drm/amdgpu: recovery hw jobs when gpu reset V3
[deliverable/linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/fence-array.h>
29 #include <drm/drmP.h>
30 #include <drm/amdgpu_drm.h>
31 #include "amdgpu.h"
32 #include "amdgpu_trace.h"
33
34 /*
35 * GPUVM
36 * GPUVM is similar to the legacy gart on older asics, however
37 * rather than there being a single global gart table
38 * for the entire GPU, there are multiple VM page tables active
39 * at any given time. The VM page tables can contain a mix
40 * vram pages and system memory pages and system memory pages
41 * can be mapped as snooped (cached system pages) or unsnooped
42 * (uncached system pages).
43 * Each VM has an ID associated with it and there is a page table
44 * associated with each VMID. When execting a command buffer,
45 * the kernel tells the the ring what VMID to use for that command
46 * buffer. VMIDs are allocated dynamically as commands are submitted.
47 * The userspace drivers maintain their own address space and the kernel
48 * sets up their pages tables accordingly when they submit their
49 * command buffers and a VMID is assigned.
50 * Cayman/Trinity support up to 8 active VMs at any given time;
51 * SI supports 16.
52 */
53
54 /* Special value that no flush is necessary */
55 #define AMDGPU_VM_NO_FLUSH (~0ll)
56
57 /* Local structure. Encapsulate some VM table update parameters to reduce
58 * the number of function parameters
59 */
60 struct amdgpu_vm_update_params {
61 /* address where to copy page table entries from */
62 uint64_t src;
63 /* DMA addresses to use for mapping */
64 dma_addr_t *pages_addr;
65 /* indirect buffer to fill with commands */
66 struct amdgpu_ib *ib;
67 };
68
69 /**
70 * amdgpu_vm_num_pde - return the number of page directory entries
71 *
72 * @adev: amdgpu_device pointer
73 *
74 * Calculate the number of page directory entries.
75 */
76 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
77 {
78 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
79 }
80
81 /**
82 * amdgpu_vm_directory_size - returns the size of the page directory in bytes
83 *
84 * @adev: amdgpu_device pointer
85 *
86 * Calculate the size of the page directory in bytes.
87 */
88 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
89 {
90 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
91 }
92
93 /**
94 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
95 *
96 * @vm: vm providing the BOs
97 * @validated: head of validation list
98 * @entry: entry to add
99 *
100 * Add the page directory to the list of BOs to
101 * validate for command submission.
102 */
103 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
104 struct list_head *validated,
105 struct amdgpu_bo_list_entry *entry)
106 {
107 entry->robj = vm->page_directory;
108 entry->priority = 0;
109 entry->tv.bo = &vm->page_directory->tbo;
110 entry->tv.shared = true;
111 entry->user_pages = NULL;
112 list_add(&entry->tv.head, validated);
113 }
114
115 /**
116 * amdgpu_vm_get_bos - add the vm BOs to a duplicates list
117 *
118 * @adev: amdgpu device pointer
119 * @vm: vm providing the BOs
120 * @duplicates: head of duplicates list
121 *
122 * Add the page directory to the BO duplicates list
123 * for command submission.
124 */
125 void amdgpu_vm_get_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
126 struct list_head *duplicates)
127 {
128 uint64_t num_evictions;
129 unsigned i;
130
131 /* We only need to validate the page tables
132 * if they aren't already valid.
133 */
134 num_evictions = atomic64_read(&adev->num_evictions);
135 if (num_evictions == vm->last_eviction_counter)
136 return;
137
138 /* add the vm page table to the list */
139 for (i = 0; i <= vm->max_pde_used; ++i) {
140 struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
141
142 if (!entry->robj)
143 continue;
144
145 list_add(&entry->tv.head, duplicates);
146 }
147
148 }
149
150 /**
151 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
152 *
153 * @adev: amdgpu device instance
154 * @vm: vm providing the BOs
155 *
156 * Move the PT BOs to the tail of the LRU.
157 */
158 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
159 struct amdgpu_vm *vm)
160 {
161 struct ttm_bo_global *glob = adev->mman.bdev.glob;
162 unsigned i;
163
164 spin_lock(&glob->lru_lock);
165 for (i = 0; i <= vm->max_pde_used; ++i) {
166 struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
167
168 if (!entry->robj)
169 continue;
170
171 ttm_bo_move_to_lru_tail(&entry->robj->tbo);
172 }
173 spin_unlock(&glob->lru_lock);
174 }
175
176 static bool amdgpu_vm_is_gpu_reset(struct amdgpu_device *adev,
177 struct amdgpu_vm_id *id)
178 {
179 return id->current_gpu_reset_count !=
180 atomic_read(&adev->gpu_reset_counter) ? true : false;
181 }
182
183 /**
184 * amdgpu_vm_grab_id - allocate the next free VMID
185 *
186 * @vm: vm to allocate id for
187 * @ring: ring we want to submit job to
188 * @sync: sync object where we add dependencies
189 * @fence: fence protecting ID from reuse
190 *
191 * Allocate an id for the vm, adding fences to the sync obj as necessary.
192 */
193 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
194 struct amdgpu_sync *sync, struct fence *fence,
195 struct amdgpu_job *job)
196 {
197 struct amdgpu_device *adev = ring->adev;
198 struct fence *updates = sync->last_vm_update;
199 struct amdgpu_vm_id *id, *idle;
200 struct fence **fences;
201 unsigned i;
202 int r = 0;
203
204 fences = kmalloc_array(sizeof(void *), adev->vm_manager.num_ids,
205 GFP_KERNEL);
206 if (!fences)
207 return -ENOMEM;
208
209 mutex_lock(&adev->vm_manager.lock);
210
211 /* Check if we have an idle VMID */
212 i = 0;
213 list_for_each_entry(idle, &adev->vm_manager.ids_lru, list) {
214 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
215 if (!fences[i])
216 break;
217 ++i;
218 }
219
220 /* If we can't find a idle VMID to use, wait till one becomes available */
221 if (&idle->list == &adev->vm_manager.ids_lru) {
222 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
223 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
224 struct fence_array *array;
225 unsigned j;
226
227 for (j = 0; j < i; ++j)
228 fence_get(fences[j]);
229
230 array = fence_array_create(i, fences, fence_context,
231 seqno, true);
232 if (!array) {
233 for (j = 0; j < i; ++j)
234 fence_put(fences[j]);
235 kfree(fences);
236 r = -ENOMEM;
237 goto error;
238 }
239
240
241 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
242 fence_put(&array->base);
243 if (r)
244 goto error;
245
246 mutex_unlock(&adev->vm_manager.lock);
247 return 0;
248
249 }
250 kfree(fences);
251
252 job->vm_needs_flush = true;
253 /* Check if we can use a VMID already assigned to this VM */
254 i = ring->idx;
255 do {
256 struct fence *flushed;
257 bool same_ring = ring->idx == i;
258
259 id = vm->ids[i++];
260 if (i == AMDGPU_MAX_RINGS)
261 i = 0;
262
263 /* Check all the prerequisites to using this VMID */
264 if (!id)
265 continue;
266 if (amdgpu_vm_is_gpu_reset(adev, id))
267 continue;
268
269 if (atomic64_read(&id->owner) != vm->client_id)
270 continue;
271
272 if (job->vm_pd_addr != id->pd_gpu_addr)
273 continue;
274
275 if (!same_ring &&
276 (!id->last_flush || !fence_is_signaled(id->last_flush)))
277 continue;
278
279 flushed = id->flushed_updates;
280 if (updates &&
281 (!flushed || fence_is_later(updates, flushed)))
282 continue;
283
284 /* Good we can use this VMID. Remember this submission as
285 * user of the VMID.
286 */
287 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
288 if (r)
289 goto error;
290
291 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
292 list_move_tail(&id->list, &adev->vm_manager.ids_lru);
293 vm->ids[ring->idx] = id;
294
295 job->vm_id = id - adev->vm_manager.ids;
296 job->vm_needs_flush = false;
297 trace_amdgpu_vm_grab_id(vm, ring->idx, job->vm_id, job->vm_pd_addr);
298
299 mutex_unlock(&adev->vm_manager.lock);
300 return 0;
301
302 } while (i != ring->idx);
303
304 /* Still no ID to use? Then use the idle one found earlier */
305 id = idle;
306
307 /* Remember this submission as user of the VMID */
308 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
309 if (r)
310 goto error;
311
312 fence_put(id->first);
313 id->first = fence_get(fence);
314
315 fence_put(id->last_flush);
316 id->last_flush = NULL;
317
318 fence_put(id->flushed_updates);
319 id->flushed_updates = fence_get(updates);
320
321 id->pd_gpu_addr = job->vm_pd_addr;
322 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
323 list_move_tail(&id->list, &adev->vm_manager.ids_lru);
324 atomic64_set(&id->owner, vm->client_id);
325 vm->ids[ring->idx] = id;
326
327 job->vm_id = id - adev->vm_manager.ids;
328 trace_amdgpu_vm_grab_id(vm, ring->idx, job->vm_id, job->vm_pd_addr);
329
330 error:
331 mutex_unlock(&adev->vm_manager.lock);
332 return r;
333 }
334
335 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring)
336 {
337 struct amdgpu_device *adev = ring->adev;
338 const struct amdgpu_ip_block_version *ip_block;
339
340 if (ring->type != AMDGPU_RING_TYPE_COMPUTE)
341 /* only compute rings */
342 return false;
343
344 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
345 if (!ip_block)
346 return false;
347
348 if (ip_block->major <= 7) {
349 /* gfx7 has no workaround */
350 return true;
351 } else if (ip_block->major == 8) {
352 if (adev->gfx.mec_fw_version >= 673)
353 /* gfx8 is fixed in MEC firmware 673 */
354 return false;
355 else
356 return true;
357 }
358 return false;
359 }
360
361 /**
362 * amdgpu_vm_flush - hardware flush the vm
363 *
364 * @ring: ring to use for flush
365 * @vm_id: vmid number to use
366 * @pd_addr: address of the page directory
367 *
368 * Emit a VM flush when it is necessary.
369 */
370 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job)
371 {
372 struct amdgpu_device *adev = ring->adev;
373 struct amdgpu_vm_id *id = &adev->vm_manager.ids[job->vm_id];
374 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
375 id->gds_base != job->gds_base ||
376 id->gds_size != job->gds_size ||
377 id->gws_base != job->gws_base ||
378 id->gws_size != job->gws_size ||
379 id->oa_base != job->oa_base ||
380 id->oa_size != job->oa_size);
381 int r;
382
383 if (ring->funcs->emit_pipeline_sync && (
384 job->vm_needs_flush || gds_switch_needed ||
385 amdgpu_vm_ring_has_compute_vm_bug(ring)))
386 amdgpu_ring_emit_pipeline_sync(ring);
387
388 if (ring->funcs->emit_vm_flush && (job->vm_needs_flush ||
389 amdgpu_vm_is_gpu_reset(adev, id))) {
390 struct fence *fence;
391
392 trace_amdgpu_vm_flush(job->vm_pd_addr, ring->idx, job->vm_id);
393 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
394
395 r = amdgpu_fence_emit(ring, &fence);
396 if (r)
397 return r;
398
399 mutex_lock(&adev->vm_manager.lock);
400 fence_put(id->last_flush);
401 id->last_flush = fence;
402 mutex_unlock(&adev->vm_manager.lock);
403 }
404
405 if (gds_switch_needed) {
406 id->gds_base = job->gds_base;
407 id->gds_size = job->gds_size;
408 id->gws_base = job->gws_base;
409 id->gws_size = job->gws_size;
410 id->oa_base = job->oa_base;
411 id->oa_size = job->oa_size;
412 amdgpu_ring_emit_gds_switch(ring, job->vm_id,
413 job->gds_base, job->gds_size,
414 job->gws_base, job->gws_size,
415 job->oa_base, job->oa_size);
416 }
417
418 return 0;
419 }
420
421 /**
422 * amdgpu_vm_reset_id - reset VMID to zero
423 *
424 * @adev: amdgpu device structure
425 * @vm_id: vmid number to use
426 *
427 * Reset saved GDW, GWS and OA to force switch on next flush.
428 */
429 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id)
430 {
431 struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id];
432
433 id->gds_base = 0;
434 id->gds_size = 0;
435 id->gws_base = 0;
436 id->gws_size = 0;
437 id->oa_base = 0;
438 id->oa_size = 0;
439 }
440
441 /**
442 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
443 *
444 * @vm: requested vm
445 * @bo: requested buffer object
446 *
447 * Find @bo inside the requested vm.
448 * Search inside the @bos vm list for the requested vm
449 * Returns the found bo_va or NULL if none is found
450 *
451 * Object has to be reserved!
452 */
453 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
454 struct amdgpu_bo *bo)
455 {
456 struct amdgpu_bo_va *bo_va;
457
458 list_for_each_entry(bo_va, &bo->va, bo_list) {
459 if (bo_va->vm == vm) {
460 return bo_va;
461 }
462 }
463 return NULL;
464 }
465
466 /**
467 * amdgpu_vm_update_pages - helper to call the right asic function
468 *
469 * @adev: amdgpu_device pointer
470 * @vm_update_params: see amdgpu_vm_update_params definition
471 * @pe: addr of the page entry
472 * @addr: dst addr to write into pe
473 * @count: number of page entries to update
474 * @incr: increase next addr by incr bytes
475 * @flags: hw access flags
476 *
477 * Traces the parameters and calls the right asic functions
478 * to setup the page table using the DMA.
479 */
480 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
481 struct amdgpu_vm_update_params
482 *vm_update_params,
483 uint64_t pe, uint64_t addr,
484 unsigned count, uint32_t incr,
485 uint32_t flags)
486 {
487 trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
488
489 if (vm_update_params->src) {
490 amdgpu_vm_copy_pte(adev, vm_update_params->ib,
491 pe, (vm_update_params->src + (addr >> 12) * 8), count);
492
493 } else if (vm_update_params->pages_addr) {
494 amdgpu_vm_write_pte(adev, vm_update_params->ib,
495 vm_update_params->pages_addr,
496 pe, addr, count, incr, flags);
497
498 } else if (count < 3) {
499 amdgpu_vm_write_pte(adev, vm_update_params->ib, NULL, pe, addr,
500 count, incr, flags);
501
502 } else {
503 amdgpu_vm_set_pte_pde(adev, vm_update_params->ib, pe, addr,
504 count, incr, flags);
505 }
506 }
507
508 /**
509 * amdgpu_vm_clear_bo - initially clear the page dir/table
510 *
511 * @adev: amdgpu_device pointer
512 * @bo: bo to clear
513 *
514 * need to reserve bo first before calling it.
515 */
516 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
517 struct amdgpu_vm *vm,
518 struct amdgpu_bo *bo)
519 {
520 struct amdgpu_ring *ring;
521 struct fence *fence = NULL;
522 struct amdgpu_job *job;
523 struct amdgpu_vm_update_params vm_update_params;
524 unsigned entries;
525 uint64_t addr;
526 int r;
527
528 memset(&vm_update_params, 0, sizeof(vm_update_params));
529 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
530
531 r = reservation_object_reserve_shared(bo->tbo.resv);
532 if (r)
533 return r;
534
535 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
536 if (r)
537 goto error;
538
539 addr = amdgpu_bo_gpu_offset(bo);
540 entries = amdgpu_bo_size(bo) / 8;
541
542 r = amdgpu_job_alloc_with_ib(adev, 64, &job);
543 if (r)
544 goto error;
545
546 vm_update_params.ib = &job->ibs[0];
547 amdgpu_vm_update_pages(adev, &vm_update_params, addr, 0, entries,
548 0, 0);
549 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
550
551 WARN_ON(job->ibs[0].length_dw > 64);
552 r = amdgpu_job_submit(job, ring, &vm->entity,
553 AMDGPU_FENCE_OWNER_VM, &fence);
554 if (r)
555 goto error_free;
556
557 amdgpu_bo_fence(bo, fence, true);
558 fence_put(fence);
559 return 0;
560
561 error_free:
562 amdgpu_job_free(job);
563
564 error:
565 return r;
566 }
567
568 /**
569 * amdgpu_vm_map_gart - Resolve gart mapping of addr
570 *
571 * @pages_addr: optional DMA address to use for lookup
572 * @addr: the unmapped addr
573 *
574 * Look up the physical address of the page that the pte resolves
575 * to and return the pointer for the page table entry.
576 */
577 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
578 {
579 uint64_t result;
580
581 if (pages_addr) {
582 /* page table offset */
583 result = pages_addr[addr >> PAGE_SHIFT];
584
585 /* in case cpu page size != gpu page size*/
586 result |= addr & (~PAGE_MASK);
587
588 } else {
589 /* No mapping required */
590 result = addr;
591 }
592
593 result &= 0xFFFFFFFFFFFFF000ULL;
594
595 return result;
596 }
597
598 /**
599 * amdgpu_vm_update_pdes - make sure that page directory is valid
600 *
601 * @adev: amdgpu_device pointer
602 * @vm: requested vm
603 * @start: start of GPU address range
604 * @end: end of GPU address range
605 *
606 * Allocates new page tables if necessary
607 * and updates the page directory.
608 * Returns 0 for success, error for failure.
609 */
610 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
611 struct amdgpu_vm *vm)
612 {
613 struct amdgpu_ring *ring;
614 struct amdgpu_bo *pd = vm->page_directory;
615 uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
616 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
617 uint64_t last_pde = ~0, last_pt = ~0;
618 unsigned count = 0, pt_idx, ndw;
619 struct amdgpu_job *job;
620 struct amdgpu_vm_update_params vm_update_params;
621 struct fence *fence = NULL;
622
623 int r;
624
625 memset(&vm_update_params, 0, sizeof(vm_update_params));
626 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
627
628 /* padding, etc. */
629 ndw = 64;
630
631 /* assume the worst case */
632 ndw += vm->max_pde_used * 6;
633
634 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
635 if (r)
636 return r;
637
638 vm_update_params.ib = &job->ibs[0];
639
640 /* walk over the address space and update the page directory */
641 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
642 struct amdgpu_bo *bo = vm->page_tables[pt_idx].entry.robj;
643 uint64_t pde, pt;
644
645 if (bo == NULL)
646 continue;
647
648 pt = amdgpu_bo_gpu_offset(bo);
649 if (vm->page_tables[pt_idx].addr == pt)
650 continue;
651 vm->page_tables[pt_idx].addr = pt;
652
653 pde = pd_addr + pt_idx * 8;
654 if (((last_pde + 8 * count) != pde) ||
655 ((last_pt + incr * count) != pt)) {
656
657 if (count) {
658 amdgpu_vm_update_pages(adev, &vm_update_params,
659 last_pde, last_pt,
660 count, incr,
661 AMDGPU_PTE_VALID);
662 }
663
664 count = 1;
665 last_pde = pde;
666 last_pt = pt;
667 } else {
668 ++count;
669 }
670 }
671
672 if (count)
673 amdgpu_vm_update_pages(adev, &vm_update_params,
674 last_pde, last_pt,
675 count, incr, AMDGPU_PTE_VALID);
676
677 if (vm_update_params.ib->length_dw != 0) {
678 amdgpu_ring_pad_ib(ring, vm_update_params.ib);
679 amdgpu_sync_resv(adev, &job->sync, pd->tbo.resv,
680 AMDGPU_FENCE_OWNER_VM);
681 WARN_ON(vm_update_params.ib->length_dw > ndw);
682 r = amdgpu_job_submit(job, ring, &vm->entity,
683 AMDGPU_FENCE_OWNER_VM, &fence);
684 if (r)
685 goto error_free;
686
687 amdgpu_bo_fence(pd, fence, true);
688 fence_put(vm->page_directory_fence);
689 vm->page_directory_fence = fence_get(fence);
690 fence_put(fence);
691
692 } else {
693 amdgpu_job_free(job);
694 }
695
696 return 0;
697
698 error_free:
699 amdgpu_job_free(job);
700 return r;
701 }
702
703 /**
704 * amdgpu_vm_frag_ptes - add fragment information to PTEs
705 *
706 * @adev: amdgpu_device pointer
707 * @vm_update_params: see amdgpu_vm_update_params definition
708 * @pe_start: first PTE to handle
709 * @pe_end: last PTE to handle
710 * @addr: addr those PTEs should point to
711 * @flags: hw mapping flags
712 */
713 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
714 struct amdgpu_vm_update_params
715 *vm_update_params,
716 uint64_t pe_start, uint64_t pe_end,
717 uint64_t addr, uint32_t flags)
718 {
719 /**
720 * The MC L1 TLB supports variable sized pages, based on a fragment
721 * field in the PTE. When this field is set to a non-zero value, page
722 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
723 * flags are considered valid for all PTEs within the fragment range
724 * and corresponding mappings are assumed to be physically contiguous.
725 *
726 * The L1 TLB can store a single PTE for the whole fragment,
727 * significantly increasing the space available for translation
728 * caching. This leads to large improvements in throughput when the
729 * TLB is under pressure.
730 *
731 * The L2 TLB distributes small and large fragments into two
732 * asymmetric partitions. The large fragment cache is significantly
733 * larger. Thus, we try to use large fragments wherever possible.
734 * Userspace can support this by aligning virtual base address and
735 * allocation size to the fragment size.
736 */
737
738 /* SI and newer are optimized for 64KB */
739 uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
740 uint64_t frag_align = 0x80;
741
742 uint64_t frag_start = ALIGN(pe_start, frag_align);
743 uint64_t frag_end = pe_end & ~(frag_align - 1);
744
745 unsigned count;
746
747 /* Abort early if there isn't anything to do */
748 if (pe_start == pe_end)
749 return;
750
751 /* system pages are non continuously */
752 if (vm_update_params->src || vm_update_params->pages_addr ||
753 !(flags & AMDGPU_PTE_VALID) || (frag_start >= frag_end)) {
754
755 count = (pe_end - pe_start) / 8;
756 amdgpu_vm_update_pages(adev, vm_update_params, pe_start,
757 addr, count, AMDGPU_GPU_PAGE_SIZE,
758 flags);
759 return;
760 }
761
762 /* handle the 4K area at the beginning */
763 if (pe_start != frag_start) {
764 count = (frag_start - pe_start) / 8;
765 amdgpu_vm_update_pages(adev, vm_update_params, pe_start, addr,
766 count, AMDGPU_GPU_PAGE_SIZE, flags);
767 addr += AMDGPU_GPU_PAGE_SIZE * count;
768 }
769
770 /* handle the area in the middle */
771 count = (frag_end - frag_start) / 8;
772 amdgpu_vm_update_pages(adev, vm_update_params, frag_start, addr, count,
773 AMDGPU_GPU_PAGE_SIZE, flags | frag_flags);
774
775 /* handle the 4K area at the end */
776 if (frag_end != pe_end) {
777 addr += AMDGPU_GPU_PAGE_SIZE * count;
778 count = (pe_end - frag_end) / 8;
779 amdgpu_vm_update_pages(adev, vm_update_params, frag_end, addr,
780 count, AMDGPU_GPU_PAGE_SIZE, flags);
781 }
782 }
783
784 /**
785 * amdgpu_vm_update_ptes - make sure that page tables are valid
786 *
787 * @adev: amdgpu_device pointer
788 * @vm_update_params: see amdgpu_vm_update_params definition
789 * @vm: requested vm
790 * @start: start of GPU address range
791 * @end: end of GPU address range
792 * @dst: destination address to map to, the next dst inside the function
793 * @flags: mapping flags
794 *
795 * Update the page tables in the range @start - @end.
796 */
797 static void amdgpu_vm_update_ptes(struct amdgpu_device *adev,
798 struct amdgpu_vm_update_params
799 *vm_update_params,
800 struct amdgpu_vm *vm,
801 uint64_t start, uint64_t end,
802 uint64_t dst, uint32_t flags)
803 {
804 const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
805
806 uint64_t cur_pe_start, cur_pe_end, cur_dst;
807 uint64_t addr; /* next GPU address to be updated */
808 uint64_t pt_idx;
809 struct amdgpu_bo *pt;
810 unsigned nptes; /* next number of ptes to be updated */
811 uint64_t next_pe_start;
812
813 /* initialize the variables */
814 addr = start;
815 pt_idx = addr >> amdgpu_vm_block_size;
816 pt = vm->page_tables[pt_idx].entry.robj;
817
818 if ((addr & ~mask) == (end & ~mask))
819 nptes = end - addr;
820 else
821 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
822
823 cur_pe_start = amdgpu_bo_gpu_offset(pt);
824 cur_pe_start += (addr & mask) * 8;
825 cur_pe_end = cur_pe_start + 8 * nptes;
826 cur_dst = dst;
827
828 /* for next ptb*/
829 addr += nptes;
830 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
831
832 /* walk over the address space and update the page tables */
833 while (addr < end) {
834 pt_idx = addr >> amdgpu_vm_block_size;
835 pt = vm->page_tables[pt_idx].entry.robj;
836
837 if ((addr & ~mask) == (end & ~mask))
838 nptes = end - addr;
839 else
840 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
841
842 next_pe_start = amdgpu_bo_gpu_offset(pt);
843 next_pe_start += (addr & mask) * 8;
844
845 if (cur_pe_end == next_pe_start) {
846 /* The next ptb is consecutive to current ptb.
847 * Don't call amdgpu_vm_frag_ptes now.
848 * Will update two ptbs together in future.
849 */
850 cur_pe_end += 8 * nptes;
851 } else {
852 amdgpu_vm_frag_ptes(adev, vm_update_params,
853 cur_pe_start, cur_pe_end,
854 cur_dst, flags);
855
856 cur_pe_start = next_pe_start;
857 cur_pe_end = next_pe_start + 8 * nptes;
858 cur_dst = dst;
859 }
860
861 /* for next ptb*/
862 addr += nptes;
863 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
864 }
865
866 amdgpu_vm_frag_ptes(adev, vm_update_params, cur_pe_start,
867 cur_pe_end, cur_dst, flags);
868 }
869
870 /**
871 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
872 *
873 * @adev: amdgpu_device pointer
874 * @exclusive: fence we need to sync to
875 * @src: address where to copy page table entries from
876 * @pages_addr: DMA addresses to use for mapping
877 * @vm: requested vm
878 * @start: start of mapped range
879 * @last: last mapped entry
880 * @flags: flags for the entries
881 * @addr: addr to set the area to
882 * @fence: optional resulting fence
883 *
884 * Fill in the page table entries between @start and @last.
885 * Returns 0 for success, -EINVAL for failure.
886 */
887 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
888 struct fence *exclusive,
889 uint64_t src,
890 dma_addr_t *pages_addr,
891 struct amdgpu_vm *vm,
892 uint64_t start, uint64_t last,
893 uint32_t flags, uint64_t addr,
894 struct fence **fence)
895 {
896 struct amdgpu_ring *ring;
897 void *owner = AMDGPU_FENCE_OWNER_VM;
898 unsigned nptes, ncmds, ndw;
899 struct amdgpu_job *job;
900 struct amdgpu_vm_update_params vm_update_params;
901 struct fence *f = NULL;
902 int r;
903
904 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
905 memset(&vm_update_params, 0, sizeof(vm_update_params));
906 vm_update_params.src = src;
907 vm_update_params.pages_addr = pages_addr;
908
909 /* sync to everything on unmapping */
910 if (!(flags & AMDGPU_PTE_VALID))
911 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
912
913 nptes = last - start + 1;
914
915 /*
916 * reserve space for one command every (1 << BLOCK_SIZE)
917 * entries or 2k dwords (whatever is smaller)
918 */
919 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
920
921 /* padding, etc. */
922 ndw = 64;
923
924 if (vm_update_params.src) {
925 /* only copy commands needed */
926 ndw += ncmds * 7;
927
928 } else if (vm_update_params.pages_addr) {
929 /* header for write data commands */
930 ndw += ncmds * 4;
931
932 /* body of write data command */
933 ndw += nptes * 2;
934
935 } else {
936 /* set page commands needed */
937 ndw += ncmds * 10;
938
939 /* two extra commands for begin/end of fragment */
940 ndw += 2 * 10;
941 }
942
943 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
944 if (r)
945 return r;
946
947 vm_update_params.ib = &job->ibs[0];
948
949 r = amdgpu_sync_fence(adev, &job->sync, exclusive);
950 if (r)
951 goto error_free;
952
953 r = amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv,
954 owner);
955 if (r)
956 goto error_free;
957
958 r = reservation_object_reserve_shared(vm->page_directory->tbo.resv);
959 if (r)
960 goto error_free;
961
962 amdgpu_vm_update_ptes(adev, &vm_update_params, vm, start,
963 last + 1, addr, flags);
964
965 amdgpu_ring_pad_ib(ring, vm_update_params.ib);
966 WARN_ON(vm_update_params.ib->length_dw > ndw);
967 r = amdgpu_job_submit(job, ring, &vm->entity,
968 AMDGPU_FENCE_OWNER_VM, &f);
969 if (r)
970 goto error_free;
971
972 amdgpu_bo_fence(vm->page_directory, f, true);
973 if (fence) {
974 fence_put(*fence);
975 *fence = fence_get(f);
976 }
977 fence_put(f);
978 return 0;
979
980 error_free:
981 amdgpu_job_free(job);
982 return r;
983 }
984
985 /**
986 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
987 *
988 * @adev: amdgpu_device pointer
989 * @exclusive: fence we need to sync to
990 * @gtt_flags: flags as they are used for GTT
991 * @pages_addr: DMA addresses to use for mapping
992 * @vm: requested vm
993 * @mapping: mapped range and flags to use for the update
994 * @addr: addr to set the area to
995 * @flags: HW flags for the mapping
996 * @fence: optional resulting fence
997 *
998 * Split the mapping into smaller chunks so that each update fits
999 * into a SDMA IB.
1000 * Returns 0 for success, -EINVAL for failure.
1001 */
1002 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1003 struct fence *exclusive,
1004 uint32_t gtt_flags,
1005 dma_addr_t *pages_addr,
1006 struct amdgpu_vm *vm,
1007 struct amdgpu_bo_va_mapping *mapping,
1008 uint32_t flags, uint64_t addr,
1009 struct fence **fence)
1010 {
1011 const uint64_t max_size = 64ULL * 1024ULL * 1024ULL / AMDGPU_GPU_PAGE_SIZE;
1012
1013 uint64_t src = 0, start = mapping->it.start;
1014 int r;
1015
1016 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1017 * but in case of something, we filter the flags in first place
1018 */
1019 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1020 flags &= ~AMDGPU_PTE_READABLE;
1021 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1022 flags &= ~AMDGPU_PTE_WRITEABLE;
1023
1024 trace_amdgpu_vm_bo_update(mapping);
1025
1026 if (pages_addr) {
1027 if (flags == gtt_flags)
1028 src = adev->gart.table_addr + (addr >> 12) * 8;
1029 addr = 0;
1030 }
1031 addr += mapping->offset;
1032
1033 if (!pages_addr || src)
1034 return amdgpu_vm_bo_update_mapping(adev, exclusive,
1035 src, pages_addr, vm,
1036 start, mapping->it.last,
1037 flags, addr, fence);
1038
1039 while (start != mapping->it.last + 1) {
1040 uint64_t last;
1041
1042 last = min((uint64_t)mapping->it.last, start + max_size - 1);
1043 r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1044 src, pages_addr, vm,
1045 start, last, flags, addr,
1046 fence);
1047 if (r)
1048 return r;
1049
1050 start = last + 1;
1051 addr += max_size * AMDGPU_GPU_PAGE_SIZE;
1052 }
1053
1054 return 0;
1055 }
1056
1057 /**
1058 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1059 *
1060 * @adev: amdgpu_device pointer
1061 * @bo_va: requested BO and VM object
1062 * @mem: ttm mem
1063 *
1064 * Fill in the page table entries for @bo_va.
1065 * Returns 0 for success, -EINVAL for failure.
1066 *
1067 * Object have to be reserved and mutex must be locked!
1068 */
1069 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1070 struct amdgpu_bo_va *bo_va,
1071 struct ttm_mem_reg *mem)
1072 {
1073 struct amdgpu_vm *vm = bo_va->vm;
1074 struct amdgpu_bo_va_mapping *mapping;
1075 dma_addr_t *pages_addr = NULL;
1076 uint32_t gtt_flags, flags;
1077 struct fence *exclusive;
1078 uint64_t addr;
1079 int r;
1080
1081 if (mem) {
1082 struct ttm_dma_tt *ttm;
1083
1084 addr = (u64)mem->start << PAGE_SHIFT;
1085 switch (mem->mem_type) {
1086 case TTM_PL_TT:
1087 ttm = container_of(bo_va->bo->tbo.ttm, struct
1088 ttm_dma_tt, ttm);
1089 pages_addr = ttm->dma_address;
1090 break;
1091
1092 case TTM_PL_VRAM:
1093 addr += adev->vm_manager.vram_base_offset;
1094 break;
1095
1096 default:
1097 break;
1098 }
1099
1100 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
1101 } else {
1102 addr = 0;
1103 exclusive = NULL;
1104 }
1105
1106 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1107 gtt_flags = (adev == bo_va->bo->adev) ? flags : 0;
1108
1109 spin_lock(&vm->status_lock);
1110 if (!list_empty(&bo_va->vm_status))
1111 list_splice_init(&bo_va->valids, &bo_va->invalids);
1112 spin_unlock(&vm->status_lock);
1113
1114 list_for_each_entry(mapping, &bo_va->invalids, list) {
1115 r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1116 gtt_flags, pages_addr, vm,
1117 mapping, flags, addr,
1118 &bo_va->last_pt_update);
1119 if (r)
1120 return r;
1121 }
1122
1123 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1124 list_for_each_entry(mapping, &bo_va->valids, list)
1125 trace_amdgpu_vm_bo_mapping(mapping);
1126
1127 list_for_each_entry(mapping, &bo_va->invalids, list)
1128 trace_amdgpu_vm_bo_mapping(mapping);
1129 }
1130
1131 spin_lock(&vm->status_lock);
1132 list_splice_init(&bo_va->invalids, &bo_va->valids);
1133 list_del_init(&bo_va->vm_status);
1134 if (!mem)
1135 list_add(&bo_va->vm_status, &vm->cleared);
1136 spin_unlock(&vm->status_lock);
1137
1138 return 0;
1139 }
1140
1141 /**
1142 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1143 *
1144 * @adev: amdgpu_device pointer
1145 * @vm: requested vm
1146 *
1147 * Make sure all freed BOs are cleared in the PT.
1148 * Returns 0 for success.
1149 *
1150 * PTs have to be reserved and mutex must be locked!
1151 */
1152 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1153 struct amdgpu_vm *vm)
1154 {
1155 struct amdgpu_bo_va_mapping *mapping;
1156 int r;
1157
1158 while (!list_empty(&vm->freed)) {
1159 mapping = list_first_entry(&vm->freed,
1160 struct amdgpu_bo_va_mapping, list);
1161 list_del(&mapping->list);
1162
1163 r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, NULL, vm, mapping,
1164 0, 0, NULL);
1165 kfree(mapping);
1166 if (r)
1167 return r;
1168
1169 }
1170 return 0;
1171
1172 }
1173
1174 /**
1175 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1176 *
1177 * @adev: amdgpu_device pointer
1178 * @vm: requested vm
1179 *
1180 * Make sure all invalidated BOs are cleared in the PT.
1181 * Returns 0 for success.
1182 *
1183 * PTs have to be reserved and mutex must be locked!
1184 */
1185 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1186 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1187 {
1188 struct amdgpu_bo_va *bo_va = NULL;
1189 int r = 0;
1190
1191 spin_lock(&vm->status_lock);
1192 while (!list_empty(&vm->invalidated)) {
1193 bo_va = list_first_entry(&vm->invalidated,
1194 struct amdgpu_bo_va, vm_status);
1195 spin_unlock(&vm->status_lock);
1196
1197 r = amdgpu_vm_bo_update(adev, bo_va, NULL);
1198 if (r)
1199 return r;
1200
1201 spin_lock(&vm->status_lock);
1202 }
1203 spin_unlock(&vm->status_lock);
1204
1205 if (bo_va)
1206 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1207
1208 return r;
1209 }
1210
1211 /**
1212 * amdgpu_vm_bo_add - add a bo to a specific vm
1213 *
1214 * @adev: amdgpu_device pointer
1215 * @vm: requested vm
1216 * @bo: amdgpu buffer object
1217 *
1218 * Add @bo into the requested vm.
1219 * Add @bo to the list of bos associated with the vm
1220 * Returns newly added bo_va or NULL for failure
1221 *
1222 * Object has to be reserved!
1223 */
1224 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1225 struct amdgpu_vm *vm,
1226 struct amdgpu_bo *bo)
1227 {
1228 struct amdgpu_bo_va *bo_va;
1229
1230 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1231 if (bo_va == NULL) {
1232 return NULL;
1233 }
1234 bo_va->vm = vm;
1235 bo_va->bo = bo;
1236 bo_va->ref_count = 1;
1237 INIT_LIST_HEAD(&bo_va->bo_list);
1238 INIT_LIST_HEAD(&bo_va->valids);
1239 INIT_LIST_HEAD(&bo_va->invalids);
1240 INIT_LIST_HEAD(&bo_va->vm_status);
1241
1242 list_add_tail(&bo_va->bo_list, &bo->va);
1243
1244 return bo_va;
1245 }
1246
1247 /**
1248 * amdgpu_vm_bo_map - map bo inside a vm
1249 *
1250 * @adev: amdgpu_device pointer
1251 * @bo_va: bo_va to store the address
1252 * @saddr: where to map the BO
1253 * @offset: requested offset in the BO
1254 * @flags: attributes of pages (read/write/valid/etc.)
1255 *
1256 * Add a mapping of the BO at the specefied addr into the VM.
1257 * Returns 0 for success, error for failure.
1258 *
1259 * Object has to be reserved and unreserved outside!
1260 */
1261 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1262 struct amdgpu_bo_va *bo_va,
1263 uint64_t saddr, uint64_t offset,
1264 uint64_t size, uint32_t flags)
1265 {
1266 struct amdgpu_bo_va_mapping *mapping;
1267 struct amdgpu_vm *vm = bo_va->vm;
1268 struct interval_tree_node *it;
1269 unsigned last_pfn, pt_idx;
1270 uint64_t eaddr;
1271 int r;
1272
1273 /* validate the parameters */
1274 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1275 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1276 return -EINVAL;
1277
1278 /* make sure object fit at this offset */
1279 eaddr = saddr + size - 1;
1280 if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1281 return -EINVAL;
1282
1283 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1284 if (last_pfn >= adev->vm_manager.max_pfn) {
1285 dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n",
1286 last_pfn, adev->vm_manager.max_pfn);
1287 return -EINVAL;
1288 }
1289
1290 saddr /= AMDGPU_GPU_PAGE_SIZE;
1291 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1292
1293 it = interval_tree_iter_first(&vm->va, saddr, eaddr);
1294 if (it) {
1295 struct amdgpu_bo_va_mapping *tmp;
1296 tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1297 /* bo and tmp overlap, invalid addr */
1298 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1299 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1300 tmp->it.start, tmp->it.last + 1);
1301 r = -EINVAL;
1302 goto error;
1303 }
1304
1305 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1306 if (!mapping) {
1307 r = -ENOMEM;
1308 goto error;
1309 }
1310
1311 INIT_LIST_HEAD(&mapping->list);
1312 mapping->it.start = saddr;
1313 mapping->it.last = eaddr;
1314 mapping->offset = offset;
1315 mapping->flags = flags;
1316
1317 list_add(&mapping->list, &bo_va->invalids);
1318 interval_tree_insert(&mapping->it, &vm->va);
1319
1320 /* Make sure the page tables are allocated */
1321 saddr >>= amdgpu_vm_block_size;
1322 eaddr >>= amdgpu_vm_block_size;
1323
1324 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1325
1326 if (eaddr > vm->max_pde_used)
1327 vm->max_pde_used = eaddr;
1328
1329 /* walk over the address space and allocate the page tables */
1330 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1331 struct reservation_object *resv = vm->page_directory->tbo.resv;
1332 struct amdgpu_bo_list_entry *entry;
1333 struct amdgpu_bo *pt;
1334
1335 entry = &vm->page_tables[pt_idx].entry;
1336 if (entry->robj)
1337 continue;
1338
1339 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1340 AMDGPU_GPU_PAGE_SIZE, true,
1341 AMDGPU_GEM_DOMAIN_VRAM,
1342 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1343 NULL, resv, &pt);
1344 if (r)
1345 goto error_free;
1346
1347 /* Keep a reference to the page table to avoid freeing
1348 * them up in the wrong order.
1349 */
1350 pt->parent = amdgpu_bo_ref(vm->page_directory);
1351
1352 r = amdgpu_vm_clear_bo(adev, vm, pt);
1353 if (r) {
1354 amdgpu_bo_unref(&pt);
1355 goto error_free;
1356 }
1357
1358 entry->robj = pt;
1359 entry->priority = 0;
1360 entry->tv.bo = &entry->robj->tbo;
1361 entry->tv.shared = true;
1362 entry->user_pages = NULL;
1363 vm->page_tables[pt_idx].addr = 0;
1364 }
1365
1366 return 0;
1367
1368 error_free:
1369 list_del(&mapping->list);
1370 interval_tree_remove(&mapping->it, &vm->va);
1371 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1372 kfree(mapping);
1373
1374 error:
1375 return r;
1376 }
1377
1378 /**
1379 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1380 *
1381 * @adev: amdgpu_device pointer
1382 * @bo_va: bo_va to remove the address from
1383 * @saddr: where to the BO is mapped
1384 *
1385 * Remove a mapping of the BO at the specefied addr from the VM.
1386 * Returns 0 for success, error for failure.
1387 *
1388 * Object has to be reserved and unreserved outside!
1389 */
1390 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1391 struct amdgpu_bo_va *bo_va,
1392 uint64_t saddr)
1393 {
1394 struct amdgpu_bo_va_mapping *mapping;
1395 struct amdgpu_vm *vm = bo_va->vm;
1396 bool valid = true;
1397
1398 saddr /= AMDGPU_GPU_PAGE_SIZE;
1399
1400 list_for_each_entry(mapping, &bo_va->valids, list) {
1401 if (mapping->it.start == saddr)
1402 break;
1403 }
1404
1405 if (&mapping->list == &bo_va->valids) {
1406 valid = false;
1407
1408 list_for_each_entry(mapping, &bo_va->invalids, list) {
1409 if (mapping->it.start == saddr)
1410 break;
1411 }
1412
1413 if (&mapping->list == &bo_va->invalids)
1414 return -ENOENT;
1415 }
1416
1417 list_del(&mapping->list);
1418 interval_tree_remove(&mapping->it, &vm->va);
1419 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1420
1421 if (valid)
1422 list_add(&mapping->list, &vm->freed);
1423 else
1424 kfree(mapping);
1425
1426 return 0;
1427 }
1428
1429 /**
1430 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1431 *
1432 * @adev: amdgpu_device pointer
1433 * @bo_va: requested bo_va
1434 *
1435 * Remove @bo_va->bo from the requested vm.
1436 *
1437 * Object have to be reserved!
1438 */
1439 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1440 struct amdgpu_bo_va *bo_va)
1441 {
1442 struct amdgpu_bo_va_mapping *mapping, *next;
1443 struct amdgpu_vm *vm = bo_va->vm;
1444
1445 list_del(&bo_va->bo_list);
1446
1447 spin_lock(&vm->status_lock);
1448 list_del(&bo_va->vm_status);
1449 spin_unlock(&vm->status_lock);
1450
1451 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1452 list_del(&mapping->list);
1453 interval_tree_remove(&mapping->it, &vm->va);
1454 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1455 list_add(&mapping->list, &vm->freed);
1456 }
1457 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1458 list_del(&mapping->list);
1459 interval_tree_remove(&mapping->it, &vm->va);
1460 kfree(mapping);
1461 }
1462
1463 fence_put(bo_va->last_pt_update);
1464 kfree(bo_va);
1465 }
1466
1467 /**
1468 * amdgpu_vm_bo_invalidate - mark the bo as invalid
1469 *
1470 * @adev: amdgpu_device pointer
1471 * @vm: requested vm
1472 * @bo: amdgpu buffer object
1473 *
1474 * Mark @bo as invalid.
1475 */
1476 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1477 struct amdgpu_bo *bo)
1478 {
1479 struct amdgpu_bo_va *bo_va;
1480
1481 list_for_each_entry(bo_va, &bo->va, bo_list) {
1482 spin_lock(&bo_va->vm->status_lock);
1483 if (list_empty(&bo_va->vm_status))
1484 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1485 spin_unlock(&bo_va->vm->status_lock);
1486 }
1487 }
1488
1489 /**
1490 * amdgpu_vm_init - initialize a vm instance
1491 *
1492 * @adev: amdgpu_device pointer
1493 * @vm: requested vm
1494 *
1495 * Init @vm fields.
1496 */
1497 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1498 {
1499 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1500 AMDGPU_VM_PTE_COUNT * 8);
1501 unsigned pd_size, pd_entries;
1502 unsigned ring_instance;
1503 struct amdgpu_ring *ring;
1504 struct amd_sched_rq *rq;
1505 int i, r;
1506
1507 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
1508 vm->ids[i] = NULL;
1509 vm->va = RB_ROOT;
1510 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
1511 spin_lock_init(&vm->status_lock);
1512 INIT_LIST_HEAD(&vm->invalidated);
1513 INIT_LIST_HEAD(&vm->cleared);
1514 INIT_LIST_HEAD(&vm->freed);
1515
1516 pd_size = amdgpu_vm_directory_size(adev);
1517 pd_entries = amdgpu_vm_num_pdes(adev);
1518
1519 /* allocate page table array */
1520 vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt));
1521 if (vm->page_tables == NULL) {
1522 DRM_ERROR("Cannot allocate memory for page table array\n");
1523 return -ENOMEM;
1524 }
1525
1526 /* create scheduler entity for page table updates */
1527
1528 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
1529 ring_instance %= adev->vm_manager.vm_pte_num_rings;
1530 ring = adev->vm_manager.vm_pte_rings[ring_instance];
1531 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
1532 r = amd_sched_entity_init(&ring->sched, &vm->entity,
1533 rq, amdgpu_sched_jobs);
1534 if (r)
1535 return r;
1536
1537 vm->page_directory_fence = NULL;
1538
1539 r = amdgpu_bo_create(adev, pd_size, align, true,
1540 AMDGPU_GEM_DOMAIN_VRAM,
1541 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1542 NULL, NULL, &vm->page_directory);
1543 if (r)
1544 goto error_free_sched_entity;
1545
1546 r = amdgpu_bo_reserve(vm->page_directory, false);
1547 if (r)
1548 goto error_free_page_directory;
1549
1550 r = amdgpu_vm_clear_bo(adev, vm, vm->page_directory);
1551 amdgpu_bo_unreserve(vm->page_directory);
1552 if (r)
1553 goto error_free_page_directory;
1554 vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
1555
1556 return 0;
1557
1558 error_free_page_directory:
1559 amdgpu_bo_unref(&vm->page_directory);
1560 vm->page_directory = NULL;
1561
1562 error_free_sched_entity:
1563 amd_sched_entity_fini(&ring->sched, &vm->entity);
1564
1565 return r;
1566 }
1567
1568 /**
1569 * amdgpu_vm_fini - tear down a vm instance
1570 *
1571 * @adev: amdgpu_device pointer
1572 * @vm: requested vm
1573 *
1574 * Tear down @vm.
1575 * Unbind the VM and remove all bos from the vm bo list
1576 */
1577 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1578 {
1579 struct amdgpu_bo_va_mapping *mapping, *tmp;
1580 int i;
1581
1582 amd_sched_entity_fini(vm->entity.sched, &vm->entity);
1583
1584 if (!RB_EMPTY_ROOT(&vm->va)) {
1585 dev_err(adev->dev, "still active bo inside vm\n");
1586 }
1587 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1588 list_del(&mapping->list);
1589 interval_tree_remove(&mapping->it, &vm->va);
1590 kfree(mapping);
1591 }
1592 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1593 list_del(&mapping->list);
1594 kfree(mapping);
1595 }
1596
1597 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1598 amdgpu_bo_unref(&vm->page_tables[i].entry.robj);
1599 drm_free_large(vm->page_tables);
1600
1601 amdgpu_bo_unref(&vm->page_directory);
1602 fence_put(vm->page_directory_fence);
1603 }
1604
1605 /**
1606 * amdgpu_vm_manager_init - init the VM manager
1607 *
1608 * @adev: amdgpu_device pointer
1609 *
1610 * Initialize the VM manager structures
1611 */
1612 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
1613 {
1614 unsigned i;
1615
1616 INIT_LIST_HEAD(&adev->vm_manager.ids_lru);
1617
1618 /* skip over VMID 0, since it is the system VM */
1619 for (i = 1; i < adev->vm_manager.num_ids; ++i) {
1620 amdgpu_vm_reset_id(adev, i);
1621 amdgpu_sync_create(&adev->vm_manager.ids[i].active);
1622 list_add_tail(&adev->vm_manager.ids[i].list,
1623 &adev->vm_manager.ids_lru);
1624 }
1625
1626 adev->vm_manager.fence_context = fence_context_alloc(AMDGPU_MAX_RINGS);
1627 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
1628 adev->vm_manager.seqno[i] = 0;
1629
1630 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
1631 atomic64_set(&adev->vm_manager.client_counter, 0);
1632 }
1633
1634 /**
1635 * amdgpu_vm_manager_fini - cleanup VM manager
1636 *
1637 * @adev: amdgpu_device pointer
1638 *
1639 * Cleanup the VM manager and free resources.
1640 */
1641 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1642 {
1643 unsigned i;
1644
1645 for (i = 0; i < AMDGPU_NUM_VM; ++i) {
1646 struct amdgpu_vm_id *id = &adev->vm_manager.ids[i];
1647
1648 fence_put(adev->vm_manager.ids[i].first);
1649 amdgpu_sync_free(&adev->vm_manager.ids[i].active);
1650 fence_put(id->flushed_updates);
1651 }
1652 }
This page took 0.066722 seconds and 5 git commands to generate.