drm/amdgpu: use IB for copy buffer of eviction
[deliverable/linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <drm/drmP.h>
29 #include <drm/amdgpu_drm.h>
30 #include "amdgpu.h"
31 #include "amdgpu_trace.h"
32
33 /*
34 * GPUVM
35 * GPUVM is similar to the legacy gart on older asics, however
36 * rather than there being a single global gart table
37 * for the entire GPU, there are multiple VM page tables active
38 * at any given time. The VM page tables can contain a mix
39 * vram pages and system memory pages and system memory pages
40 * can be mapped as snooped (cached system pages) or unsnooped
41 * (uncached system pages).
42 * Each VM has an ID associated with it and there is a page table
43 * associated with each VMID. When execting a command buffer,
44 * the kernel tells the the ring what VMID to use for that command
45 * buffer. VMIDs are allocated dynamically as commands are submitted.
46 * The userspace drivers maintain their own address space and the kernel
47 * sets up their pages tables accordingly when they submit their
48 * command buffers and a VMID is assigned.
49 * Cayman/Trinity support up to 8 active VMs at any given time;
50 * SI supports 16.
51 */
52
53 /**
54 * amdgpu_vm_num_pde - return the number of page directory entries
55 *
56 * @adev: amdgpu_device pointer
57 *
58 * Calculate the number of page directory entries (cayman+).
59 */
60 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
61 {
62 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
63 }
64
65 /**
66 * amdgpu_vm_directory_size - returns the size of the page directory in bytes
67 *
68 * @adev: amdgpu_device pointer
69 *
70 * Calculate the size of the page directory in bytes (cayman+).
71 */
72 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
73 {
74 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
75 }
76
77 /**
78 * amdgpu_vm_get_bos - add the vm BOs to a validation list
79 *
80 * @vm: vm providing the BOs
81 * @head: head of validation list
82 *
83 * Add the page directory to the list of BOs to
84 * validate for command submission (cayman+).
85 */
86 struct amdgpu_bo_list_entry *amdgpu_vm_get_bos(struct amdgpu_device *adev,
87 struct amdgpu_vm *vm,
88 struct list_head *head)
89 {
90 struct amdgpu_bo_list_entry *list;
91 unsigned i, idx;
92
93 mutex_lock(&vm->mutex);
94 list = drm_malloc_ab(vm->max_pde_used + 2,
95 sizeof(struct amdgpu_bo_list_entry));
96 if (!list) {
97 mutex_unlock(&vm->mutex);
98 return NULL;
99 }
100
101 /* add the vm page table to the list */
102 list[0].robj = vm->page_directory;
103 list[0].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
104 list[0].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
105 list[0].priority = 0;
106 list[0].tv.bo = &vm->page_directory->tbo;
107 list[0].tv.shared = true;
108 list_add(&list[0].tv.head, head);
109
110 for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
111 if (!vm->page_tables[i].bo)
112 continue;
113
114 list[idx].robj = vm->page_tables[i].bo;
115 list[idx].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
116 list[idx].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
117 list[idx].priority = 0;
118 list[idx].tv.bo = &list[idx].robj->tbo;
119 list[idx].tv.shared = true;
120 list_add(&list[idx++].tv.head, head);
121 }
122 mutex_unlock(&vm->mutex);
123
124 return list;
125 }
126
127 /**
128 * amdgpu_vm_grab_id - allocate the next free VMID
129 *
130 * @vm: vm to allocate id for
131 * @ring: ring we want to submit job to
132 * @sync: sync object where we add dependencies
133 *
134 * Allocate an id for the vm, adding fences to the sync obj as necessary.
135 *
136 * Global mutex must be locked!
137 */
138 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
139 struct amdgpu_sync *sync)
140 {
141 struct amdgpu_fence *best[AMDGPU_MAX_RINGS] = {};
142 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
143 struct amdgpu_device *adev = ring->adev;
144
145 unsigned choices[2] = {};
146 unsigned i;
147
148 /* check if the id is still valid */
149 if (vm_id->id && vm_id->last_id_use &&
150 vm_id->last_id_use == adev->vm_manager.active[vm_id->id])
151 return 0;
152
153 /* we definately need to flush */
154 vm_id->pd_gpu_addr = ~0ll;
155
156 /* skip over VMID 0, since it is the system VM */
157 for (i = 1; i < adev->vm_manager.nvm; ++i) {
158 struct amdgpu_fence *fence = adev->vm_manager.active[i];
159
160 if (fence == NULL) {
161 /* found a free one */
162 vm_id->id = i;
163 trace_amdgpu_vm_grab_id(i, ring->idx);
164 return 0;
165 }
166
167 if (amdgpu_fence_is_earlier(fence, best[fence->ring->idx])) {
168 best[fence->ring->idx] = fence;
169 choices[fence->ring == ring ? 0 : 1] = i;
170 }
171 }
172
173 for (i = 0; i < 2; ++i) {
174 if (choices[i]) {
175 struct amdgpu_fence *fence;
176
177 fence = adev->vm_manager.active[choices[i]];
178 vm_id->id = choices[i];
179
180 trace_amdgpu_vm_grab_id(choices[i], ring->idx);
181 return amdgpu_sync_fence(ring->adev, sync, &fence->base);
182 }
183 }
184
185 /* should never happen */
186 BUG();
187 return -EINVAL;
188 }
189
190 /**
191 * amdgpu_vm_flush - hardware flush the vm
192 *
193 * @ring: ring to use for flush
194 * @vm: vm we want to flush
195 * @updates: last vm update that we waited for
196 *
197 * Flush the vm (cayman+).
198 *
199 * Global and local mutex must be locked!
200 */
201 void amdgpu_vm_flush(struct amdgpu_ring *ring,
202 struct amdgpu_vm *vm,
203 struct fence *updates)
204 {
205 uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
206 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
207 struct fence *flushed_updates = vm_id->flushed_updates;
208 bool is_earlier = false;
209
210 if (flushed_updates && updates) {
211 BUG_ON(flushed_updates->context != updates->context);
212 is_earlier = (updates->seqno - flushed_updates->seqno <=
213 INT_MAX) ? true : false;
214 }
215
216 if (pd_addr != vm_id->pd_gpu_addr || !flushed_updates ||
217 is_earlier) {
218
219 trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id->id);
220 if (is_earlier) {
221 vm_id->flushed_updates = fence_get(updates);
222 fence_put(flushed_updates);
223 }
224 if (!flushed_updates)
225 vm_id->flushed_updates = fence_get(updates);
226 vm_id->pd_gpu_addr = pd_addr;
227 amdgpu_ring_emit_vm_flush(ring, vm_id->id, vm_id->pd_gpu_addr);
228 }
229 }
230
231 /**
232 * amdgpu_vm_fence - remember fence for vm
233 *
234 * @adev: amdgpu_device pointer
235 * @vm: vm we want to fence
236 * @fence: fence to remember
237 *
238 * Fence the vm (cayman+).
239 * Set the fence used to protect page table and id.
240 *
241 * Global and local mutex must be locked!
242 */
243 void amdgpu_vm_fence(struct amdgpu_device *adev,
244 struct amdgpu_vm *vm,
245 struct amdgpu_fence *fence)
246 {
247 unsigned ridx = fence->ring->idx;
248 unsigned vm_id = vm->ids[ridx].id;
249
250 amdgpu_fence_unref(&adev->vm_manager.active[vm_id]);
251 adev->vm_manager.active[vm_id] = amdgpu_fence_ref(fence);
252
253 amdgpu_fence_unref(&vm->ids[ridx].last_id_use);
254 vm->ids[ridx].last_id_use = amdgpu_fence_ref(fence);
255 }
256
257 /**
258 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
259 *
260 * @vm: requested vm
261 * @bo: requested buffer object
262 *
263 * Find @bo inside the requested vm (cayman+).
264 * Search inside the @bos vm list for the requested vm
265 * Returns the found bo_va or NULL if none is found
266 *
267 * Object has to be reserved!
268 */
269 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
270 struct amdgpu_bo *bo)
271 {
272 struct amdgpu_bo_va *bo_va;
273
274 list_for_each_entry(bo_va, &bo->va, bo_list) {
275 if (bo_va->vm == vm) {
276 return bo_va;
277 }
278 }
279 return NULL;
280 }
281
282 /**
283 * amdgpu_vm_update_pages - helper to call the right asic function
284 *
285 * @adev: amdgpu_device pointer
286 * @ib: indirect buffer to fill with commands
287 * @pe: addr of the page entry
288 * @addr: dst addr to write into pe
289 * @count: number of page entries to update
290 * @incr: increase next addr by incr bytes
291 * @flags: hw access flags
292 * @gtt_flags: GTT hw access flags
293 *
294 * Traces the parameters and calls the right asic functions
295 * to setup the page table using the DMA.
296 */
297 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
298 struct amdgpu_ib *ib,
299 uint64_t pe, uint64_t addr,
300 unsigned count, uint32_t incr,
301 uint32_t flags, uint32_t gtt_flags)
302 {
303 trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
304
305 if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
306 uint64_t src = adev->gart.table_addr + (addr >> 12) * 8;
307 amdgpu_vm_copy_pte(adev, ib, pe, src, count);
308
309 } else if ((flags & AMDGPU_PTE_SYSTEM) || (count < 3)) {
310 amdgpu_vm_write_pte(adev, ib, pe, addr,
311 count, incr, flags);
312
313 } else {
314 amdgpu_vm_set_pte_pde(adev, ib, pe, addr,
315 count, incr, flags);
316 }
317 }
318
319 int amdgpu_vm_free_job(struct amdgpu_job *sched_job)
320 {
321 int i;
322 for (i = 0; i < sched_job->num_ibs; i++)
323 amdgpu_ib_free(sched_job->adev, &sched_job->ibs[i]);
324 kfree(sched_job->ibs);
325 return 0;
326 }
327
328 /**
329 * amdgpu_vm_clear_bo - initially clear the page dir/table
330 *
331 * @adev: amdgpu_device pointer
332 * @bo: bo to clear
333 */
334 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
335 struct amdgpu_bo *bo)
336 {
337 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
338 struct fence *fence = NULL;
339 struct amdgpu_ib *ib;
340 unsigned entries;
341 uint64_t addr;
342 int r;
343
344 r = amdgpu_bo_reserve(bo, false);
345 if (r)
346 return r;
347
348 r = reservation_object_reserve_shared(bo->tbo.resv);
349 if (r)
350 return r;
351
352 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
353 if (r)
354 goto error_unreserve;
355
356 addr = amdgpu_bo_gpu_offset(bo);
357 entries = amdgpu_bo_size(bo) / 8;
358
359 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
360 if (!ib)
361 goto error_unreserve;
362
363 r = amdgpu_ib_get(ring, NULL, entries * 2 + 64, ib);
364 if (r)
365 goto error_free;
366
367 ib->length_dw = 0;
368
369 amdgpu_vm_update_pages(adev, ib, addr, 0, entries, 0, 0, 0);
370 amdgpu_vm_pad_ib(adev, ib);
371 WARN_ON(ib->length_dw > 64);
372 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
373 &amdgpu_vm_free_job,
374 AMDGPU_FENCE_OWNER_VM,
375 &fence);
376 if (!r)
377 amdgpu_bo_fence(bo, fence, true);
378 fence_put(fence);
379 if (amdgpu_enable_scheduler) {
380 amdgpu_bo_unreserve(bo);
381 return 0;
382 }
383 error_free:
384 amdgpu_ib_free(adev, ib);
385 kfree(ib);
386
387 error_unreserve:
388 amdgpu_bo_unreserve(bo);
389 return r;
390 }
391
392 /**
393 * amdgpu_vm_map_gart - get the physical address of a gart page
394 *
395 * @adev: amdgpu_device pointer
396 * @addr: the unmapped addr
397 *
398 * Look up the physical address of the page that the pte resolves
399 * to (cayman+).
400 * Returns the physical address of the page.
401 */
402 uint64_t amdgpu_vm_map_gart(struct amdgpu_device *adev, uint64_t addr)
403 {
404 uint64_t result;
405
406 /* page table offset */
407 result = adev->gart.pages_addr[addr >> PAGE_SHIFT];
408
409 /* in case cpu page size != gpu page size*/
410 result |= addr & (~PAGE_MASK);
411
412 return result;
413 }
414
415 /**
416 * amdgpu_vm_update_pdes - make sure that page directory is valid
417 *
418 * @adev: amdgpu_device pointer
419 * @vm: requested vm
420 * @start: start of GPU address range
421 * @end: end of GPU address range
422 *
423 * Allocates new page tables if necessary
424 * and updates the page directory (cayman+).
425 * Returns 0 for success, error for failure.
426 *
427 * Global and local mutex must be locked!
428 */
429 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
430 struct amdgpu_vm *vm)
431 {
432 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
433 struct amdgpu_bo *pd = vm->page_directory;
434 uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
435 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
436 uint64_t last_pde = ~0, last_pt = ~0;
437 unsigned count = 0, pt_idx, ndw;
438 struct amdgpu_ib *ib;
439 struct fence *fence = NULL;
440
441 int r;
442
443 /* padding, etc. */
444 ndw = 64;
445
446 /* assume the worst case */
447 ndw += vm->max_pde_used * 6;
448
449 /* update too big for an IB */
450 if (ndw > 0xfffff)
451 return -ENOMEM;
452
453 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
454 if (!ib)
455 return -ENOMEM;
456
457 r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
458 if (r)
459 return r;
460 ib->length_dw = 0;
461
462 /* walk over the address space and update the page directory */
463 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
464 struct amdgpu_bo *bo = vm->page_tables[pt_idx].bo;
465 uint64_t pde, pt;
466
467 if (bo == NULL)
468 continue;
469
470 pt = amdgpu_bo_gpu_offset(bo);
471 if (vm->page_tables[pt_idx].addr == pt)
472 continue;
473 vm->page_tables[pt_idx].addr = pt;
474
475 pde = pd_addr + pt_idx * 8;
476 if (((last_pde + 8 * count) != pde) ||
477 ((last_pt + incr * count) != pt)) {
478
479 if (count) {
480 amdgpu_vm_update_pages(adev, ib, last_pde,
481 last_pt, count, incr,
482 AMDGPU_PTE_VALID, 0);
483 }
484
485 count = 1;
486 last_pde = pde;
487 last_pt = pt;
488 } else {
489 ++count;
490 }
491 }
492
493 if (count)
494 amdgpu_vm_update_pages(adev, ib, last_pde, last_pt, count,
495 incr, AMDGPU_PTE_VALID, 0);
496
497 if (ib->length_dw != 0) {
498 amdgpu_vm_pad_ib(adev, ib);
499 amdgpu_sync_resv(adev, &ib->sync, pd->tbo.resv, AMDGPU_FENCE_OWNER_VM);
500 WARN_ON(ib->length_dw > ndw);
501 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
502 &amdgpu_vm_free_job,
503 AMDGPU_FENCE_OWNER_VM,
504 &fence);
505 if (r)
506 goto error_free;
507
508 amdgpu_bo_fence(pd, fence, true);
509 fence_put(vm->page_directory_fence);
510 vm->page_directory_fence = fence_get(fence);
511 fence_put(fence);
512 }
513
514 if (!amdgpu_enable_scheduler || ib->length_dw == 0) {
515 amdgpu_ib_free(adev, ib);
516 kfree(ib);
517 }
518
519 return 0;
520
521 error_free:
522 amdgpu_ib_free(adev, ib);
523 kfree(ib);
524 return r;
525 }
526
527 /**
528 * amdgpu_vm_frag_ptes - add fragment information to PTEs
529 *
530 * @adev: amdgpu_device pointer
531 * @ib: IB for the update
532 * @pe_start: first PTE to handle
533 * @pe_end: last PTE to handle
534 * @addr: addr those PTEs should point to
535 * @flags: hw mapping flags
536 * @gtt_flags: GTT hw mapping flags
537 *
538 * Global and local mutex must be locked!
539 */
540 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
541 struct amdgpu_ib *ib,
542 uint64_t pe_start, uint64_t pe_end,
543 uint64_t addr, uint32_t flags,
544 uint32_t gtt_flags)
545 {
546 /**
547 * The MC L1 TLB supports variable sized pages, based on a fragment
548 * field in the PTE. When this field is set to a non-zero value, page
549 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
550 * flags are considered valid for all PTEs within the fragment range
551 * and corresponding mappings are assumed to be physically contiguous.
552 *
553 * The L1 TLB can store a single PTE for the whole fragment,
554 * significantly increasing the space available for translation
555 * caching. This leads to large improvements in throughput when the
556 * TLB is under pressure.
557 *
558 * The L2 TLB distributes small and large fragments into two
559 * asymmetric partitions. The large fragment cache is significantly
560 * larger. Thus, we try to use large fragments wherever possible.
561 * Userspace can support this by aligning virtual base address and
562 * allocation size to the fragment size.
563 */
564
565 /* SI and newer are optimized for 64KB */
566 uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
567 uint64_t frag_align = 0x80;
568
569 uint64_t frag_start = ALIGN(pe_start, frag_align);
570 uint64_t frag_end = pe_end & ~(frag_align - 1);
571
572 unsigned count;
573
574 /* system pages are non continuously */
575 if ((flags & AMDGPU_PTE_SYSTEM) || !(flags & AMDGPU_PTE_VALID) ||
576 (frag_start >= frag_end)) {
577
578 count = (pe_end - pe_start) / 8;
579 amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
580 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
581 return;
582 }
583
584 /* handle the 4K area at the beginning */
585 if (pe_start != frag_start) {
586 count = (frag_start - pe_start) / 8;
587 amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
588 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
589 addr += AMDGPU_GPU_PAGE_SIZE * count;
590 }
591
592 /* handle the area in the middle */
593 count = (frag_end - frag_start) / 8;
594 amdgpu_vm_update_pages(adev, ib, frag_start, addr, count,
595 AMDGPU_GPU_PAGE_SIZE, flags | frag_flags,
596 gtt_flags);
597
598 /* handle the 4K area at the end */
599 if (frag_end != pe_end) {
600 addr += AMDGPU_GPU_PAGE_SIZE * count;
601 count = (pe_end - frag_end) / 8;
602 amdgpu_vm_update_pages(adev, ib, frag_end, addr, count,
603 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
604 }
605 }
606
607 /**
608 * amdgpu_vm_update_ptes - make sure that page tables are valid
609 *
610 * @adev: amdgpu_device pointer
611 * @vm: requested vm
612 * @start: start of GPU address range
613 * @end: end of GPU address range
614 * @dst: destination address to map to
615 * @flags: mapping flags
616 *
617 * Update the page tables in the range @start - @end (cayman+).
618 *
619 * Global and local mutex must be locked!
620 */
621 static int amdgpu_vm_update_ptes(struct amdgpu_device *adev,
622 struct amdgpu_vm *vm,
623 struct amdgpu_ib *ib,
624 uint64_t start, uint64_t end,
625 uint64_t dst, uint32_t flags,
626 uint32_t gtt_flags)
627 {
628 uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
629 uint64_t last_pte = ~0, last_dst = ~0;
630 unsigned count = 0;
631 uint64_t addr;
632
633 /* walk over the address space and update the page tables */
634 for (addr = start; addr < end; ) {
635 uint64_t pt_idx = addr >> amdgpu_vm_block_size;
636 struct amdgpu_bo *pt = vm->page_tables[pt_idx].bo;
637 unsigned nptes;
638 uint64_t pte;
639 int r;
640
641 amdgpu_sync_resv(adev, &ib->sync, pt->tbo.resv,
642 AMDGPU_FENCE_OWNER_VM);
643 r = reservation_object_reserve_shared(pt->tbo.resv);
644 if (r)
645 return r;
646
647 if ((addr & ~mask) == (end & ~mask))
648 nptes = end - addr;
649 else
650 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
651
652 pte = amdgpu_bo_gpu_offset(pt);
653 pte += (addr & mask) * 8;
654
655 if ((last_pte + 8 * count) != pte) {
656
657 if (count) {
658 amdgpu_vm_frag_ptes(adev, ib, last_pte,
659 last_pte + 8 * count,
660 last_dst, flags,
661 gtt_flags);
662 }
663
664 count = nptes;
665 last_pte = pte;
666 last_dst = dst;
667 } else {
668 count += nptes;
669 }
670
671 addr += nptes;
672 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
673 }
674
675 if (count) {
676 amdgpu_vm_frag_ptes(adev, ib, last_pte,
677 last_pte + 8 * count,
678 last_dst, flags, gtt_flags);
679 }
680
681 return 0;
682 }
683
684 /**
685 * amdgpu_vm_fence_pts - fence page tables after an update
686 *
687 * @vm: requested vm
688 * @start: start of GPU address range
689 * @end: end of GPU address range
690 * @fence: fence to use
691 *
692 * Fence the page tables in the range @start - @end (cayman+).
693 *
694 * Global and local mutex must be locked!
695 */
696 static void amdgpu_vm_fence_pts(struct amdgpu_vm *vm,
697 uint64_t start, uint64_t end,
698 struct fence *fence)
699 {
700 unsigned i;
701
702 start >>= amdgpu_vm_block_size;
703 end >>= amdgpu_vm_block_size;
704
705 for (i = start; i <= end; ++i)
706 amdgpu_bo_fence(vm->page_tables[i].bo, fence, true);
707 }
708
709 /**
710 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
711 *
712 * @adev: amdgpu_device pointer
713 * @vm: requested vm
714 * @mapping: mapped range and flags to use for the update
715 * @addr: addr to set the area to
716 * @gtt_flags: flags as they are used for GTT
717 * @fence: optional resulting fence
718 *
719 * Fill in the page table entries for @mapping.
720 * Returns 0 for success, -EINVAL for failure.
721 *
722 * Object have to be reserved and mutex must be locked!
723 */
724 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
725 struct amdgpu_vm *vm,
726 struct amdgpu_bo_va_mapping *mapping,
727 uint64_t addr, uint32_t gtt_flags,
728 struct fence **fence)
729 {
730 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
731 unsigned nptes, ncmds, ndw;
732 uint32_t flags = gtt_flags;
733 struct amdgpu_ib *ib;
734 struct fence *f = NULL;
735 int r;
736
737 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
738 * but in case of something, we filter the flags in first place
739 */
740 if (!(mapping->flags & AMDGPU_PTE_READABLE))
741 flags &= ~AMDGPU_PTE_READABLE;
742 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
743 flags &= ~AMDGPU_PTE_WRITEABLE;
744
745 trace_amdgpu_vm_bo_update(mapping);
746
747 nptes = mapping->it.last - mapping->it.start + 1;
748
749 /*
750 * reserve space for one command every (1 << BLOCK_SIZE)
751 * entries or 2k dwords (whatever is smaller)
752 */
753 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
754
755 /* padding, etc. */
756 ndw = 64;
757
758 if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
759 /* only copy commands needed */
760 ndw += ncmds * 7;
761
762 } else if (flags & AMDGPU_PTE_SYSTEM) {
763 /* header for write data commands */
764 ndw += ncmds * 4;
765
766 /* body of write data command */
767 ndw += nptes * 2;
768
769 } else {
770 /* set page commands needed */
771 ndw += ncmds * 10;
772
773 /* two extra commands for begin/end of fragment */
774 ndw += 2 * 10;
775 }
776
777 /* update too big for an IB */
778 if (ndw > 0xfffff)
779 return -ENOMEM;
780
781 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
782 if (!ib)
783 return -ENOMEM;
784
785 r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
786 if (r) {
787 kfree(ib);
788 return r;
789 }
790
791 ib->length_dw = 0;
792
793 if (!(flags & AMDGPU_PTE_VALID)) {
794 unsigned i;
795
796 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
797 struct amdgpu_fence *f = vm->ids[i].last_id_use;
798 r = amdgpu_sync_fence(adev, &ib->sync, &f->base);
799 if (r)
800 return r;
801 }
802 }
803
804 r = amdgpu_vm_update_ptes(adev, vm, ib, mapping->it.start,
805 mapping->it.last + 1, addr + mapping->offset,
806 flags, gtt_flags);
807
808 if (r) {
809 amdgpu_ib_free(adev, ib);
810 kfree(ib);
811 return r;
812 }
813
814 amdgpu_vm_pad_ib(adev, ib);
815 WARN_ON(ib->length_dw > ndw);
816 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
817 &amdgpu_vm_free_job,
818 AMDGPU_FENCE_OWNER_VM,
819 &f);
820 if (r)
821 goto error_free;
822
823 amdgpu_vm_fence_pts(vm, mapping->it.start,
824 mapping->it.last + 1, f);
825 if (fence) {
826 fence_put(*fence);
827 *fence = fence_get(f);
828 }
829 fence_put(f);
830 if (!amdgpu_enable_scheduler) {
831 amdgpu_ib_free(adev, ib);
832 kfree(ib);
833 }
834 return 0;
835
836 error_free:
837 amdgpu_ib_free(adev, ib);
838 kfree(ib);
839 return r;
840 }
841
842 /**
843 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
844 *
845 * @adev: amdgpu_device pointer
846 * @bo_va: requested BO and VM object
847 * @mem: ttm mem
848 *
849 * Fill in the page table entries for @bo_va.
850 * Returns 0 for success, -EINVAL for failure.
851 *
852 * Object have to be reserved and mutex must be locked!
853 */
854 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
855 struct amdgpu_bo_va *bo_va,
856 struct ttm_mem_reg *mem)
857 {
858 struct amdgpu_vm *vm = bo_va->vm;
859 struct amdgpu_bo_va_mapping *mapping;
860 uint32_t flags;
861 uint64_t addr;
862 int r;
863
864 if (mem) {
865 addr = mem->start << PAGE_SHIFT;
866 if (mem->mem_type != TTM_PL_TT)
867 addr += adev->vm_manager.vram_base_offset;
868 } else {
869 addr = 0;
870 }
871
872 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
873
874 spin_lock(&vm->status_lock);
875 if (!list_empty(&bo_va->vm_status))
876 list_splice_init(&bo_va->valids, &bo_va->invalids);
877 spin_unlock(&vm->status_lock);
878
879 list_for_each_entry(mapping, &bo_va->invalids, list) {
880 r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, addr,
881 flags, &bo_va->last_pt_update);
882 if (r)
883 return r;
884 }
885
886 spin_lock(&vm->status_lock);
887 list_splice_init(&bo_va->invalids, &bo_va->valids);
888 list_del_init(&bo_va->vm_status);
889 if (!mem)
890 list_add(&bo_va->vm_status, &vm->cleared);
891 spin_unlock(&vm->status_lock);
892
893 return 0;
894 }
895
896 /**
897 * amdgpu_vm_clear_freed - clear freed BOs in the PT
898 *
899 * @adev: amdgpu_device pointer
900 * @vm: requested vm
901 *
902 * Make sure all freed BOs are cleared in the PT.
903 * Returns 0 for success.
904 *
905 * PTs have to be reserved and mutex must be locked!
906 */
907 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
908 struct amdgpu_vm *vm)
909 {
910 struct amdgpu_bo_va_mapping *mapping;
911 int r;
912
913 while (!list_empty(&vm->freed)) {
914 mapping = list_first_entry(&vm->freed,
915 struct amdgpu_bo_va_mapping, list);
916 list_del(&mapping->list);
917
918 r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, 0, 0, NULL);
919 kfree(mapping);
920 if (r)
921 return r;
922
923 }
924 return 0;
925
926 }
927
928 /**
929 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
930 *
931 * @adev: amdgpu_device pointer
932 * @vm: requested vm
933 *
934 * Make sure all invalidated BOs are cleared in the PT.
935 * Returns 0 for success.
936 *
937 * PTs have to be reserved and mutex must be locked!
938 */
939 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
940 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
941 {
942 struct amdgpu_bo_va *bo_va = NULL;
943 int r = 0;
944
945 spin_lock(&vm->status_lock);
946 while (!list_empty(&vm->invalidated)) {
947 bo_va = list_first_entry(&vm->invalidated,
948 struct amdgpu_bo_va, vm_status);
949 spin_unlock(&vm->status_lock);
950
951 r = amdgpu_vm_bo_update(adev, bo_va, NULL);
952 if (r)
953 return r;
954
955 spin_lock(&vm->status_lock);
956 }
957 spin_unlock(&vm->status_lock);
958
959 if (bo_va)
960 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
961
962 return r;
963 }
964
965 /**
966 * amdgpu_vm_bo_add - add a bo to a specific vm
967 *
968 * @adev: amdgpu_device pointer
969 * @vm: requested vm
970 * @bo: amdgpu buffer object
971 *
972 * Add @bo into the requested vm (cayman+).
973 * Add @bo to the list of bos associated with the vm
974 * Returns newly added bo_va or NULL for failure
975 *
976 * Object has to be reserved!
977 */
978 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
979 struct amdgpu_vm *vm,
980 struct amdgpu_bo *bo)
981 {
982 struct amdgpu_bo_va *bo_va;
983
984 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
985 if (bo_va == NULL) {
986 return NULL;
987 }
988 bo_va->vm = vm;
989 bo_va->bo = bo;
990 bo_va->ref_count = 1;
991 INIT_LIST_HEAD(&bo_va->bo_list);
992 INIT_LIST_HEAD(&bo_va->valids);
993 INIT_LIST_HEAD(&bo_va->invalids);
994 INIT_LIST_HEAD(&bo_va->vm_status);
995
996 mutex_lock(&vm->mutex);
997 list_add_tail(&bo_va->bo_list, &bo->va);
998 mutex_unlock(&vm->mutex);
999
1000 return bo_va;
1001 }
1002
1003 /**
1004 * amdgpu_vm_bo_map - map bo inside a vm
1005 *
1006 * @adev: amdgpu_device pointer
1007 * @bo_va: bo_va to store the address
1008 * @saddr: where to map the BO
1009 * @offset: requested offset in the BO
1010 * @flags: attributes of pages (read/write/valid/etc.)
1011 *
1012 * Add a mapping of the BO at the specefied addr into the VM.
1013 * Returns 0 for success, error for failure.
1014 *
1015 * Object has to be reserved and gets unreserved by this function!
1016 */
1017 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1018 struct amdgpu_bo_va *bo_va,
1019 uint64_t saddr, uint64_t offset,
1020 uint64_t size, uint32_t flags)
1021 {
1022 struct amdgpu_bo_va_mapping *mapping;
1023 struct amdgpu_vm *vm = bo_va->vm;
1024 struct interval_tree_node *it;
1025 unsigned last_pfn, pt_idx;
1026 uint64_t eaddr;
1027 int r;
1028
1029 /* validate the parameters */
1030 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1031 size == 0 || size & AMDGPU_GPU_PAGE_MASK) {
1032 amdgpu_bo_unreserve(bo_va->bo);
1033 return -EINVAL;
1034 }
1035
1036 /* make sure object fit at this offset */
1037 eaddr = saddr + size;
1038 if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo))) {
1039 amdgpu_bo_unreserve(bo_va->bo);
1040 return -EINVAL;
1041 }
1042
1043 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1044 if (last_pfn > adev->vm_manager.max_pfn) {
1045 dev_err(adev->dev, "va above limit (0x%08X > 0x%08X)\n",
1046 last_pfn, adev->vm_manager.max_pfn);
1047 amdgpu_bo_unreserve(bo_va->bo);
1048 return -EINVAL;
1049 }
1050
1051 mutex_lock(&vm->mutex);
1052
1053 saddr /= AMDGPU_GPU_PAGE_SIZE;
1054 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1055
1056 it = interval_tree_iter_first(&vm->va, saddr, eaddr - 1);
1057 if (it) {
1058 struct amdgpu_bo_va_mapping *tmp;
1059 tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1060 /* bo and tmp overlap, invalid addr */
1061 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1062 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1063 tmp->it.start, tmp->it.last + 1);
1064 amdgpu_bo_unreserve(bo_va->bo);
1065 r = -EINVAL;
1066 goto error_unlock;
1067 }
1068
1069 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1070 if (!mapping) {
1071 amdgpu_bo_unreserve(bo_va->bo);
1072 r = -ENOMEM;
1073 goto error_unlock;
1074 }
1075
1076 INIT_LIST_HEAD(&mapping->list);
1077 mapping->it.start = saddr;
1078 mapping->it.last = eaddr - 1;
1079 mapping->offset = offset;
1080 mapping->flags = flags;
1081
1082 list_add(&mapping->list, &bo_va->invalids);
1083 interval_tree_insert(&mapping->it, &vm->va);
1084 trace_amdgpu_vm_bo_map(bo_va, mapping);
1085
1086 /* Make sure the page tables are allocated */
1087 saddr >>= amdgpu_vm_block_size;
1088 eaddr >>= amdgpu_vm_block_size;
1089
1090 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1091
1092 if (eaddr > vm->max_pde_used)
1093 vm->max_pde_used = eaddr;
1094
1095 amdgpu_bo_unreserve(bo_va->bo);
1096
1097 /* walk over the address space and allocate the page tables */
1098 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1099 struct amdgpu_bo *pt;
1100
1101 if (vm->page_tables[pt_idx].bo)
1102 continue;
1103
1104 /* drop mutex to allocate and clear page table */
1105 mutex_unlock(&vm->mutex);
1106
1107 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1108 AMDGPU_GPU_PAGE_SIZE, true,
1109 AMDGPU_GEM_DOMAIN_VRAM, 0, NULL, &pt);
1110 if (r)
1111 goto error_free;
1112
1113 r = amdgpu_vm_clear_bo(adev, pt);
1114 if (r) {
1115 amdgpu_bo_unref(&pt);
1116 goto error_free;
1117 }
1118
1119 /* aquire mutex again */
1120 mutex_lock(&vm->mutex);
1121 if (vm->page_tables[pt_idx].bo) {
1122 /* someone else allocated the pt in the meantime */
1123 mutex_unlock(&vm->mutex);
1124 amdgpu_bo_unref(&pt);
1125 mutex_lock(&vm->mutex);
1126 continue;
1127 }
1128
1129 vm->page_tables[pt_idx].addr = 0;
1130 vm->page_tables[pt_idx].bo = pt;
1131 }
1132
1133 mutex_unlock(&vm->mutex);
1134 return 0;
1135
1136 error_free:
1137 mutex_lock(&vm->mutex);
1138 list_del(&mapping->list);
1139 interval_tree_remove(&mapping->it, &vm->va);
1140 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1141 kfree(mapping);
1142
1143 error_unlock:
1144 mutex_unlock(&vm->mutex);
1145 return r;
1146 }
1147
1148 /**
1149 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1150 *
1151 * @adev: amdgpu_device pointer
1152 * @bo_va: bo_va to remove the address from
1153 * @saddr: where to the BO is mapped
1154 *
1155 * Remove a mapping of the BO at the specefied addr from the VM.
1156 * Returns 0 for success, error for failure.
1157 *
1158 * Object has to be reserved and gets unreserved by this function!
1159 */
1160 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1161 struct amdgpu_bo_va *bo_va,
1162 uint64_t saddr)
1163 {
1164 struct amdgpu_bo_va_mapping *mapping;
1165 struct amdgpu_vm *vm = bo_va->vm;
1166 bool valid = true;
1167
1168 saddr /= AMDGPU_GPU_PAGE_SIZE;
1169
1170 list_for_each_entry(mapping, &bo_va->valids, list) {
1171 if (mapping->it.start == saddr)
1172 break;
1173 }
1174
1175 if (&mapping->list == &bo_va->valids) {
1176 valid = false;
1177
1178 list_for_each_entry(mapping, &bo_va->invalids, list) {
1179 if (mapping->it.start == saddr)
1180 break;
1181 }
1182
1183 if (&mapping->list == &bo_va->invalids) {
1184 amdgpu_bo_unreserve(bo_va->bo);
1185 return -ENOENT;
1186 }
1187 }
1188
1189 mutex_lock(&vm->mutex);
1190 list_del(&mapping->list);
1191 interval_tree_remove(&mapping->it, &vm->va);
1192 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1193
1194 if (valid)
1195 list_add(&mapping->list, &vm->freed);
1196 else
1197 kfree(mapping);
1198 mutex_unlock(&vm->mutex);
1199 amdgpu_bo_unreserve(bo_va->bo);
1200
1201 return 0;
1202 }
1203
1204 /**
1205 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1206 *
1207 * @adev: amdgpu_device pointer
1208 * @bo_va: requested bo_va
1209 *
1210 * Remove @bo_va->bo from the requested vm (cayman+).
1211 *
1212 * Object have to be reserved!
1213 */
1214 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1215 struct amdgpu_bo_va *bo_va)
1216 {
1217 struct amdgpu_bo_va_mapping *mapping, *next;
1218 struct amdgpu_vm *vm = bo_va->vm;
1219
1220 list_del(&bo_va->bo_list);
1221
1222 mutex_lock(&vm->mutex);
1223
1224 spin_lock(&vm->status_lock);
1225 list_del(&bo_va->vm_status);
1226 spin_unlock(&vm->status_lock);
1227
1228 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1229 list_del(&mapping->list);
1230 interval_tree_remove(&mapping->it, &vm->va);
1231 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1232 list_add(&mapping->list, &vm->freed);
1233 }
1234 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1235 list_del(&mapping->list);
1236 interval_tree_remove(&mapping->it, &vm->va);
1237 kfree(mapping);
1238 }
1239
1240 fence_put(bo_va->last_pt_update);
1241 kfree(bo_va);
1242
1243 mutex_unlock(&vm->mutex);
1244 }
1245
1246 /**
1247 * amdgpu_vm_bo_invalidate - mark the bo as invalid
1248 *
1249 * @adev: amdgpu_device pointer
1250 * @vm: requested vm
1251 * @bo: amdgpu buffer object
1252 *
1253 * Mark @bo as invalid (cayman+).
1254 */
1255 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1256 struct amdgpu_bo *bo)
1257 {
1258 struct amdgpu_bo_va *bo_va;
1259
1260 list_for_each_entry(bo_va, &bo->va, bo_list) {
1261 spin_lock(&bo_va->vm->status_lock);
1262 if (list_empty(&bo_va->vm_status))
1263 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1264 spin_unlock(&bo_va->vm->status_lock);
1265 }
1266 }
1267
1268 /**
1269 * amdgpu_vm_init - initialize a vm instance
1270 *
1271 * @adev: amdgpu_device pointer
1272 * @vm: requested vm
1273 *
1274 * Init @vm fields (cayman+).
1275 */
1276 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1277 {
1278 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1279 AMDGPU_VM_PTE_COUNT * 8);
1280 unsigned pd_size, pd_entries, pts_size;
1281 int i, r;
1282
1283 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1284 vm->ids[i].id = 0;
1285 vm->ids[i].flushed_updates = NULL;
1286 vm->ids[i].last_id_use = NULL;
1287 }
1288 mutex_init(&vm->mutex);
1289 vm->va = RB_ROOT;
1290 spin_lock_init(&vm->status_lock);
1291 INIT_LIST_HEAD(&vm->invalidated);
1292 INIT_LIST_HEAD(&vm->cleared);
1293 INIT_LIST_HEAD(&vm->freed);
1294
1295 pd_size = amdgpu_vm_directory_size(adev);
1296 pd_entries = amdgpu_vm_num_pdes(adev);
1297
1298 /* allocate page table array */
1299 pts_size = pd_entries * sizeof(struct amdgpu_vm_pt);
1300 vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
1301 if (vm->page_tables == NULL) {
1302 DRM_ERROR("Cannot allocate memory for page table array\n");
1303 return -ENOMEM;
1304 }
1305
1306 vm->page_directory_fence = NULL;
1307
1308 r = amdgpu_bo_create(adev, pd_size, align, true,
1309 AMDGPU_GEM_DOMAIN_VRAM, 0,
1310 NULL, &vm->page_directory);
1311 if (r)
1312 return r;
1313
1314 r = amdgpu_vm_clear_bo(adev, vm->page_directory);
1315 if (r) {
1316 amdgpu_bo_unref(&vm->page_directory);
1317 vm->page_directory = NULL;
1318 return r;
1319 }
1320
1321 return 0;
1322 }
1323
1324 /**
1325 * amdgpu_vm_fini - tear down a vm instance
1326 *
1327 * @adev: amdgpu_device pointer
1328 * @vm: requested vm
1329 *
1330 * Tear down @vm (cayman+).
1331 * Unbind the VM and remove all bos from the vm bo list
1332 */
1333 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1334 {
1335 struct amdgpu_bo_va_mapping *mapping, *tmp;
1336 int i;
1337
1338 if (!RB_EMPTY_ROOT(&vm->va)) {
1339 dev_err(adev->dev, "still active bo inside vm\n");
1340 }
1341 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1342 list_del(&mapping->list);
1343 interval_tree_remove(&mapping->it, &vm->va);
1344 kfree(mapping);
1345 }
1346 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1347 list_del(&mapping->list);
1348 kfree(mapping);
1349 }
1350
1351 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1352 amdgpu_bo_unref(&vm->page_tables[i].bo);
1353 kfree(vm->page_tables);
1354
1355 amdgpu_bo_unref(&vm->page_directory);
1356 fence_put(vm->page_directory_fence);
1357
1358 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1359 fence_put(vm->ids[i].flushed_updates);
1360 amdgpu_fence_unref(&vm->ids[i].last_id_use);
1361 }
1362
1363 mutex_destroy(&vm->mutex);
1364 }
This page took 0.125694 seconds and 5 git commands to generate.