);
1336 }
1337
1338 mutex_destroy(&vm->mutex);
1339 }
This page took 0.156484 seconds and 4 git commands to generate.